# FORCING SIGNED DOMINATION NUMBERS IN GRAPHS

#### S. M. Sheikholeslami

Abstract. We initiate the study of forcing signed domination in graphs. A function f:  $V(G) \longrightarrow \{-1,+1\}$  is called signed dominating function if for each  $v \in V(G), \sum_{u \in N[v]} f(u) \ge V(G)$ 1. For a signed dominating function f of G, the weight f is  $w(f) = \sum_{v \in V} f(v)$ . The signed domination number  $\gamma_s(G)$  is the minimum weight of a signed dominating function on G. A signed dominating function of weight  $\gamma_s(G)$  is called a  $\gamma_s(G)$ -function. A  $\gamma_s(G)$ -function f can also be represented by a set of ordered pairs  $S_f = \{(v, f(v)) : v \in V\}$ . A subset T of  $S_f$  is called a *forcing* subset of  $S_f$  if  $S_f$  is the unique extension of T to a  $\gamma_s(G)$ -function. The forcing signed domination number of  $S_f$ ,  $f(S_f, \gamma_s)$ , is defined by  $f(S_f, \gamma_s) = \min\{|T| : T \text{ is a forcing subset of } S_f\}$  and the forcing signed domination number of G,  $f(G, \gamma_s)$ , is defined by  $f(G, \gamma_s) = \min\{f(S_f, \gamma_s) : f(G, \gamma_s) : f(G, \gamma_s) = \min\{f(S_f, \gamma_s) : f(G, \gamma_s) : f(G, \gamma_s) : f(G, \gamma_s) : f(G, \gamma_s) = \min\{f(S_f, \gamma_s) : f(G, \gamma_s) : f(G$  $S_f$  is a  $\gamma_s(G)$ -function. For every graph G,  $f(G, \gamma_s) \geq 0$ . In this paper we show that for integer a, b with a positive, there exists a simple connected graph G such that  $f(G, \gamma_s) = a$  and  $\gamma_s(G) = b$ . The forcing signed domination number of several classes of graph, including paths, cycles, Dutch-windmills, wheels, ladders and prisms are determined.

#### 1. Introduction

Let G a be graph with vertex set V(G). For every vertex  $v \in V(G)$ , the open neighborhood N(v) is the set  $\{u \in V(G) \mid uv \in E(G)\}$  and its closed neighborhood is  $N[v] = N(v) \cup \{v\}$ . For a function  $f: V(G) \longrightarrow \{-1, 1\}$  and a subset S of V(G)we define  $f(S) = \sum_{u \in S} f(u)$ . If S = N[v] for some  $v \in V$ , then we denote f(S) by f[v]. For a function  $f: V(G) \longrightarrow R$ , the weight f is  $w(f) = \sum_{v \in V} f(v)$ . A signed dominating function of G is a function  $f: V(G) \longrightarrow \{+1, -1\}$  such that  $f[v] \ge 1$ for all  $v \in V$ . The signed domination number  $\gamma_s(G)$  is the minimum weight of a signed dominating function on G. A signed dominating function of weight  $\gamma_s(G)$ is defined a  $\gamma_s(G)$ -function. For every graph G, we have  $\gamma_s(G) \in Z$ . The signed domination number was introduced by Dunbar et al. in [2] and since then many results have also been obtained on the parameter  $\gamma_s(G)$  (see for instance [3, 4, 8, 9, 11, 13]. We use [12] for terminology and notation which are not defined here.

A signed dominating function f of G can also be represented by a set of ordered pairs  $S_f = \{(v, f(v)) \mid v \in V\}$ . Let f be a  $\gamma_s(G)$ -function. A subset T of  $S_f$  is called a *forcing subset* of  $S_f$  if  $S_f$  is the unique extension of T to a  $\gamma_s(G)$ -

AMS Subject Classification: 05C15

Keywords and phrases: Forcing signed domination number, signed domination number. 171

function. The forcing signed domination number of  $S_f$ ,  $f(S_f, \gamma_s)$ , is defined by  $f(S_f, \gamma_s) = \min\{|T| : T \text{ is a forcing subset of } S_f\}$ . The forcing signed domination number  $f(G, \gamma_s)$  is defined by  $f(G, \gamma_s) = \min\{f(S_f, \gamma_s) \mid S_f \text{ is a } \gamma_s(G)\text{-function}\}$ . Hence for every graph G,  $f(G, \gamma_s) \ge 0$ .

The concept of forcing numbers has been studied in different areas of combinatorics and graph theory, including the chromatic numbers [10], domination numbers [1, 6] and semi-*H*-cordial labeling of a graph [7]. In this paper we initiate the study of forcing signed domination numbers in graphs. The paper is organized as follows: In Section 2, we give some preliminary results for  $f(G, \gamma_s)$ . We also prove that for every two integer a, b of which a is positive, there exists a simple connected graph Gsuch that  $f(G, \gamma_s) = a$  and  $\gamma_s(G) = b$ . In section 3, we find the forcing signed domination number of paths and cycles. In Section 4, we determine the forcing signed domination number of Dutch-windmill graphs and wheels. Section 5 is devoted to determine the forcing signed domination number of ladders and prisms.

Here are some well-known results on  $\gamma_s(G)$ .

THEOREM A. [2] If f is a signed dominating function for a graph G, then each endvertex and each vertex adjacent with an endvertex of G is assigned the value 1 under f.

THEOREM B. [5] For  $n \ge 2$ ,  $\gamma_s(P_n) = n - 2\lfloor \frac{n-2}{3} \rfloor$ . THEOREM C. [5] For  $n \ge 3$ ,  $\gamma_s(C_n) = n - 2\lfloor \frac{n}{3} \rfloor$ . THEOREM D. [8] For  $n \ge 2$ ,

$$\gamma_s(P_2 \times P_n) = \begin{cases} n & \text{if } n \text{ is even}, \\ n-1 & \text{if } n \text{ is odd.} \end{cases}$$

THEOREM E. [8] For  $n \geq 3$ ,

$$\gamma_s(P_2 \times C_n) = \begin{cases} n & \text{if } n \equiv 0 \pmod{4}; \\ n+2 & \text{if } n \equiv 2 \pmod{4}; \\ n+1 & \text{if } n \text{ is odd.} \end{cases}$$

### 2. Realizability

We have already noted that if G is a graph with  $f(G, \gamma_s) = a$  and  $\gamma_s(G) = b$ , then  $a \ge 0$  and  $b \in Z$ . In this section we prove the corresponding realization result.

The following observations will be useful in this note.

OBSERVATION 1. Let G be a graph with  $\Delta \leq 3$ , g be a signed dominating function of G and  $u, v \in V(G)$ . If g(u) = g(v) = -1, then  $d(u, v) \geq 3$ .

OBSERVATION 2. For a graph G,  $f(G, \gamma_s) = 0$  if and only if G has a unique  $\gamma_s(G)$ -function. Moreover,  $f(G, \gamma_s) = 1$  if and only if G does not have a unique  $\gamma_s(G)$ -function but some pair  $(v, \pm 1)$  belongs to exactly one  $\gamma_s(G)$ -function.

The following result is a direct consequence of Observation 2

COROLLARY 3. For a graph G,  $f(G, \gamma_s) > 1$  if and only if every pair  $(v, \pm 1)$  of each  $\gamma_s(G)$ -function belongs to at least two  $\gamma_s(G)$ -functions.

THEOREM 4. For every graph G of order n, if  $\gamma_s(G) = n$  then  $f(G, \gamma_s) = 0$ .

*Proof.* Let  $\gamma_s(G) = n$ . We show that every non isolated vertex is either an endvertex or adjacent to an endvertex. Consider a vertex v that is neither an endvertex nor adjacent to an endvertex. Then we can assign -1 to v and +1 to each other vertex, to produce a signed dominating function on G of weight n-2, which is a contradiction. This proves our claim and the theorem is true by Theorem A.

COROLLARY 5. For  $n \ge 1$ ,  $f(K_{1,n}, \gamma_s) = 0$ .

*Proof.* By Theorem A,  $\gamma_s(K_{1,n}) = n$  and the result follows by Theorem 4.

Next theorem shows that for every pair a, b of integers, with a positive, there exists a simple connected graph G such that  $f(G, \gamma_s) = a$  and  $\gamma_s(G) = b$ .

THEOREM 6. For every two integers a and b, with a positive, there exists a simple connected graph G such that  $a = f(G, \gamma_s)$  and  $b = \gamma_s(G)$ .

*Proof.* Let G be obtained from complete graph  $K_{8|b|+8}$  whose vertex set is  $\{v_1, \ldots, v_{8|b|+8}\}$ , by adding 24|b| + 24 new vertices, say  $u_1, u_2, \ldots, u_{8|b|+8}$ ,  $w_1, w_2, \ldots, w_{8|b|+8}, z_1, z_2, \ldots, z_{8|b|+8}$  and new edges  $u_i v_i, v_1 w_i, v_2 w_i, v_3 z_i, v_4 z_i$  for each *i*. We consider three cases.

Case 1. b = 0. Obviously  $f(G, \gamma_s) = \gamma_s(G) = 0$ . Suppose now that a > 0. Let  $G_1$  be obtained from G by adding 2a new vertices, say  $m_i, n_i$   $(1 \le i \le a)$ , and new edges  $v_{8|b|+8}m_i, v_{8|b|+8}n_i$  and  $m_in_i$  for  $i = 1, \ldots, a$ . It is easy to see that  $f(G_1, \gamma_s) = a$  and  $\gamma_s(G_1) = 0$ .

Case 2. b > 0. First let a = 0. Let  $G_2$  be obtained from G by adding b pendant edges at  $v_{8|b|+8}$ , say  $v_{8|b|+8}y_1, \ldots, v_{8|b|+8}y_b$ . It is easy to see that  $\gamma_s(G_2) = b$  and  $f(G_2, \gamma_s) = 0$ . Suppose now that a > 0. Let  $G_3$  be obtained from  $G_2$  by adding 2a new vertices  $m_i, n_i$   $(1 \le i \le a)$  and new edges  $v_{8|b|+8}m_i, v_{8|b|+8}n_i$  and  $m_in_i$  for  $i = 1, \ldots, a$ . One can see that  $f(G_3, \gamma_s) = a$  and  $\gamma_s(G_3) = b$ .

Case 3. b < 0. If a = 0, then let  $G_4$  be obtained from G by adding |b| new vertices, say  $y_1, \ldots, y_{|b|}$ , and joining them to both  $v_5, v_6$ . Obviously  $f(G_4, \gamma_s) = 0$  and  $\gamma_s(G_4) = b$ . If a > 0, then let  $G_5$  be obtained from  $G_4$  by adding 2a new vertices  $m_i, n_i$   $(1 \le i \le a)$  and adding new edges  $v_{8|b|+8}m_i, v_{8|b|+8}n_i$  and  $m_in_i$  for  $i = 1, \ldots, a$ . It is easy to verify that  $f(G_5, \gamma_s) = a$  and  $\gamma_s(G_5) = b$ . This completes the proof.

#### 3. Forcing signed domination number of paths and cycles

In this section we determine the forcing signed domination number of paths and cycles. We begin with the forcing signed domination number of paths. Since for  $1 \le n \le 4$ ,  $f(P_n, \gamma_s) = 0$  by Theorem A, we consider paths of order at least 5. THEOREM 7. For  $n \geq 5$ ,

$$f(P_n, \gamma_s) = \begin{cases} 0 & \text{if} \quad n \equiv 2 \pmod{3}; \\ 1 & \text{if} \quad n \equiv 0 \text{ or } 1 \pmod{3}. \end{cases}$$

*Proof.* Let  $P_n = v_1, v_2, \ldots, v_n$  and g be a  $\gamma_s$ -function of  $P_n$ . By Theorem A,  $g(v_1) = g(v_2) = g(v_n) = g(v_{n-1}) = 1$ . By Observation 1,  $g(v_i) = g(v_j) = -1$  implies that  $|i-j| \ge 3$ . Therefore, the number of vertices of  $P_n$  which g can assign -1 to them is at most  $\lfloor \frac{n-2}{3} \rfloor$ . On the other hand, g must assign the value -1 to exactly  $\lfloor \frac{n-2}{3} \rfloor$  vertices of  $P_n$  by Theorem B. If n = 3k + 2 for some  $k \in \mathbf{N}$ , then obviously  $g(v_{3i}) = -1$  for  $i = 1, \ldots, k$  and g assigns the value 1 to each other vertex. Thus  $f(P_{3k+2}, \gamma_s) = 0$ .

Now let  $n \not\equiv 2 \pmod{3}$ . Define  $g, h: V(P_n) \longrightarrow \{-1, +1\}$  by

$$g(v_i) = \begin{cases} -1 & \text{if} \quad i = 3, 6, \dots, 3(\lfloor \frac{n}{3} \rfloor - 1); \\ 1 & \text{otherwise,} \end{cases}$$

and

$$h(v_i) = \begin{cases} -1 & \text{if } i = 4, 7, \dots, 3(\lfloor \frac{n}{3} \rfloor - 1) + 1; \\ 1 & \text{otherwise} . \end{cases}$$

It is easy to see that g and h are  $\gamma_s(P_n)$ -function. It follows that  $f(P_n, \gamma_s) \ge 1$  by Observation 2. Consider two cases.

Case 1.  $n \equiv 0 \pmod{3}$ . Let  $T = \{(v_{n-2}, 1)\}$ . We claim that T is a forcing subset for g. Let f be a  $\gamma_s(P_n)$ -function such that  $f(v_{n-2}) = 1$ . This forces  $f(v_{3i}) = -1$  for  $1 \leq i \leq \frac{n}{3} - 1$ , which implies f assigns the value 1 to each other vertex. Therefore f = g and  $f(S_g, \gamma_s) \leq 1$ . Thus,  $f(P_n, \gamma_s) \leq 1$ .

Case 2.  $n \equiv 1 \pmod{3}$ . We show that  $T = \{(v_{n-4}, -1)\}$  is a forcing subset of g. Let f be a  $\gamma_s(P_n)$ -function such that  $f(v_{n-4}) = -1$ . This forces  $f(v_{n-3}) = f(v_{n-2}) = f(v_{n-5}) = f(v_{n-6}) = 1$  by Theorem A and Observation 1. Since f must assign the value -1 exactly to  $\lfloor \frac{n-2}{3} \rfloor$  vertices of  $P_n$  by Theorem B, we must have  $f(v_3) = f(v_6) = \ldots = f(v_{n-4}) = -1$ . It follows that f must assign the value 1 to each other vertex. Thus f = g and  $f(S_g, \gamma_s) \leq 1$ . Therefore  $f(P_n, \gamma_s) \leq 1$  and the proof is complete.

Next we determine  $f(C_n, \gamma_s)$  for all cycles. Obviously,  $f(C_n, \gamma_s) = 1$  when n = 3, 4, 5. Therefore, we consider cycles of order at least 6.

THEOREM 8. For  $n \ge 6$ ,

$$f(C_n, \gamma_s) = \begin{cases} 1 & \text{if} \quad n \equiv 0 \pmod{3}; \\ 2 & \text{if} \quad n \equiv 1 \text{ or } 2 \pmod{3}. \end{cases}$$

*Proof.* Let  $C_n = v_1, v_2, \ldots, v_n$ . By Theorem C,  $\gamma_s(C_n) = n - 2\lfloor \frac{n}{3} \rfloor$ . Define  $g, h: V(C_n) \longrightarrow \{-1, +1\}$  by

$$g(v_i) = \begin{cases} -1 & \text{if } i = 1, 4, \dots, 3(\lfloor \frac{n}{3} \rfloor - 1) + 1; \\ 1 & \text{otherwise,} \end{cases}$$

174

and

$$h(v_i) = \begin{cases} -1 & \text{if } i = 2, 5, \dots, 3(\lfloor \frac{n}{3} \rfloor - 1) + 2; \\ 1 & \text{otherwise} \end{cases}$$

It is easy to see that g and h are  $\gamma_s(C_n)$ -function. It follows that  $f(C_n, \gamma_s) \geq 1$ by Observation 2. First let  $n \equiv 0 \pmod{3}$ . We claim that  $T = \{(v_1, -1)\}$  is a forcing subset for g. Let f be an extension of T to a  $\gamma_s(C_n)$ -function. This forces  $f(v_2) = f(v_3) = f(v_n) = f(v_{n-1}) = 1$  by Observation 1. Since f is a  $\gamma_s(C_n)$ function, f must assign the value -1 to exactly  $\lfloor \frac{n}{3} \rfloor$  vertices of  $C_n$  by Theorem C. This forces  $f(v_4) = f(v_7) = \ldots = f(v_{n-2}) = -1$ . It follows that f assigns the value 1 to each other vertex of  $C_n$ . Therefore f = g and  $f(C_n, \gamma_s) \leq 1$ .

Now let  $n \equiv 1 \pmod{3}$ . Then n = 3k + 1 for some  $k \geq 2$ . First we show that every set  $T = \{(v, \varepsilon) \mid v \in V(C_n) \text{ and } \varepsilon = +1 \text{ or } -1\}$  which has an extension to a  $\gamma_s(C_n)$ -function, has at least two extension to a  $\gamma_s(C_n)$ -function which implies  $f(C_n, \gamma_s) \geq 2$ . Without loss of generality, we can assume  $v = v_1$  and  $\varepsilon = -1$ . Define  $g, h: V(C_n) \longrightarrow \{-1, +1\}$  by

$$g(v_i) = \begin{cases} -1 & \text{if } i = 1, 4, \dots, 3(k-1) + 1; \\ 1 & \text{otherwise}, \end{cases}$$

and

$$h(v_i) = \begin{cases} -1 & \text{if } i = 1, 5, \dots, 3(k-1) + 2; \\ 1 & \text{otherwise} \end{cases}$$

It is easy to see that g and h are  $\gamma_s(C_n)$ -function such that  $g(v_1) = h(v_1) = -1$ . It follows that  $f(C_n, \gamma_s) \ge 2$  by Corollary 3. Now it is easy to verify that  $T = \{(v_1, -1), (v_{n-2}, 1)\}$  is a forcing subset of g which implies  $f(C_n, \gamma_s) \le 2$ . Thus  $f(C_n, \gamma_s) = 2$ .

If  $n \equiv 2 \pmod{3}$ , then an argument similar to that described in case  $n \equiv 1 \pmod{3}$  shows that  $f(C_n, \gamma_s) = 2$ . This completes the proof.

### 4. The Dutch-windmill graphs and wheels

The Dutch-windmill graph,  $K_3^{(m)}$ , is a graph which consists of m copies of  $K_3$  with a vertex in common. The wheel,  $W_n$ , is a graph with n + 1 vertices  $\{v_0, v_1, \ldots, v_n\}$  and edges  $\{v_0v_i \mid 1 \leq i \leq n\} \cup \{v_1v_2, v_2v_3, \ldots, v_{n-1}v_n, v_nv_1\}$ . In this section we find the forcing signed domination number of  $K_3^{(m)}$  and  $W_n$ .

LEMMA 9. For every positive integer m,  $\gamma_s(K_3^{(m)}) = 1$ .

*Proof.* By Theorem C, we may assume  $m \ge 2$ . Let  $v, u_i, w_i$  are the vertices of the *i*-th copy of  $K_3$  in  $K_3^{(m)}$  (v is the common vertex). Define  $g: V(K_3^{(m)}) \longrightarrow \{-1, +1\}$  by

$$g(w) = \begin{cases} 1 & \text{if } w = v, w_i \text{ and } 1 \le i \le m; \\ -1 & \text{if } w = u_i \text{ and } 1 \le i \le m. \end{cases}$$

Obviously g is a signed dominating function for  $K_3^{(m)}$ . Thus,  $\gamma_s(K_3^{(m)}) \leq 1$ . Now let h be a  $\gamma_s$ -function of  $K_3^{(m)}$ . Then h(v) = 1, for otherwise h must assign the

value +1 to each other vertex which leads to  $\gamma_s(h) = 2m - 1 > 1$ , a contradiction. Now h can assign the value -1 to exactly one of the vertices  $w_i$  or  $v_i$  for each i. Thus,  $w(h) \ge 1$  and  $\gamma_s(K_3^{(m)}) = 1$ .

THEOREM 10. For every positive integer m,  $f(K_3^{(m)}, \gamma_s) = m$ .

*Proof.* Let g be the  $\gamma_s$ -function of  $K_3^{(m)}$  defined in Lemma 9. It is easy to see that  $T = \{(u_i, -1) \mid 1 \leq i \leq m\}$  is a forcing subset of g. Therefore,  $f(K_3^{(m)}, \gamma_s) \leq m$ . Now we show that  $f(K_3^{(m)}, \gamma_s) \geq m$ . Let  $S = \{(w, \varepsilon_w) \mid w \in V(K_3^{(m)}) \text{ and } \varepsilon_w = +1 \text{ or } -1\}$  where |S| < m and S has at least an extension to a  $\gamma_s$ -function of  $K_3^{(m)}$ . Without loss of generality we may assume S does not intersect the first copy of  $K_3$ . Define  $S_1 = S \cup \{(w_1, 1), (u_1, -1)\}$  and  $S_2 = S \cup \{(w_1, -1), (u_1, 1)\}$ . Now we can extend  $S_1$  and  $S_2$ , to a  $\gamma_s$ -function of  $K_3^{(m)}$ . It follows that S is not a forcing subset for any  $\gamma_s$ -function of  $K_3^{(m)}$ . Thus,  $f(K_3^{(m)}, \gamma_s) \geq m$  and the proof is complete. ■

Since  $\gamma_s(W_3) = 2$  and  $\gamma_s(W_4) = 3$ , we consider  $W_n$  with  $n \ge 5$ .

LEMMA 11. For  $n \ge 5$ ,  $\gamma_s(W_n) = n + 1 - 2\lfloor \frac{n}{3} \rfloor$ .

*Proof.* Define  $g: W_n \longrightarrow \{-1, +1\}$  by

$$g(w) = \begin{cases} -1 & \text{if } w = v_{3i+1} \text{ and } 0 \le i \le \lfloor \frac{n}{3} \rfloor - 1; \\ 1 & \text{otherwise }. \end{cases}$$

Obviously g is a signed dominating function for  $W_n$  which implies  $\gamma_s(W_n) \leq n + 1 - 2\lfloor \frac{n}{3} \rfloor$ . Now let h be a  $\gamma_s$ -function of  $W_n$ . We claim that  $h(v_0) = 1$ . Let, to the contrary,  $h(v_0) = -1$ . Since  $\deg(v_i) = 3$  for each i, h must assign the value +1 to each other vertex which implies  $\gamma_s(h) = n - 1 > n + 1 - 2\lfloor \frac{n}{3} \rfloor$ , a contradiction. Therefore  $h(v_0) = 1$ . Since  $\deg(v_i) \leq 3$  for each  $i \geq 1$ ,  $h(v_i) = h(v_j) = -1$  implies that  $|i-j| \geq 3$  by Observation 1. It follows that  $|\{w \in V(W_n) : h(w) = -1\}| \leq \lfloor \frac{n}{3} \rfloor$ . Thus  $\gamma_s(W_n) = w(h) \geq n + 1 - 2\lfloor \frac{n}{3} \rfloor$  and the proof is complete.

It is easy to see that  $f(W_n, \gamma_s) = 1$  when n = 3, 4, 5. Therefore, we assume  $n \ge 6$ .

THEOREM 12. For  $n \ge 6$ ,

$$f(W_n, \gamma_s) = \begin{cases} 1 & \text{if } n \equiv 0 \pmod{3}; \\ 2 & \text{otherwise} \end{cases}$$

*Proof.* First let  $n \equiv 0 \pmod{3}$ . Define  $g, h: V(W_n) \longrightarrow \{-1, +1\}$  by

$$g(v_i) = \begin{cases} -1 & \text{if } i = 1, 4, \dots, 3(\lfloor \frac{n}{3} \rfloor - 1) + 1\\ 1 & \text{otherwise,} \end{cases}$$

and

$$h(v_i) = \begin{cases} -1 & \text{if } i = 2, 5, \dots, 3(\lfloor \frac{n}{3} \rfloor - 1) + 2; \\ 1 & \text{otherwise} \end{cases}$$

Obviously g and h are signed dominating function for  $W_n$ . By Lemma 11, g and h are  $\gamma_s(W_n)$ -functions. It follows that  $f(W_n, \gamma_s) \ge 1$  by Observation 2. It is easy to verify that  $T = \{(v_1, -1)\}$  is a forcing subset for g which implies  $f(W_n, \gamma_s) = 1$ .

Now let  $n \neq 0 \pmod{3}$ . Let  $T = \{(v, \varepsilon) \mid v \in V(W_n) \text{ and } \varepsilon = +1 \text{ or } -1\}$  and T has an extension to a  $\gamma_s(W_n)$ -function. If i = 0 or  $\varepsilon = +1$ , then obviously T has at least two extension to a  $\gamma_s(W_n)$ -function. Suppose now that  $i \neq 0$  and  $\varepsilon = -1$ . Without loss of generality we may assume  $v = v_1$ . Define  $g^*, h^* : V(W_n) \longrightarrow \{-1, +1\}$  by

$$g^*(v_i) = \begin{cases} -1 & \text{if} \quad i = 1, 4, \dots, 3(\lfloor \frac{n}{3} \rfloor - 1) + 1; \\ 1 & \text{otherwise,} \end{cases}$$

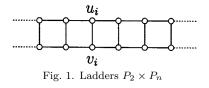
and

$$h^*(v_i) = \begin{cases} -1 & \text{if} \quad i = 1, 5, \dots, 3(\lfloor \frac{n}{3} \rfloor - 1) + 2; \\ 1 & \text{otherwise} . \end{cases}$$

Obviously  $g^*$  and  $h^*$  are signed dominating functions for which  $g(v_1) = h(v_1) = -1$ and by Lemma 11,  $g^*$  and  $h^*$  are  $\gamma_s(W_n)$ -functions. It follows that  $f(W_n, \gamma_s) \ge 2$ by Corollary 3. It is straightforward to see that  $T_1 = \{(v_1, -1), (v_{n-2}, 1)\}$  if  $n \equiv 1 \pmod{3}$  and  $T_2 = \{(v_1, -1), (v_{n-4}, -1)\}$  when  $n \equiv 2 \pmod{3}$ , is a forcing subset of  $g^*$  which implies  $f(W_n, \gamma_s) \le 2$ . Thus  $f(W_n, \gamma_s) = 2$  and the proof is complete.

## 5. Ladders and Prisms

In this section we find the forcing signed domination number of ladders and prisms. Throughout this section we assume the vertices of the *i*-th copy of  $P_2$  in ladders  $P_2 \times P_n$  (prisms  $P_2 \times C_n$ ) are  $u_i, v_i$  for i = 1, 2, ..., n. (see Figure 1).



Since  $P_2 \times P_2 = C_4$ ,  $f(P_2 \times P_2, \gamma_s) = 1$ . We assume  $n \ge 3$ .

THEOREM 13. For  $n \geq 3$ ,  $f(P_2 \times P_n, \gamma_s) = 1$ .

*Proof.* Define  $g, h: V(P_2 \times P_n) \longrightarrow \{-1, +1\}$  by

$$g(w) = \begin{cases} -1 & \text{if} \quad w = u_{4i+1} \text{ and } 0 \le i \le \left\lceil \frac{n}{4} \right\rceil - 1; \\ -1 & \text{if} \quad w = v_{4i+3} \text{ and } 0 \le i \le \left\lfloor \frac{n+1}{4} \right\rfloor - 1; \\ 1 & \text{otherwise,} \end{cases}$$

S.M. Sheikholeslami

and  $h(u_i) = g(v_i)$  and  $h(v_i) = g(u_i)$  for each *i*. It is easy to see that *g* and *h* are  $\gamma_s$ -functions for  $P_2 \times P_n$  by Theorem D. It follows that  $f(P_2 \times P_n, \gamma_s) \ge 1$  by Observation 2. Let *g* be the  $\gamma_s$ -function defined above. Let  $M = \{w \in V(P_2 \times P_n) \mid g(w) = -1\}$ . Consider two cases.

Case 1. n is odd. By Theorem D,  $|M| = \frac{n+1}{2}$ . Now we show that  $T = \{(u_1, -1)\}$  is a forcing subset for g. Let f be an extension of T to a  $\gamma_s(P_2 \times P_n)$ -function. By Observation 1,  $f(v_1) = f(u_2) = f(v_2) = f(u_3) = 1$  and  $|M \cap \{u_i, v_i, u_{i-1}, v_{i-1}, u_{i+1}, v_{i+1}\}| \leq 1$  for each i. Since  $|M| = \frac{n+1}{2}$ ,  $f(v_3) = -1$ . An inductive argument shows that  $f(u_{4i+1}) = -1$  for  $0 \leq i \leq \lfloor \frac{n}{4} \rfloor - 1$ ,  $f(v_{4i+3}) = -1$  for  $0 \leq i \leq \lfloor \frac{n+1}{4} \rfloor - 1$  and f assigns the value +1 to each other vertex. Thus, f = g and  $f(P_2 \times P_n, \gamma_s) \leq f(S_g, \gamma_s) \leq 1$ .

Case 2. n is even. An argument similar to that described in case 1, proves that  $T_1 = \{(v_{n-1}, -1)\}$  and  $T_2 = \{(u_{n-1}, -1)\}$  are forcing subsets of g when 4|n and  $4 \nmid n$ , respectively. It follows that  $f(P_2 \times P_n, \gamma_s) \leq f(S_g, \gamma_s) \leq 1$  and the proof is complete.

Finally, we determine  $f(P_2 \times C_n, \gamma_s)$  for  $n \ge 3$ . Since  $f(P_2 \times C_n, \gamma_s) = 1$  when n is 3 and 4, we assume  $n \ge 5$ .

THEOREM 14. For  $n \geq 5$ ,

$$f(P_2 \times C_n, \gamma_s) = \begin{cases} 1 & \text{if } n \equiv 0 \pmod{4}; \\ 2 & \text{otherwise} \end{cases}$$

*Proof.* First let  $n \equiv 0 \pmod{4}$ . Define  $g, h: V(P_2 \times C_n) \longrightarrow \{-1, +1\}$  by  $g(w) = \begin{cases} -1 & \text{if } w = u_{4i+1}, v_{4i+3} \text{ and } 0 \le i \le \lfloor \frac{n}{4} \rfloor -1; \\ 1 & \text{otherwise}, \end{cases}$ 

and  $h(u_i) = g(v_i)$  and  $h(v_i) = g(u_i)$  for each *i*. Obviously *g* and *h* are signed dominating functions for  $P_2 \times C_n$ . Therefore, *g* and *h* are  $\gamma_s(P_2 \times C_n)$ -functions by Theorem E. It follows that  $f(P_2 \times C_n, \gamma_s) \ge 1$  by Observation 2. An argument similar to that described in the Theorem 13, shows that  $T = \{(v_{n-1}, -1)\}$  is a forcing subset for *g*. Thus  $f(P_2 \times C_n, \gamma_s) = 1$ .

Now let  $n \neq 0 \pmod{4}$ . First we show that  $f(P_2 \times C_n, \gamma_s) \geq 2$ . In order to do this, it is sufficient to show that every set  $T = \{(w, \varepsilon_w) \mid w \in V(P_2 \times C_n), \varepsilon_w = +1 \text{ or } -1\}$  which has at least one extension to a  $\gamma_s$ -function, has two extensions to a  $\gamma_s$ -function for  $P_2 \times C_n$ . Without loss of generality, we may assume  $w = u_1$  and  $\varepsilon = -1$ . Define  $g, h: V(P_2 \times C_n) \longrightarrow \{-1, +1\}$  by

$$g(w) = \begin{cases} -1 & \text{if} \quad w = u_{4i+1} \text{ and } 0 \le i \le \lfloor \frac{n+1}{4} \rfloor -1; \\ -1 & \text{if} \quad w = v_{4i+3} \text{ and } 0 \le i \le \lfloor \frac{n}{4} \rfloor -1; \\ 1 & \text{otherwise}, \end{cases}$$

and

$$h(w) = \begin{cases} -1 & \text{if } w = u_1, u_{4i+4} \text{ and } 0 \le i \le \lfloor \frac{n}{4} \rfloor - 1; \\ -1 & \text{if } w = v_{4i+2} \text{ and } 1 \le i \le \lfloor \frac{n+1}{4} \rfloor - 1; \\ 1 & \text{otherwise}, \end{cases}$$

if  $n \equiv 3 \pmod{4}$ , and

$$h(w) = \begin{cases} -1 & \text{if } w = u_1, u_{4i+2}, \quad 1 \le i \le \lfloor \frac{n+1}{4} \rfloor - 1 \text{ and } \lfloor \frac{n+1}{4} \rfloor \ge 2; \\ -1 & \text{if } w = v_{4i+4}, \quad 0 \le i \le \lfloor \frac{n}{4} \rfloor - 1; \\ 1 & \text{otherwise,} \end{cases}$$

when  $n \equiv 1$  or 2 (mod 4). Obviously g, h are signed dominating functions for  $P_2 \times C_n$  in each case and by Theorem E, g and h are  $\gamma_s(P_2 \times C_n)$ -functions. It follows that  $f(P_2 \times C_n, \gamma_s) \geq 2$  by Corollary 3. Now we show that  $T_1 = \{(u_1, -1), (u_{n-2}, -1)\}$  if  $n \equiv 3 \pmod{4}, T_2 = \{(u_1, -1), (v_{n-3}, -1)\}$  if  $n \equiv 1 \pmod{4}$  and  $T_3 = \{(u_1, -1), (v_{n-2}, -1)\}$  when  $n \equiv 2 \pmod{4}$ , is a forcing subset for g.

Let f be an extension of  $T_1$  to a  $\gamma_s$ -function for  $P_2 \times C_n$ . By Observation 1, if f(u) = f(v) = -1, then  $d(u, v) \geq 3$  which implies  $f(v_1) = f(u_2) = f(v_2) = f(u_3) = f(u_n) = f(v_n) = f(u_{n-1}) = f(v_{n-2}) = f(u_{n-3}) = f(v_{n-3}) = f(u_{n-4}) = 1$ . Since  $|\{w \in V(P_2 \times C_n) \mid f(w) = -1\}| = \frac{n-1}{2}$ , an inductive argument shows that  $f(u_{4i+1}) = -1$  for  $0 \leq i \leq \lfloor \frac{n+1}{4} \rfloor -1$ ,  $f(v_{4i+3}) = -1$  for  $0 \leq i \leq \lfloor \frac{n}{4} \rfloor -1$  and f assigns +1 to each other vertex. Thus f = g and  $f(P_2 \times C_n, \gamma_s) \leq 2$ . Now an argument similar to that described for  $T_1$  may be applied to show that  $T_2$  and  $T_3$  are forcing subset for g. Thus  $f(P_2 \times C_n, \gamma_s) = 2$  and the proof is complete.

#### REFERENCES

- G. Chartrand, H. Gavlas, R. C. Vandell and F. Harary, The forcing domination number of a graph, J. Combin. Math. Combin. Comput. 25 (1997), 161–174.
- [2] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning, and P.J. Slater, Signed domination in graphs, Graph Theory, Combinatorics and Application, John Wiley & Sons, Inc. 1 (1995), 311–322.
- [3] O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1996), 287–293.
- [4] Z. Füredi and D. Mubayi, Signed domination in regular graphs and set-systems, Journal of Combinatorial Theory, Series B, 76 (1999), 223–239.
- [5] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker Inc.
- [6] A. Khodkar and S.M. Sheikholeslami, The forcing domination number of some graphs, Ars Combinnatoria 82 (2007), 365–372.
- [7] R. Khoeilar, S.M. Sheikholeslami, and A. Khodkar, The forcing semi H- cordial numbers of certain graphs, J. Combin. Math. Combin. Comput. 59 (2006), 151–164.
- [8] R. Hass and T.B. Wexler, Bounds on the signed domination number of a graph, Discrete Math. 195 (1999), 295–298.
- [9] R. Hass and T.B. Wexler, Signed domination numbers of a graph and its complement, Discrete Math. 283 (2004), 87–92.
- [10] S.E. Mahmoodian, R. Naserasr and M. Zaker, Defining sets in vertex colorings of graphs and Latin rectangles, Discrete Math. 167 (1997), 451–460.
- [11] L. Volkmann and B. Zelinka, Signed domatic number of a graph, Discrete Applied Math. 150 (2005), 261–267.
- [12] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.
- [13] Z. Zhang, B. Xu, Y. Li, and L. Liu, A note on the lower bound of signed domination number of a graph, Discrete Math. 195 (1999), 295–298.

(received 23.03.2007, in revised form 30.07.2007)

Department of Mathematics, Azarbaijan University of Tarbiat Moallem, Tabriz, I.R. IranE-mail: s.m.sheikholeslami@azaruniv.edu