
MATEMATIQKI VESNIK

61, 3 (2009), 181–193
September 2009

UDK 515.122
originalni nauqni rad

research paper

A NEW HYPERSPACE TOPOLOGY AND THE STUDY
OF THE FUNCTION SPACE θ∗-LC(X, Y )

S. Ganguly, Sandip Jana and Ritu Sen

Abstract. The intent of this paper is to introduce a new hyperspace topology on the
collection of all θ-closed subsets of a topological space. The space of all θ∗-lower semicontinuous
functions has been studied in detail and finally we deal with some multifunctions.

1. Introduction

In the study of hyperspace topology, the first step towards topologizing a
collection of subsets of a topological space X was taken by Hausdorff [5], where he
defined a metric on the collection of all nonempty closed subsets of X, where X is
a bounded metric space. Vietoris then introduced a new topology on the collection
of all nonempty closed subsets of a topological space (X, τ), which is known as
“Vietoris Topology” or “finite topology”. After that, Michael in his paper [8] dealt
with different types of subsets for construction of topology. Subsequently, Fell in
his paper [2] constructed a compact Hausdorff topology for the space of all closed
subsets of a topological space (X, τ). After that much of work has been done
on hyperspace topology. In this connection we can mention the paper [6] by Di
Maio and Kočinac, where the authors have investigated the covering properties of
hyperspaces related to our investigation.

In this paper we first introduce a new topology on the collection of all nonempty
θ-closed subsets of a topological space (X, τ). Then we study some properties of
this topology and examine the restriction of this topology on the function space of
θ∗-lower semicontinuous functions. In the last section of this paper some results
relating multifunctions have been discussed.

2. θ(X) with a new topology

Throughout this paper X will always mean a topological space.
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Definition 2.1. [10] A point x ∈ X is said to be a θ-contact point of a set
A ⊆ X if for every neighborhood U of x, we get clXU ∩A 6= ∅.

The set of all θ-contact points of a set A is called the θ-closure of A and we
denote this set by A

θ
. A set A is called θ-closed if A = A

θ
. A set is called θ-open

if X \A is θ closed.

Remark 2.2. The collection of all θ-open sets in X forms a topology.
In this section our main interest of study is θ(X) where,

θ(X) = {A ⊆ X : A 6= ∅ and A is θ-closed }
We give θ(X) a new topology τ and discuss some properties of (θ(X), τ).

Definition 2.3. [10] A T2-space X is called H-closed if any open cover of X
has a finite proximate subcover, i.e. a finite collection whose union is dense in X.

A set A ⊆ X is called an H-set if any open cover {Uα : α ∈ Λ} of A by open
sets in X has a finite subfamily {Uαi

: i = 1, 2, . . . , n} such that A ⊆ ⋃n
i=1 clXUαi

.

Theorem 2.4. [1] In an H-closed Urysohn space every H-set is θ-closed and
every θ-closed set is an H-set.

Definition 2.5. On θ(X) we define a topology as follows. For each W ⊆ X,
let W+ = {A ∈ θ(X) : A ⊆ W} and W− = {A ∈ θ(X) : A ∩W 6= ∅}. Consider
Sθ = {W− : W is open in X} ∪ {W+ : W is θ-open in X and X \W is an H-set}.
Then Sθ forms a subbase for some topology on θ(X) which we denote by τ .

Proposition 2.6. Let V1, V2, . . . , Vn be subsets of X. Then
a) V +

1 ∩ V +
2 ∩ · · · ∩ V +

n = (V1 ∩ V2 ∩ · · · ∩ Vn)+.
b) Let V1, V2, . . . , Vn be θ-open sets and each X \ Vi is an H-set for i =

1, 2, . . . , n. Then (V1 ∩ V2 ∩ · · · ∩ Vn)+ ∈ Sθ.

Proof. a) Let A ∈ V +
1 ∩ V +

2 ∩ · · · ∩ V +
n . Then A ∈ θ(X) with A ⊆ Vi, for

each i = 1, 2, . . . , n. Hence A ⊆ V1 ∩ V2 ∩ · · · ∩ Vn, i.e., A ∈ (V1 ∩ V2 ∩ · · · ∩ Vn)+.
Therefore

V +
1 ∩ V +

2 ∩ · · · ∩ V +
n ⊆ (V1 ∩ V2 ∩ · · · ∩ Vn)+.

Conversely, let B ∈ θ(X) be such that B ∈ (V1 ∩ V2 ∩ · · · ∩ Vn)+, i.e., B ⊆
V1 ∩ V2 ∩ · · · ∩ Vn. Hence B ⊆ Vi for each i = 1, 2, . . . , n, i.e., B ∈ V +

i , for each
i = 1, 2, . . . , n, i.e., B ∈ V +

1 ∩ V +
2 ∩ · · · ∩ V +

n . Therefore,

(V1 ∩ V2 ∩ · · · ∩ Vn)+ ⊆ V +
1 ∩ V +

2 ∩ · · · ∩ V +
n .

Thus,
V +

1 ∩ V +
2 ∩ · · · ∩ V +

n = (V1 ∩ V2 ∩ · · · ∩ Vn)+.

b) Since each Vi is θ-open for i = 1, 2, . . . , n, V1 ∩ V2 ∩ · · · ∩ Vn is also θ-open.
Now X \ (V1 ∩ V2 ∩ · · · ∩ Vn) = (X \ V1) ∪ (X \ V2) ∪ · · · ∪ (X \ Vn). Since each
(X \Vi) is an H-set for i = 1, 2, . . . , n and union of finitely many H-sets is an H-set,
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X \ (V1 ∩V2 ∩ · · · ∩Vn) is an H-set. So (V1 ∩V2 ∩ · · · ∩Vn) is a θ-open set such that
X \ (V1 ∩ V2 ∩ · · · ∩ Vn) is an H-set. Hence (V1 ∩ V2 ∩ · · · ∩ Vn)+ ∈ Sθ.

Note 2.7. Using the above proposition we can say that any basic open set in
the above defined topology is of the form V −

1 ∩ V −
2 ∩ · · · ∩ V −

n ∩ V +
0 where Vi ⊆ V0

for each i = 1, 2, . . . , n and V1, V2, . . . , Vn are open sets, V0 is a θ-open set with
X \ V0 an H-set.

Proposition 2.8. (θ(X), τ) is always T0.

Proof. Let A,B ∈ θ(X) be such that A 6= B. Without loss of generality, let
A 6⊆ B. Then A∩ (X \B) 6= ∅ which implies A ∈ (X \B)−. Also, B ∩ (X \B) = ∅
gives B 6∈ (X \B)−. Since B is θ-closed, (X \B) is θ-open in X. Hence (θ(X), τ)
is T0.

Proposition 2.9. [3] X is T2 if and only if {a} is θ-closed for each a ∈ X.

Proposition 2.10. (θ(X), τ) is T1 if X is T2.

Proof. Let A,B ∈ θ(X) be such that A 6= B. Without loss of generality, let
A 6⊆ B. Then A ∩ (X \ B) 6= ∅ which implies A ∈ (X \ B)− which is an open set
in (θ(X), τ) since (X \ B) is θ-open. Also there exists a ∈ A such that a 6∈ B.
Then B ∈ (X \ {a})+. Since X is T2, by Proposition 2.9, {a} is θ-closed and hence
X \ {a} is θ-open. Also, {a} is an H-set for each a ∈ A. Hence (X \ {a})+ is open
in (θ(X), τ). Thus (θ(X), τ) is T1.

Proposition 2.11. (θ(X), τ) is T2 if X is Urysohn and H-closed.

Proof. Let A,B ∈ θ(X) be such that A 6= B. Without loss of generality, let
A 6⊆ B. Then there exists a ∈ A such that a 6∈ B. Since B ∈ θ(X), a 6∈ B = B

θ
.

Thus there exists a neighborhood U of a such that clXU ∩ B = ∅ which implies
B ⊆ X \ clXU . Since X is Urysohn and H-closed, clXU is θ-closed and also an
H-set. Put, V = X \ clXU . Then V is a θ-open set in X. Thus, A ∩ U 6= ∅ which
implies A ∈ U− and B ∈ V +. We now show that U− ∩ (X \ clXU)+ = ∅. If
possible, let P ∈ U− ∩ (X \ clXU)+. Then P ∩ U 6= ∅ and P ⊆ X \ clXU which
implies (X \ clXU) ∩ U 6= ∅ -a contradiction. Hence (θ(X), τ) is T2.

Proposition 2.12. Let V1, V2, . . . , Vn be open in X and V0 be θ-open in X.
Then in (θ(X), τ), clθ(X)(V −

1 ∩ V −
2 ∩ · · · ∩ V −

n ∩ V +
0 ) = (clXV1)−∩(clXV2)−∩· · ·∩

(clXVn)− ∩ (clXV0)+ provided X is Urysohn and H-closed.

Proof. Let A 6∈ (clXV1)− ∩ (clXV2)− ∩ · · · ∩ (clXVn)− ∩ (clXV0)+. Then either
A 6⊆ clXV0 or A ∩ clXVi = ∅, for some i. If A 6⊆ clXV0, then A ∩ (X \ clXV0) 6= ∅
which implies A ∈ (X \ clXV0)−. But (X \ clXV0)− ∩L = ∅, the empty set in θ(X)
where L = V −

1 ∩ V −
2 ∩ · · · ∩ V −

n ∩ V +
0 . Now if A ∩ clXVi = ∅, for some i, then

A ⊆ X \ clXVi, i.e., A ∈ (X \ clXVi)+. Since X is Urysohn and H-closed, clXVi is
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θ-closed and an H-set. So (X \clXVi)+ is open in θ(X). Now, (X \clXVi)+∩L = ∅.
This shows that A 6∈ clθ(X)(V −

1 ∩ V −
2 ∩ · · · ∩ V −

n ∩ V +
0 ). Therefore,

clθ(X)(V −
1 ∩ V −

2 ∩ · · · ∩ V −
n ∩ V +

0 ) ⊆ (clXV1)−∩(clXV2)−∩· · ·∩(clXVn)−∩(clXV0)+.
(i)

Now let A ∈ (clXV1)− ∩ (clXV2)− ∩ · · · ∩ (clXVn)− ∩ (clXV0)+ and V = W−
1 ∩

W−
2 ∩ · · · ∩ W−

m ∩ W+
0 be an open neighborhood of A in θ(X). Then W1, W2,

. . . , Wm are open and W0 is θ-open in X with X \W0 an H-set such that Wi ⊆
W0, i = 1, 2, . . . , m. A ∩ clXVj 6= ∅, for all j = 1, 2, . . . , n , hence there exists
aj ∈ A ∩ clXVj , j = 1, 2, . . . , n. Also, A ⊆ W0. Therefore W0 being an open
neighborhood of aj , W0 ∩ Vj 6= ∅, j = 1, 2, . . . , n, hence there exists xj ∈ W0 ∩ Vj ,
j = 1, 2, . . . , n. Now, A ∩Wi 6= ∅, i = 1, 2, . . . ,m, hence there exists bi ∈ A ∩Wi,
i = 1, 2, . . . ,m. Also, A ⊆ clXV0. Therefore, as Wi is an open neighborhood of bi,
Wi ∩ V0 6= ∅, i = 1, 2, . . . ,m, hence there exists wi ∈ Wi ∩ V0, i = 1, 2, . . . , m. Let
B = {x1, . . . , xn, w1, . . . , wm}. Since X is Urysohn, B is θ-closed. Now B∩Wi 6= ∅,
i = 1, 2, . . . ,m and B ⊆ W0. Also, B ∩ Vj 6= ∅, j = 1, 2, . . . , n and B ⊆ V0.
Therefore B ∈ V ∩ L. Hence A ∈ clθ(X)L. So,

(clXV1)−∩(clXV2)−∩· · ·∩(clXVn)−∩(clXV0)+ ⊆ clθ(X)(V −
1 ∩ V −

2 ∩ · · · ∩ V −
n ∩ V +

0 ).
(ii)

From (i) and (ii) we get,

clθ(X)(V −
1 ∩ V −

2 ∩ · · · ∩ V −
n ∩ V +

0 ) = (clXV1)−∩(clXV2)−∩· · ·∩(clXVn)−∩(clXV0)+.

Theorem 2.13. (θ(X), τ) is H-closed if X is Urysohn and H-closed.

Proof. Let {Yi} be a universal net of elements of θ(X). DefineZ = {x ∈
X : for each open neighborhood U of x, {Yi} is eventually in (clXU)−}. Choose
yi ∈ Yi. Then {yi} is a net in X which is H-closed and T2. Hence {yi} has
a θ-convergent subnet {yni} (say) θ-converging to y (say). Then for any open
neighborhood W of y, {yni} is eventually in clXW , i.e., {Yni} is eventually in
(clXW )− and hence {Yi} is eventually in (clXW )− (because of the universality of
{Yi}). Thus y ∈ Z and Z 6= ∅.

Next we show that Z ∈ θ(X). Let {xλ} be a net in Z θ-converging to x ∈ X.
Let U be an arbitrary open neighborhood of x. Since X is H-closed and Urysohn,
X is almost regular. Hence there exists an open neighborhood V of x such that
x ∈ V ⊆ clXV ⊆ intX(clX(U)). Since {xλ} θ-converges to x, there exists λ0 ∈ Λ
such that xλ ∈ clXV ⊆ intX(clX(U)), for all λ ≥ λ0 and since xλ ∈ Z, {Yi} is
eventually in (clXU)−. Hence x ∈ Z, i.e., Z ∈ θ(X).

We now show that {Yi} θ-converges to Z in τ . Let B−
1 ∩B−

2 ∩ · · · ∩B−
n ∩B+

0

be an arbitrary open neighborhood of Z in τ , i.e., Z ∩Bi 6= ∅, for all i = 1, 2, . . . , n
and Z ⊆ B0. Let bj ∈ Z∩Bj , for j = 1, 2, . . . , n. Since Bj is an open neighborhood
of bj , so bj ∈ Z which implies {Yi} is eventually in (clXBj)−, for j = 1, 2, . . . , n.
Therefore, {Yi} is eventually in (clXB1)− ∩ (clXB2)− ∩ · · · ∩ (clXBn)−. Now it
suffices to show that {Yi} is eventually in (clXB0)+. Since {Yi} is a universal net,
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so either {Yi} is eventually in B+
0 or in θ(X)\B+

0 . If {Yi} is eventually in θ(X)\B+
0 ,

then there exists i0 such that Yi ∈ θ(X) \B+
0 , for all i ≥ i0, i.e., Yi ∩ (X \Bo) 6= ∅,

for all i ≥ i0. We choose zi ∈ Yi ∩ (X \ B0), for i ≥ i0. Then X \ B0 being an H
-set, {zi} has a θ-convergent subnet {zni

} (say) θ-converging to z (say). Clearly
z ∈ X \B0. Then for any open neighborhood W of z, {zni} is eventually in clXW ,
i.e., {Yni

} is eventually in (clXW )− and hence {Yi} is eventually in (clXW )−

(by the universality of {Yi}) which implies z ∈ Z, i.e., z ∈ Z ∩ (X \ B0) which
contradicts the fact that Z ⊆ B0. Hence {Yi} is eventually in B+

0 , i.e., in (clXB0)+.
Thus {Yi} is eventually in (clXB1)− ∩ (clXB2)− ∩ · · · ∩ (clXBn)− ∩ (clXB0)+ =
clθ(X)(B−

1 ∩B−
2 ∩ · · · ∩B−

n ∩B+
0 ) which implies that {Yi} θ-converges to Z in τ .

Hence (θ(X), τ) is H-closed.

Remark 2.14. The fact that (θ(X), τ) is H-closed does not imply that X
is Urysohn. In fact, if X is infinite with the cofinite topology, then (θ(X), τ) is
compact but X is not even T2.

Proposition 2.15. If X is T2 and (θ(X), τ) is compact, then X is compact.

ÄProof. Let {Uλ : λ ∈ Λ} be an open cover of X. Let x ∈ X. Then x ∈ Uλ for
some λ ∈ Λ. Since X is T2, {x} is θ-closed, i.e., {x} ∈ θ(X) and so, {x} ∈ U−

λ , for
λ ∈ Λ. Hence {U−

λ : λ ∈ Λ} is a τ -open cover of θ(X). (θ(X), τ) being compact,
θ(X) =

⋃n
i=1U

−
i . Let y ∈ X. Then {y} ∈ θ(X) =

⋃n
i=U−

i , i.e., {y} ∩ U−
m 6= ∅, for

some m where 1 ≤ m ≤ n, i.e., y ∈ Um. Hence X =
⋃n

i=1 Ui. Thus X is compact.

Proposition 2.16. If X is T2 and θ(X), τ) is Urysohn, then X is Urysohn.

Proof. Let x, y ∈ X be such that x 6= y. Now, X being T2, {x}, {y} ∈ θ(X)
and{x} 6= {y}. Since (θ(X), τ) is Urysohn, there exists a τ -open neighbourhood
U−

1 ∩U−
2 ∩· · ·∩U−

n ∩U+
0 of {x} and a τ -open neighbourhood V −

1 ∩V −
2 ∩· · ·∩V −

m ∩V +
0

of {y} such that

clθ(X)(U−
1 ∩ U−

2 ∩ · · · ∩ U−
n ∩ U+

0 ) ∩ clθ(X)(V −
1 ∩ V −

2 ∩ · · · ∩ V −
m ∩ V +

0 ) = ∅

where U1, U2, . . . , Un, V1, V2, . . . , Vm are open in X; U0, V0 are θ-open in X with
X \ U0, X \ V0 H sets, Ui ⊆ U0 for i = 1, 2, . . . , n, Vi ⊆ V0 for i = 1, 2, · · · .

Now, {x} ∈ U−
1 ∩U−

2 ∩· · ·∩U−
n ∩U+

0 implies x ∈ U1∩U2∩· · ·∩Un∩U0 = U1∩U2∩
· · ·∩Un and {y} ∈ V −

1 ∩V −
2 ∩· · ·∩V −

m∩V +
0 implies y ∈ V1∩V2∩· · ·∩Vm∩V0 = V1∩V2∩

· · ·∩Vm. We want to show that clX(U1 ∩ U2 ∩ · · · ∩ Un)∩clX(V1 ∩ V2 ∩ · · · ∩ Vm) =
∅. If not, let z ∈ clX(U1 ∩ U2 ∩ · · · ∩ Un) ∩ clX(V1 ∩ V2 ∩ · · · ∩ Vm). Then for each
open neighbourhood W of z, W ∩ U1 ∩ U2 ∩ · · · ∩ Un ∩ U0 6= ∅ and W ∩ V1 ∩
V2 ∩ · · · ∩ Vm ∩ V0 6= ∅. Since for p ∈ X, p ∈ W ∩ U1 ∩ U2 ∩ · · · ∩ Un ∩ U0 gives
{p} ∈ W−∩U−

1 ∩U−
2 ∩· · ·∩U−

n ∩U+
0 , hence W ∩U1∩U2∩· · ·∩Un∩U0 6= ∅ implies

W− ∩ U−
1 ∩ U−

2 ∩ · · · ∩ U−
n ∩ U+

0 6= ∅ and W ∩ V1 ∩ V2 ∩ · · · ∩ Vm ∩ V0 6= ∅ implies
W−∩V −

1 ∩V −
2 ∩· · ·∩V −

m ∩V +
0 6= ∅. Then {z} ∈ clθ(X)(U−

1 ∩U−
2 ∩· · ·∩U−

n ∩U+
0 )∩

clθ(X)(V −
1 ∩ V −

2 ∩ · · · ∩ V −
m ∩ V +

0 ) - a contradiction. Hence there exists an open
neighbourhood U1∩U2∩· · ·∩Un of x and an open neighbourhood V1∩V2∩· · ·∩Vm
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of y such that clX(U1 ∩ U2 ∩ · · · ∩ Un) ∩ clX(V1 ∩ V2 ∩ · · · ∩ Vm) = ∅. Thus X is
Urysohn.

Definition 2.17. A space X is locally θ-H if X contains a base B for its
topology such that for each B ∈ B, clXB is an H-set θ-closed.

Proposition 2.18. If X is H-closed and Urysohn, then X is locally θ-H.

Proof. Let B be a base for the topology of X. Then for each x ∈ X, there
exists a basic open set B ∈ B such that x ∈ B. Now, B being open, clXB = B

θ
.

Also, X being H-closed, Urysohn, clXB is θ-closed and an H-set since θ-closed
subset of an H-closed space is an H-set. Hence B is the required base for X such
that for each B ∈ B, clXB is an H-set, θ-closed. Hence X is locally θ-H.

Proposition 2.19. If X is T2, locally θ-H and (θ(X), τ) is H-closed, then X
is H-closed.

Proof. Let B be a base of the topology of X such that for each B ∈ B, clXB
is a θ-closed H-set. Let U = {Uα : α ∈ Λ} be an open cover of X. Without loss of
generality, we can assume that each Uα belongs to B. We are going to prove that
there is a natural number n and α1, . . . , αn ∈ Λ such that X = clX(

⋃i=n
i=1 Uαi).

If A ∈ θ(X), then A is a subset of X and intersects a Uα; so, A ∈ U−
α . Hence,

{U−
α : α ∈ Λ} is a τ -open cover of θ(X). Since θ(X) is H-closed, there exists a

finite proximate subcover of θ(X), i.e.,

θ(X) = clθ(X)(
i=n⋃

i=1

U−
αi

)

for a natural number n and some α1, . . . , αn ∈ Λ. We are going to prove that
X = clX(

⋃i=n
i=1 Uαi). Assume that this is not the case, then there is x ∈ X \

(
⋃j=n

j=1 clXUαj ) = W . Observe that W is a θ-open set and X \W is an H-set. Since
X is T2, {x} is θ-closed, so {x} ∈ W+. On the other hand, there is i ∈ {1, . . . , n}
such that {x} ∈ clθ(X)U

−
αi

.

Therefore W+ ∩U−
αi
6= ∅. Let F ∈ W+ ∩U−

αi
. Thus, F ⊆ W and F ∩Uαi 6= ∅.

But this means that W ∩ Uαi 6= ∅ which contradicts the definition of W . So, X

must be covered by clX(
⋃i=n

i=1 Uαi).
From Theorem 2.13, Proposition 2.18 and Proposition 2.19 we thus have

Theorem 2.20. Let X be a Urysohn topological space. Then, X is H-closed
if and only if X is locally θ-H and (θ(X), τ) is H-closed.

Example 2.21. Every locally compact T2 space which is not compact is an
example of a locally θ-H Urysohn space which is not H-closed.

Example 2.22. Consider the space given by J. R. Porter and R. G. Woods
[9; Example 4.8].
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The subset Y = {( 1
n , 1

m ) : n ∈ N, |m| ∈ N} ∪ {( 1
n , 0) : n ∈ N} (where N is

the set of all natural numbers) of R2 (where R is the set of all real numbers) is
given the subspace topology inherited from the usual topology on the plane R2.
Let X = Y ∪ {p+, p−}. A subset U ⊆ X is defined to be open if U ∩ Y is open
in Y and if p+ ∈ U (respectively, p− ∈ U) implies that there is some r ∈ N such
that {( 1

n , 1
m ) : n ≥ r,m ∈ N} ⊆ U (respectively, {( 1

n , 1
m ) : n ≥ r,−m ∈ N} ⊆ U .

The space is H-closed and T2. We prove that X is not locally θ-H. For r ∈ N , let
B+

r = {( 1
n , 1

m ) : n ≥ r,m ∈ N} ∪ {p+} B−
r = {( 1

n , 1
m ) : n ≥ r,−m ∈ N} ∪ {p−}.

We show that for any basis B for the topology of X, there exists B ∈ B such that
clXB is either not θ-closed or not an H-set. Let B be any basis for the topology
of X. Since X is T2, there exists B ∈ B such that p+ ∈ B and p− 6∈ clXB. Now,
there exists r ∈ N such that p+ ∈ B+

r ⊆ B. We show that clXB is not θ-closed.
Now, clXB+

r = B+
r ∪ {( 1

n , 0) : n ≥ r}. We claim that p− is a θ-contact point of
clXB. In fact, if U be any open neighbourhood of p− then there exists t ∈ N such
that B−

t ⊆ U . Again clXB−
t = B−

t ∪ {( 1
n , 0) : n ≥ t}. So, clXB−

t ∩ clXB+
r 6= ∅

which implies clXU ∩ clXB 6= ∅ which implies p− is a θ-contact point of clXB. But
p− 6∈ clXB. So clXB is not θ-closed. Hence X is not locally θ-H.

3. θ -partially ordered space

Definition 3.1. [7] Let X be a topological space and ≤ be a partial order
in it. For each subset A of X, let, ↑ A = {x ∈ X : a ≤ x for some a ∈ A} and
↓ A = {x ∈ X : x ≤ a for some a ∈ A}. The sets ↑ A and ↓ A are called the
increasing hull of A and decreasing hull of A respectively.

It is easy to verify that, for any A,B ⊆ X,
(i) A ⊆↑ A, A ⊆↓ A.
(ii) A ⊆ B ⇒↑ A ⊆↑ B and ↓ A ⊆↓ B.
(iii) ↑ (A ∪B) =↑ A∪ ↑ B, ↓ (A ∪B) =↓ A∪ ↓ B.
(iv) ↑ (A ∩B) =↑ A∩ ↑ B, ↓ (A ∩B) =↓ A∩ ↓ B.

Definition 3.2. [4] A partial order ≤ on a topological space X is a θ-closed
order if its graph {(x, y) ∈ X ×X : x ≤ y} is a θ-closed subset of X ×X.

Theorem 3.3. [3] Every topological space X equipped with a θ-closed order ≤
is a Urysohn space.

Definition 3.4. A partial order ≤ on a topological space X is a θ-regular
order if and only if for every θ-closed subset A ⊆ X and x ∈ X with a 6≤ x, for all
a ∈ A, there exist neighborhoods V and W of A and x respectively in X such that
↑ clXV ∩ ↓ clXW = ∅.

Definition 3.5. A θ-partially ordered space is a pair (Y,≤) where Y is a
topological space and ≤ is a θ-closed partial order on Y such that ↓ V is θ-open for
each open subset V of Y . If , in addition ≤ is θ-regular, then we call Y a θ-regular
θ-partially ordered space.
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Theorem 3.6. [3] The partial order ≤ on a topological space X is a θ-closed
order if and only if for every x, y ∈ X with x 6≤ y, there exists neighborhoods U and
V of x and y respectively in X such that ↑ clXU∩ ↓ clXV = ∅.

Theorem 3.7. [3] Let X be a topological space equipped with a θ-closed order
≤. Let H ⊆ X be an H-set in X. Then both ↑ H and ↓ H are θ-closed.

Theorem 3.8. If ≤ is a θ-closed order on a topological space X and X is
H-closed, then ≤ is a θ-regular order.

Proof. Let A be a θ-closed subset of X and x ∈ X be such that a 6≤ x,
for all a ∈ A. Then for each a ∈ A, there exists neighborhoods Ua and Va of a
and x respectively such that ↑ clXUa∩ ↓ clXVa = ∅. Since X is equipped with
the θ-closed order ≤, X is Urysohn. Thus X is H-closed and Urysohn. Now A
being a θ-closed subset of X is an H-set. Now {Ua : a ∈ A} is an open cover
of A and A is an H-set. Hence there exists a finite subset A0 ⊆ A such that
A ⊆ ⋃

a∈A0
clXUa. Let V =

⋂
a∈A0

Va. Then V is an open neighborhood of x in
X. Now ↓ clXV ∩ A ⊆ (

⋂
a∈A0

↓ clXVa) ∩ (
⋃

a∈A0
↑ clXUa) = ∅ which implies

A ⊆ X\ ↓ clXV . Again ↓ clXV is θ -closed since clXV is an H-set. So X\ ↓ clXV
is an open neighborhood of A. We claim that ↑ (X\ ↓ clXV )∩ ↓ clXV = ∅. If
not, let, z ∈↑ (X\ ↓ clXV )∩ ↓ clXV . So there exists w ∈ (X\ ↓ clXV ) such that
w ≤ z, i.e., w ∈↓ clXV -a contradiction. Hence ↑ (X\ ↓ clXV )∩ ↓ clXV = ∅. This
completes the proof.

4. Spaces of θ∗ -lower semicontinuous functions

This section is devoted to an examination of spaces of θ∗-lower semicontinuous
functions. Here X and Y are topological spaces and ≤ is a partial order on Y .
Using this partial order, Ganguly and Jana have built the concept of θ∗-lower
semicontinuous functions in [3].

Definition 4.1. [3] A function f : X → Y , Y being equipped with a partial
order ≤ is called θ∗-lower semicontinuous w.r.t. ≤ at x ∈ X if and only if for every
open neighborhood V of f(x) in Y , there exists an open neighborhood U of x in
X such that f(clXU) ⊆↑ V .

f is θ∗-lower semicontinuous w.r.t. ≤ if and only if it is θ∗-lower semicontinuous
w.r.t.≤ at each point of X.

The set of all θ∗-lower semicontinuous functions w.r.t. ≤ f : X → Y is denoted
by θ∗ − LC(X, Y ).

Note 4.2. The operation of ‘subset’ of X induces a partial order on θ(X),
which is denoted by ⊆.

Proposition 4.3. If X is a T2-space and Vi ⊆ V0 for i = 1, 2, . . . , n, then
↑ (V −

1 ∩ V −
2 ∩ · · · ∩ V −

n ∩ V +
0 ) = V −

1 ∩ V −
2 ∩ · · · ∩ V −

n .
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Proof. Let A ∈ V −
1 ∩ V −

2 ∩ · · · ∩ V −
n . Then A ∩ Vi 6= ∅ for i = 1, 2, . . . , n.

Let xi ∈ A ∩ Vi, i = 1, 2, . . . , n. Now for each i = 1, 2, . . . , n, Vi ⊆ V0 implies that
{x1, x2, . . . , xn} ⊆ A ∩ V0. Since X is T2, {x1, x2, . . . , xn} is θ-closed in X. Hence
{x1, x2, . . . , xn} ∈ V −

1 ∩V −
2 ∩· · ·∩V −

n ∩V +
0 . Thus A ∈↑ (V −

1 ∩V −
2 ∩· · ·∩V −

n ∩V +
0 ).

Thus
V −

1 ∩ V −
2 ∩ · · · ∩ V −

n ⊆↑ (V −
1 ∩ V −

2 ∩ · · · ∩ V −
n ∩ V +

0 ). (i)

Conversely let A ∈↑ (V −
1 ∩ V −

2 ∩ · · · ∩ V −
n ∩ V +

0 ). Then there exists B ∈ (V −
1 ∩

V −
2 ∩ · · · ∩ V −

n ∩ V +
0 ) such that A ⊇ B. Therefore B ∩ Vi 6= ∅ for i = 1, 2, . . . , n. So

A ∩ Vi 6= ∅ for i = 1, 2, . . . , n. Consequently A ∈ V −
1 ∩ V −

2 ∩ · · · ∩ V −
n . Thus

↑ (V −
1 ∩ V −

2 ∩ · · · ∩ V −
n ∩ V +

0 ) ⊆ V −
1 ∩ V −

2 ∩ · · · ∩ V −
n . (ii)

From (i) and (ii) we have, ↑ (V −
1 ∩ V −

2 ∩ · · · ∩ V −
n ∩ V +

0 ) = V −
1 ∩ V −

2 ∩ · · · ∩ V −
n .

Proposition 4.4. ↑ (V −
1 ∩ V −

2 ∩ · · · ∩ V −
n ) = V −

1 ∩ V −
2 ∩ · · · ∩ V −

n .

Proof. Let A ∈↑ (V −
1 ∩V −

2 ∩· · ·∩V −
n ). Then there exists B ∈ V −

1 ∩V −
2 ∩· · ·∩V −

n

such that B ⊆ A. Since B ∩Vi 6= ∅ for i = 1, 2, . . . , n, A∩Vi 6= ∅ for i = 1, 2, . . . , n.
Hence A ∈ V −

1 ∩ V −
2 ∩ · · · ∩ V −

n . Thus

↑ (V −
1 ∩ V −

2 ∩ · · · ∩ V −
n ) ⊆ V −

1 ∩ V −
2 ∩ · · · ∩ V −

n . (i)

Also,
V −

1 ∩ V −
2 ∩ · · · ∩ V −

n ⊆↑ (V −
1 ∩ V −

2 ∩ · · · ∩ V −
n ). (ii)

From (i) and (ii) we have, ↑ (V −
1 ∩ V −

2 ∩ · · · ∩ V −
n ) = V −

1 ∩ V −
2 ∩ · · · ∩ V −

n .

Theorem 4.5. Let Y be a T2-space and let θ(Y ) have the topology τ . Then a
function Φ : X → θ(Y ) is θ∗-lower semicontinuous w.r.t ⊆ if and only if Φ−1(V −)
is θ-open in X whenever V is an open subset of Y .

Proof. First assume that Φ is θ∗-lower semicontinuous w.r.t ⊆ and let V be
an open subset of Y . Let a ∈ Φ−1(V −). Then Φ(a) ∈ V −. Since Φ is θ∗-lower
semicontinuous, there exists an open neighborhood U of a such that Φ(clXU) ⊆↑
(V −) = V − [by Proposition 4.4]. Hence a ∈ U ⊆ clXU ⊆ Φ−1(V −). Thus Φ−1(V −)
is θ-open in X.

Conversely let the given condition holds. Let a ∈ X and let G be any open
neighborhood of Φ(a) in θ(Y ). Then there exist open sets V1, V2, . . . , Vn and θ-open
set V0 with its complement an H -set such that Φ(a) ∈ V −

1 ∩V −
2 ∩· · ·∩V −

n ∩V +
0 ⊆ G.

Define U = Φ−1(V −
1 )∩Φ−1(V −

2 )∩· · ·∩Φ−1(V −
n ). Since by the given condition each

Φ−1(V −
i ) is a θ-open set for i = 1, 2, . . . , n and finite intersection of θ-open sets is

θ-open, U is θ-open in X with a ∈ U . Hence there exists an open neighborhood W
of a in X such that a ∈ W ⊆ clXW ⊆ U , i.e., Φ(a) ∈ Φ(W ) ⊆ Φ(clXW ) ⊆ Φ(U) ⊆
V −

1 ∩ V −
2 ∩ · · · ∩ V −

n =↑ (V −
1 ∩ V −

2 ∩ · · · ∩ V −
n ∩ V +

0 ) ⊆↑ G [by Proposition 4.3].
Hence Φ is a θ∗-lower semicontinuous function.

Definition 4.6. For each f ∈ θ∗ − LC(X,Y ), the graph of f is defined by
the setE(f) = {(x, y) ∈ X × Y : f(x) ≤ y}.
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Proposition 4.7. Let ≤ be a θ-closed order in Y . Then, for each f ∈
θ∗ − LC(X, Y ), E(f) is a θ-closed subset of X × Y .

Proof. Let (x, y) ∈ (X × Y ) \ E(f). Then f(x) 6≤ y. Hence there exist
neighborhoods U , V of f(x) and y respectively such that ↑ (clY U)∩ ↓ (clY V ) = ∅.
Since f ∈ θ∗−LC(X,Y ), there exists a neighborhood W of x such that f(clXW ) ⊆↑
U ⊆↑ clY U . Hence clXW × clY V is a neighborhood of (x, y) in X × Y . Now for
each (a, b) ∈ clXW × clY V , f(a) ∈↑ clY U and b ∈ clY V ⊆↓ clY V . If f(a) ≤ b, then
f(a) ∈↓ clY V contradicting the fact that ↑ clY U∩ ↓ clY V = ∅. Hence f(a) 6≤ b, so
that (a, b) 6∈ E(f). Hence E(f) is a θ-closed subset of X × Y .

Remark 4.8. From the above proposition it follows that E : θ∗−LC(X, Y ) →
θ(X × Y ) is well-defined. Also E is one-to-one. We consider θ∗ − LC(X, Y ) as a
subset of θ(X × Y ) by identifying each f ∈ θ∗−LC(X, Y ) with E(f) in θ(X × Y ).
So any topology of θ(X × Y ) induces a topology on θ∗ − LC(X,Y ) by taking the
subspace topology. We now give θ(X×Y ) the topology τ and consider the subspace
topology τ ′ on θ∗ − LC(X,Y ).

Let us now investigate the closure of θ∗ − LC(X, Y ) in θ(X × Y ).

Definition 4.9. Define θ∗ − LC(X, Y ) to be the set of all functions Φ : X →
θ(Y ) satisfying,

(1) for every x ∈ X, Φ(x) =↑ Φ(x) and
(2) for every open V in Y , Φ−1((↑ V )+) is θ-open in X.

Also for each Φ ∈ θ∗ − LC(X,Y ), define E(Φ) = {(x, y) ∈ X × Y : y ∈ Φ(x)}.

Proposition 4.10. If Y is a θ-regular, θ-partially ordered space, then E(Φ)
is a θ-closed subset of X × Y for each Φ ∈ θ∗ − LC(X, Y ).

Proof. Can be proved similarly as is done in Proposition 4.7.
Remark 4.11. If Y is a θ-regular, θ-partially ordered space,

E : θ∗ − LC(X,Y ) → θ(X × Y )

is well-defined. we identify each Φ ∈ θ∗ − LC(X,Y ) with E(Φ) in θ(X × Y ),
forming a subset of θ(X × Y ). The topology on θ∗ − LC(X, Y ) is that induced
from θ(X × Y ) by taking the subspace topology.

Proposition 4.12. If Y is a θ-regular, θ-partially ordered space, then θ∗-
LC(X,Y ) is a subspace of θ∗ − LC(X,Y ).

Proof. Let f ∈ θ∗ − LC(X, Y ) and define Φ : X → θ(Y ) by Φ(x) = {y ∈
Y : f(x) ≤ y}. Now, ↑ Φ(x) = {y ∈ Y : u ≤ y for some u ∈ Φ(x)} = {y ∈
Y : f(x) ≤ u ≤ y for some u ∈ Φ(x)} = Φ(x).Next let V be open in Y and
let x ∈ Φ−1((↑ V )+). Then ↑ V is a neighborhood of Φ(x) in Y . Hence there
exists a neighborhood U of x in X such that f(clXU) ⊆↑ V . If u ∈ clXU , then
f(u) ∈↑ V and thus Φ(u) ∈ (↑ V )+. Hence Φ−1((↑ V )+) is θ -open in X. So
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Φ ∈ θ∗ − LC(X,Y ). Now, E(Φ) = {(x, y) ∈ X×Y : y ∈ Φ(x)} = {(x, y) ∈ X×Y :
f(x) ≤ y} = E(f).Hence f is identified with Φ in θ(X × Y ). Thus θ∗ − LC(X, Y )
is a subspace of θ∗ − LC(X, Y ).

Theorem 4.13. Let X be an H-closed, Urysohn space and let Y be an H-
closed θ -partially ordered space. Then θ∗ − LC(X, Y ) is a θ-closed subspace of
θ(X × Y ).

Proof. Let Γ ∈ θ(X×Y )\ θ∗ − LC(X,Y ) and define Φ : X → θ(Y ) by Φ(x) =
{y ∈ Y : (x, y) ∈ Γ} for each x ∈ X. If possible, let, Φ satisfies condition (1). Then
Φ cannot satisfy condition (2), since otherwise Φ would be in θ∗ − LC(X,Y ) and we
could identify Φ with E(Φ) = Γ in θ(X×Y ). Hence there exists an open subset V of
Y such that Φ−1((↑ V )+) is not a θ-open neighborhood of some x in Φ−1((↑ V )+).
Then for every neighborhood U of x in X, there exists an xU ∈ clXU \Φ−1((↑ V )+)
so that Φ(xU ) 6∈ (↑ V )+. So there exists yU ∈ Φ(xU )\ ↑ V . Since Y is equipped
with the θ-closed partial order, by Theorem 3.3, Y is an Urysohn space and hence
T2. also Y being H-closed, the net {yU} has a θ-limit point y ∈ Y \ ↑ V . also
{xU} θ-converges to some x in X. Hence (x, y) is a θ-limit point of {(xU , yU )} in
X × Y . Since Γ is θ-closed, (x, y) ∈ Γ. Now Φ(x) ⊆↑ V such that y 6∈ Φ(x), i.e.,
(x, y) 6∈ Γ—a contradiction.

Thus Φ does not satisfy condition (1). Hence there exist x ∈ X, y, z ∈ Y
such that y ≤ z and (x, y) ∈ Γ, but (x, z) 6∈ Γ. Thus there exist neighborhoods
U of x in X and V of z in Y such that (clXU × clY V ) ∩ Γ = ∅. Now define
B = (X × Y ) \ (clXU × clY V ). We first prove that (clXU × clY V ) is an H-set
and a θ-closed set. Since X is H-closed and Urysohn, U being open in X, clXU
becomes a θ-closed subset of X and hence an H-set. Also Y being a θ-partially
ordered space is Urysohn and it is also H-closed. Thus clY V is a θ-closed subset
of Y and an H-set. Hence (clXU × clY V ) is a θ-closed H-set.

Let W be the neighborhood of y in Y given by W = (↓ V ) ∩ (Y \ clY V ).
Then the set G = (U ×W )− ∩ B+ is an open set in (θ(X × Y ), τ) containing Γ.
Now it suffices to show that G ⊆ θ(X × Y ) \ θ∗ − LC(X, Y ). Let ∆ ∈ G. Let
(a, b) ∈ ∆ ∩ (U × W ). Since b ∈↓ V , there exists some c ∈ V such that c ≥ b.
Therefore (a, c) ∈ clXU × clY V and hence (a, c) 6∈ ∆. Now if ∆ ∈ θ∗ − LC(X, Y ),
the condition (1) would be violated -a contradiction. Thus G is a neighborhood of
Γ contained in θ(X × Y ) \ θ∗ − LC(X, Y ).

Corollary 4.14. If X is an H-closed, Urysohn space and Y is an H-closed,
θ-partially ordered space, then θ∗ − LC(X, Y ) is an H-set in θ(X × Y ).

5. Some results on multifunctions

Definition 5.1. [3] A multifunction F : X → Y is called lower θ∗-
semicontinuous if and only if for each x0 ∈ X and each open set V in Y with
F (x0)∩V 6= ∅, there exists an open neighborhood U of x0 such that F (x)∩V 6= ∅,
for all x ∈ clXU .
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Notation 5.2. A(Y ) = {E ⊆ Y : E 6= ∅}.
For a function f : X → Y , we define a multifunction (↓ f) from X to Y by

the rule, (↓ f)(x) =↓ f(x), for each x ∈ X.

Proposition 5.3. For f ∈ θ∗−LC(X,Y ), (↓ f) is a lower θ∗-semicontinuous
function from X to A(Y ).

Proof. Let x0 ∈ X and V be open in Y such that (↓ f)(x0) ∩ V 6= ∅, i.e.,
↓ f(x0) ∩ V 6= ∅ , i.e., {f(x0)}∩ ↑ V 6= ∅, which implies f(x0) ∈↑ V . Since f ∈
θ∗ − LC(X, Y ), there exists an open neighborhood U of x0 such that f(clXU) ⊆↑
(↑ V ) ⊆↑ V . Hence for any x ∈ clXU , f(x) ∈↑ V , i.e., {f(x)}∩ ↑ V 6= ∅, i.e.,
↓ f(x) ∩ V 6= ∅ which implies (↓ f)(x) ∩ V 6= ∅, for all x ∈ clXU . Hence (↓ f) is a
lower θ∗ -semicontinuous function from X to A(Y ).

Proposition 5.4. If (↓ f) is a lower θ∗-semicontinuous function from X to
A(Y ), then f ∈ θ∗ − LC(X, Y ).

Proof. Let x0 ∈ X and V be an open neighborhood of f(x0), i.e., f(x0) ∈
V ⊆↑ V . This implies that f(x0) ≥ v, for some v ∈ V , i.e., v ∈↓ f(x0) and hence
V ∩ ↓ f(x0) 6= ∅, i.e., (↓ f)(x0) ∩ V 6= ∅. Since (↓ f) is a lower θ∗-semicontinuous
function from X to A(Y ), there exists an open neighborhood U of x0 in X such
that (↓ f)(x) ∩ V 6= ∅, for all x ∈ clXU . Thus {f(x)}∩ ↑ V 6= ∅, for all x ∈
clXU which implies f(x) ∈↑ V , for all x ∈ clXU , i.e., f(clXU) ∈↑ V . Hence
f ∈ θ∗ − LC(X, Y ).

Note 5.5. Thus, the relation f → (↓ f) is a one-to-one correspondence
between the elements in θ∗ − LC(X, Y ) and the multifunctions from X to Y .

Proposition 5.6. Let Y be a T2-space and f : X → θ(Y ) be a θ∗-lower
semicontinuous function. Then the multifunction F : X → Y which sends each x
to f(x) is lower θ∗-semicontinuous.

Proof. Let x0 ∈ X and V be open in Y such that F (x0) ∩ V 6= ∅, i.e.,
f(x0) ∈ V − which implies x0 ∈ f−1(V −). Since f ∈ θ∗ − LC(X, Y ), f−1(V −) is
θ -open in X. Hence there exists an open neighborhood U of x0 in X such that
x0 ∈ U ⊆ clXU ⊆ f−1(V −) , i.e., f(clXU) ⊆ V −, i.e., F (x) ∩ V 6= ∅, for all
x ∈ clXU . Thus F is lower θ∗-semicontinuous.
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