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STABILITY AND BOUNDEDNESS PROPERTIES OF SOLUTIONS TO
CERTAIN FIFTH ORDER NONLINEAR DIFFERENTIAL EQUATIONS

B. S. Ogundare

Abstract. In this paper, we consider the nonlinear fifth order differential equation

x(v) + ax(iv) + b
...
x + f(ẍ) + g(ẋ) + h(x) = p(t; x, ẋ, ẍ,

...
x , x(iv))

and we used the Lyapunov’s second method to give sufficient criteria for the zero solution to
be globally asymptotically stable as well as the uniform boundedness of all solutions with their
derivatives.

1. Introduction

We shall be concerned here with the differential equations of the form

x(v) + ax(iv) + b
...
x + f(ẍ) + g(ẋ) + h(x) = p(t; x, ẋ, ẍ,

...
x , x(iv)) (1.1)

with a and b being positive constants. The functions f, g, h and p are continuous
in the respective arguments displayed explicitly. The dot means the derivative of
the variable with respect to t. Furthermore, the functions are such that uniqueness
and continuous dependence on initial condition is guaranteed.

The study of higher order nonlinear differential equations has received consider-
ably much attention and still receiving such from various researchers. Boundedness
and stability properties of solutions for various nonlinear third and fourth order
differential equations have been considered by many authors (see [6–11], [15], [16],
[18–22]). Some of the earlier results are summarized in [12].

Problems for various equations of the fifth order nonlinear differential equations
have been examined to quite considerable extent (see [1–3], [5], [14], [17]) but not
much as in the case of the third and fourth order equations.

In [2], the author employed frequency domain method to investigate the pe-
riodicity and stability for solution for nonlinear differential equation of the fifth
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order and gave conditions for the nonlinear functions under which the equation
considered have bounded, globally exponentially stable and periodic solution using
the frequency domain method.

In [1], [5], [14], [17], the authors employed the use of the Lyapunov second
method to discuss these properties (boundedness and stability) of solutions of the
classes of equations considered. In almost all these works, an incomplete Lyapunov
(Yoshizawa) function have been prominent and the few complete Lyapunov func-
tions constructed for the fifth order equations were made by the use of signum
functions (see [5], [23]).

Since the Lyapunov second method has been established to be one of the
most effective method to study the qualitative properties of solutions of differential
equations, in this paper we shall give criteria for the existence of a unique solution
to the equation (1.1) which is stable (globally asymptotically stable) and bounded
(uniformly ultimately bounded) with its derivatives on the real line.

We shall achieve this by the use of a suitable single complete Lyapunov function
without the use of any signum function and stringent condition on the functions
other than the continuity condition. As in [10] and [11], we adapted Cartwright [4]
for the construction of the Lyapunov function used in this work.

To be able to use the Lyapunov second method, the equation (1.1) is reduced
to system of first order equations given as

ẋ = y, ẏ = z, ż = u, u̇ = w

ẇ = −aw − bu− f(z)− g(y)− h(x) + p(t; x, y, z, u, w)
(1.2)

In order to reach our main results, we will first give some important basic definitions
for the general non-autonomous differential system. We consider the system

ẋ = f(t, x) (1.3)

where f ∈ C[I×Sρ], I = [0,∞), t ≥ 0, and Sρ = {x ∈ <n : ‖x‖ < ρ}. Assume that
f is smooth enough to ensure the existence and uniqueness of solutions of (1.3)
through every point (t0, x0) ∈ J ×Sρ. Also, let f(t, 0) = 0 so that (1.3) admits the
zero solution x ≡ 0.

Definition 1.1. [23] The zero solution of (1.1) is said to be stable, if given
ε > 0 and t0 ∈ I0, there exists a δ(t0, ε) > 0, such that |x0| < δ(t0, ε), |x(t; x0), t0| <
ε for all t ≥ t0.

Definition 1.2. [23] The solution x(t) ≡ 0 of (1.1) is asymptotically stable in
the whole (globally asymptotically stable) if it is stable and every solution of (1.1)
tends to zero as t →∞.

Definition 1.3. [23] The solution x(t) ≡ 0 of (1.1) is uniformly asymptotically
stable if it is stable and there exists a δ(t0) > 0 such that ‖x(t; t0, x0)‖ → 0 as t →∞
for all x0 ∈ Sδ0 .
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Definition 1.4. [23] The solution x(t) ≡ 0 of (1.1) is stable if for any ε > 0 and
any t0 ∈ I there exists a δ(t0, ε) < 0 such that if x0 ∈ Sδ(t0,ε) then x(t; t0, x0) ∈ Sε

for all t ≥ t0.

Definition 1.5. [23] The solution x(t) of (1.1) is bounded if there exists a
β > 0, there exists a constant M such that ‖x(t, t0, x0)‖ < M whenever ‖x0‖ < β,
t ≥ t0.

Definition 1.6. [23] The solution x(t) of (1.1) is ultimately bounded for
bound M, if there exist M > 0 and T > 0, such that for every solution x(t; t0, x0)
of (1.1) ‖x(t, t0, x0)‖ < M for all t > t0 + T .

We shall also give the following definitions in our context.

Definition 1.7. [11] A Lyapunov function V defined as V : I × <n → < is
said to be complete if for X ∈ <n,

(i) V (t,X) ≥ 0
(ii) V (t,X) = 0, if and only if X = 0 and

(iii) V̇ |1.3(t,X) ≤ −c |X| where c is any positive constant and |X| is given by
|X| = (∑n

i=1 x2
i

)1/2 such that |X| → ∞ as X →∞.

Definition 1.8. [11] A Lyapunov function V defined as V : I × <n → < is
said to be incomplete if for X ∈ <n, conditions (i) and (ii) of Definition 1.5 are
satisfied, and in addition

(iii) V̇ (t,X)|1.3 ≤ −c |X|∗ where c is any positive constant and |X|∗ is given

as |X|∗ =
(∑<n

i=1 x2
)1/2

such that |X|∗ →∞ as X →∞.

To make our definition of complete and incomplete Lyapunov functions clearer
we shall consider a simple case where n = 2.

Consider the simple 2nd order linear differential equation

ẍ + aẋ + bx = 0

(where a and b are all positive) with an equivalent system

ẋ = y, y = −ay − bx (1.4)

The following are some of the possible Lyapunov function for the system.

2V =
(

c + δ

a

)
bx2 +

(
c + δ

a

)
y2 (1.5)

2V =
(

cb2 + δa2

ab

)
x2 +

( c

a

)
y2 + 2

δ

b
xy (1.6)

2V =
(

b2(b + c) + δa2

ab

)
x2 +

(
δ + c

a

)
y2 + 2

δ

b
xy, (1.7)

where δ > 0.
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Let (x(t), y(t)) be any solution of (1.4) then by a straightforward calculation
form (1.5)–(1.7) and (1.4), we observe that

V̇ = −δy2, V̇ = −δx2, and V̇ = −δ(x2 + y2)

are the derivatives of V with respect to the system (1.4) respectively. Lyapunov
functions defined as in (1.5) and (1.6) are referred to as incomplete while the one
defined by (1.7) is complete.

2. Formulation of results

Let the functions f, g, h and p be continuous and the following conditions hold:

(i) θ = f(z)−f(0)
z ≤ c ∈ I0, z 6= 0, with I0 = [δ, ∆] > 0

(ii) β = g(y)−g(0)
y ≤ d ∈ I0, y 6= 0

(iii) γ = h(x)−h(0)
x ≤ e ∈ I0, x 6= 0

(iv) f(0) = g(0) = h(0) = 0.

Theorem 2.1. Suppose the conditions (i)–(iv) are satisfied with
p(t; x, ẋ, ẍ,

...
x , x(iv)) ≡ 0, then the trivial solution of the equation (1.1) is globally

asymptotically stable.

Theorem 2.2 In addition to the conditions (i)–(iv) suppose

(v) p(t; x, ẋ, ẍ,
...
x , x(iv)) ≡ p(t) and |p(t)| ≤ M for all t ≤ 0.

Then there exists a constant σ, (0 < σ < ∞) depending only on the constants
a, b, c, d, e and δ such that every solution of (1.1) satisfies

x2(t) + ẋ2(t) + ẍ2(t) +
...
x 2(t) + x(iv)2(t) ≤ e−

1
2 σt

{
A1 + A2

∫ t

t0

|p(τ)| e 1
2 στ dτ

}2

for all t ≥ t0, where the constant A1 > 0 depends on a, b, c, d, e, δ as well as on
t0, x(t0), ẋ(t0), ẍ(t0),

...
x (t0), x(iv)(t0); and the constant A2 > 0 depends on a, b, c, d, e

and δ.

Theorem 2.3 Suppose the conditions of Theorem 2.2 with condition (v) re-
placed with

(vi) |p(t; x, ẋ, ẍ,
...
x , x(iv))| ≤ (|x| + |y| + |z| + |u| + |w|)φ(t) where φ(t) is a

nonnegative and continuous function of t, and satisfies
∫ t

0
φ(s) ds ≤ M < ∞ and

M a positive constant.
Then there exists a constant K0 which depends on M,K1,K2 and t0 such that every
solution x(t) of equation (1.1) satisfies

|x(t)| ≤ K0, |ẋ(t)| ≤ K0, |ẍ(t)| ≤ K0, |...x (t)| ≤ K0,
∣∣∣x(iv)(t)

∣∣∣ ≤ K0

for all sufficiently large t.
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Remark. We wish to remark here that while Theorem 2.1 is on the global
asymptotic stability of the trivial solution, Theorems 2.2 and 2.3 are dealing with
the boundedness and ultimate boundedness of the solutions respectively.

It is well known that all solution of corresponding linear equation to (1.1) given
as

x(v) + ax(iv) + b
...
x + cẍ + dẋ + ex = p(t)

tend to trivial solution, as t → ∞ (is asymptotically stable), provided the Routh-
Hurwitz conditions a > 0, (ab− c) > 0, (ab− c)c− (ad− e)a > 0, ∆ : (cd− be)(ab−
c)− (ad− e)2 > 0, e > 0 hold.

Notations. Throughout this paper K,K0, K1, . . . , K14 will denote finite pos-
itive constants whose magnitudes depend only on the functions g, h and p as well
as constants a, b, c, d and δ but are independent of solutions of the equation (1.1).
K ′

is are not necessarily the same for each time they occur, but each Ki, i = 1, 2, . . . .
retains its identity throughout.

3. Preliminary Results

We shall use as a tool to prove our main results—a function V (x, y, z, u, w)
defined by

2V = Ax2 + By2 + Cz2 + Du2 + Ew2

+ 2Fxy + 2Gxz + 2Hxu + 2Jxw + 2Lyu + 2Myw + 2Nzu + 2Ozw + 2Puw
(3.1)

where

A =
δ

ced∆
{
(e2 + c2 + ce)(ab− c) + cd2∆)

}

B =
δ

ced∆
{
[(d(ed− bc) + (e2 + c2 + ce)c + e2cd]∆

−ae2[(e2 + c2 + ce)(ab− c) + cd[ce(b + 1)− a2] + aced(1− d)]
}

C =
δ

ced∆
{
[(e2 + c2 + ce)(ab− c) + cd[ce(b + 1)− a2]

+aced(1− d)](a− d)e + [c(1− e) + edb]d∆}

D =
δ

cd∆
{
(a2 + b)[(e2 + c2 + ce)(ab− c) + cd[ce(b + 1)− a2]

+aced(1− d)]− d(1 + ac)∆}

E =
δ

cd∆
{
[(e2 + c2 + ce)(ab− c) + cd[ce(b + 1)− a2] + aced(1− d)]

}

F =
δ

ce∆
{
∆(e2 + c2)

}

G =
δ

ced∆
{
ae2[(e2 + c2 + ce)(ab− c) + cd[ce(b + 1)− a2]

+aced(1− d)] + (b− e2)cd∆
}
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H =
δ

ced∆
{
e2[(e2 + c2 + ce)(ab− c) + cd[ce(b + 1)− a2] + aced(1− d)] + acd∆

}

J =
δ

e∆
{∆}

L =
δ

ced∆
{
[(e2 + c2)ae + c(ae2 − d)]∆ + ed[(e2 + c2 + ce)(ab− c)

+cd[ce(b + c)− a2] + aced(1− d)]
}

M =
δ

ced∆
{
(e2 + c2 + ce)∆

}

N =
δ

cd∆
{
b[(e2 + c2 + ce)(ab− c) + cd[ce(b + 1)− a2] + aced(1− d)]− cd∆

}

O =
δ

c∆
{∆}

P =
δ

cd∆
{
a[(e2 + c2 + ce)(ab− c) + cd[ce(b + 1)− a2] + aced(1− d)]− cd∆

}

∆ = e[(ab− c)c− (ad− e)a].

Lemma 3.1 Subject to the assumptions of Theorem 2.1 there exist positive
constants Ki = Ki(a, b, c, d, e, δ), i = 1, 2 such that

K1(x2 + y2 + z2 + u2 + w2) ≤ V (x, y, z, u, w) ≤ K2(x2 + y2 + z2 + u2 + w2). (3.2)

Proof. Clearly V (0, 0, 0, 0, 0) ≡ 0. Rearranging (3.1) we have

2V =
δ

ced∆

{
`1x

2 + `2y
2 + `3z

2 + `4u
2 + `5w

2 + ce(ab− c)
(

x +
Gz

ce(ab− c)

)2

+ (e2 + c2)c∆
(
y +

x

c

)2

+ c(1− e)∆
(

z +
Nu

c(1− e)∆

)2

+ acde2(1− d)(a− d)
(

z +
Ow

acde2(1− d)(a− d)

)2

+ bce(ab− c)
(

u +
Pw

bce(ab− c)

)2

+ a2cd[ce(b + 1)− a2]
(

u +
Ly

a2cd[ce(b + 1)− a2]

)2

+ bcd[ce(b + 1)− a2]
(

u +
Hx

bcd[ce(b + 1)− a2]

)2

+ ce(ab− c)
(

w +
Jx

ce(ab− c)

)2

+ cd[ce(b + 1)− a2]
(

w +
My

cd[ce(b + 1)− a2]

)2}
(3.3)
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with

`1 =
bd[ce(b + 1)− a2]

{
e(ab− c)[(d2 − 1)c2 − e2]∆− J2

}−H2e(ab− c)
bcde[ce(b + 1)− a2](ab− c)

`2 =
(acde)2∆− (L2 + a2M2)

a2cd[ce(b + 1)− a2]

`3 =
bc(de)2 −G2

ce(ab− c)

`4 =
c(1− e)(a2 + b)ace2d(1− d)∆−N2

c(1− e)∆

`5 =
b(acde2)2(ab− c)(1− d)2(a− d)−O2b(ab− c)− P 2aed(1− d)(a− d)

abcde2(1− d)(a− d)(ab− c)

V ≥ δ

ced∆
{
`1x

2 + `2y
2 + `3z

2 + `4u
2 + `5w

2
} ≥ K1

(
x2 + y2 + z2 + u2 + w2

)
.

(3.4)

where
K1 =

δ

ced∆
×min {`1, `2, `3, `4, `5} .

Applying the Cauchy-Schwartz inequality |xy| ≤ 1
2 |x2 + y2| to the equation (3.1),

we have

2V ≤ {
(A + F + G + H + J)x2 + (B + F + L + M)y2 + (C + G + N + O)z2

+(D + H + L + N + P )u2 + (E + J + M + O + P )w2
}

. (3.5)

From the equation (3.5), we have that

V ≤ K2

(
x2 + y2 + z2 + u2 + w2

)
, (3.6)

with

K2 =
1
2

max {(A + F + G + H + J), (B + F + L + M), (C + G + N + O),

(D + H + L + N + P ), (E + J + M + O + P )} .

From the equations (3.4) and (3.6) we have that

K1

(
x2 + y2 + z2 + u2 + w2

) ≤ V ≤ K2

(
x2 + y2 + z2 + u2 + w2

)
(3.7)

This proves Lemma 3.1.

Lemma 3.2. Suppose that the assumptions of Theorem 2.1 hold and in addition
let the condition (ii) of the Theorem 2.2 be satisfied also. Then there are positive
constants Kj = Kj(a, b, c, d, e, δ) (j = 3, 4) such that for any solution (x, y, z, u, w)
of system (1.2),

V̇ |(1.2) ≡
d

dt
V |(1.2)(x, y, z, u, w)

≤ −K3(x2 + y2 + z2 + +u2 + w2) + K4(|x|+ |y|+ |z|+ |u|+ |w|) |p(t)| .
(3.8)
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Proof. Differentiating (2.1) with respect to t we have

V̇ =
∂V

∂x
ẋ +

∂V

∂y
ẏ +

∂V

∂z
ż +

∂V

∂u
u̇ +

∂V

∂w
ẇ (3.9)

using the system (1.2) in (3.9), we have

V̇ =
{−Jh(x)−Mg(y)y −Of(z)z − Pbu2 − Eaw2

+Jx(−aw − bu− f(z)− g(y) + p) + My(−aw − bu− f(z)− h(x) + p)

Oz(−aw − bu− g(y)− h(x) + p) + Pu(−aw − f(z)− g(y)− h(x) + p)

+Ew(−bu− f(z)− g(y)− h(x) + p) + w(Hx + Ly + Nz + Pw)

+u(Gx + Cz + Nu + Dw) + (fx + by + Lu + Mw)

+y(Ax + Fy + Gz + Hu + Jw)} (3.10)

On simplifying using the conditions in the formulation of results, we have

V̇ = −{
Jγx2 + (Mβ − F )y2 −Oθz2 − (Pb−N)u2 + (Ea− P )w2

+(Jβ + Mγ −A)xy − (Jθ + Oγ − F )xz + (Jb + Pγ −G)xu

+(Ja + Gγ −H)xw + (Mθ + Oβ −G−B)yz + (Mb + Pβ −H)yu

+(Ma + Eβ − L− J)yw + (Ob + Pθ − L− C)zu

+(Eθ + Oa−N −M)zw + (Pa + Eb−O −D)uw

−(Jx + My + Oz + Pu + Ew)(h(0) + g(0) + f(0) + p)} (3.11)

which reduces to

V̇ ≤ −δ(x2 + y2 + z2 + u2 + w2) + (Jx + My + Oz + Pu + Ew)p

≤ −δ(x2 + y2 + z2 + u2 + w2) + K5(|x|+ |y|+ |z|+ |u|+ |w|)p
(3.12)

where K5 = max {J,M, O, P, E}. Since

(|x|+ |y|+ |z|+ |u|+ |w|) ≤
√

5(x2 + y2 + z2 + u2 + w2)
1
2 ,

inequality (3.12) becomes

dV

dt
≤ −δ(x2 + y2 + z2 + u2 + w2) + K6(x2 + y2 + z2 + u2 + w2)

1
2 |p(t)| , (3.13)

where K6 =
√

5K5. Choosing δ = K7, we have

V̇ |(1.2) ≡
d

dt
V |(1.2)(x, y, z, u, w)

≤ −K7(x2 + y2 + z2 + +u2 + w2) + K6(x2 + y2 + z2 + u2 + w2)
1
2 |p(t)| .

(3.14)

This completes the proof of Lemma 3.2.
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4. Proofs of the main results

Proof of Theorem 2.1. From the proofs of Lemmas 3.1 and 3.2 it is established
that the trivial solution of the equation (1.1) is globally asymptotically stable, i.e.
every solution (x(t), ẋ(t), ẍ(t),

...
x (t), x(iv)(t)) of the system (1.2) satisfies x2(t) +

ẋ2(t) + ẍ2(t) +
...
x 2(t) + x(iv)2(t) → 0 as t →∞.

Proof of Theorem 2.2. Indeed, from the inequality (3.14),

dV

dt
≤ −K7(x2 + y2 + z2 + u2 + w2) + K6(x2 + y2 + z2 + u2 + w2)

1
2 |p(t)| ,

and also from the inequality (3.4), we have

(x2 + y2 + z2 + u2 + w2)
1
2 ≤

(
V

K1

) 1
2

.

Thus the inequality (3.14) becomes

dV

dt
≤ −K8V + K9V

1
2 |p(t)| . (4.1)

We note that K7(x2 + y2 + z2 + u2 + w2) = K7 · V
K2

and

dV

dt
≤ −K8V + K9V

1
2 |p(t)| (4.2)

where K8 = K7
K2

and K9 = K6

K
1/2
2

. These imply that V̇ ≤ −K8V + K9V
1
2 |p(t)| and

this can be written as
V̇ ≤ −2K10V + K9V

1
2 |p(t)| , (4.3)

where K10 = 1
2K8. Therefore

V̇ + K10V ≤ −K10V + K9V
1
2 |p(t)| ≤ K9V

1
2

{
|p(t)| −K11V

1
2

}
, (4.4)

where K11 = K10
K9

. Thus the inequality (4.4) becomes

V̇ + K10V ≤ K9V
1
2 V ∗ (4.5)

where
V ∗ = |p(t)| −K11V

1
2 ≤ V

1
2 |p(t)| ≤ |p(t)| . (4.6)

When |p(t)| ≤ K11V
1
2 ,

V ∗ ≤ 0 (4.7)

and when |p(t)| ≥ K11V
1
2 ,

V ∗ ≤ |p(t)| · 1
K11

. (4.8)

On substituting the inequality (4.7) into the inequality (4.4), we have,

V̇ + K10V ≤ K12V
1
2 |p(t)|
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where K12 = K9
K11

. This implies that

V − 1
2 V̇ + K10V

1
2 ≤ K12 |p(t)| . (4.9)

Multiplying both sides of the inequality (4.9) by e
1
2 K10t we have

e
1
2 K10t

{
V − 1

2 V̇ + K10V
1
2

}
≤ e

1
2 K10tK12 |p(t)| (4.10)

i.e.
2

d

dt

{
V

1
2 e

1
2 K10t

}
≤ e

1
2 K10tK12 |p(t)| . (4.11)

Integrating both sides of (4.11) from t0 to t gives
{

V
1
2 e

1
2 K10γ

}t

t0
≤

∫ t

t0

1
2
e

1
2 K9τK12 |p(τ)| dτ (4.12)

which implies that
{

V
1
2 (t)

}
e

1
2 K10t ≤ V

1
2 (t0)e

1
2 K10t0 +

1
2
K12

∫ t

t0

|p(τ)| e 1
2 K10τdτ,

or

V
1
2 (t) ≤ e−

1
2 K10t

{
V

1
2 (t0)e

1
2 K10t0 +

1
2
K12

∫ t

t0

|p(τ)| e 1
2 K10τdτ

}
.

Using (3.5) and (3.6) we have

K1(x2(t) + ẋ2(t) + ẍ2(t) +
...
x 2(t) + x(iv)2(t))

≤ e−
1
2 K10t

{
K2(x2(t0) + ẋ2(t0) + ẍ2(t0) +

...
x 2(t0) + x(iv)2(t0))

e
1
2 K10t0 +

1
2
K12

∫ t

t0

|p(τ)| e 1
2 K10τdτ

}2

(4.13)

for all t ≥ t0. Thus,

x2(t) + ẋ2(t) + ẍ2(t) +
...
x 2(t) + x(iv)2(t0)

≤ 1
K1

{
e−

1
2 K10t

{
K2(x2(t0) + ẋ2(t0) + ẍ2(t0) +

...
x 2(t0) + x(iv)2(t0))e

1
2 K10t0

+
1
2
K12

∫ t

t0

|p(τ)| e 1
2 K10τdτ

}2}
≤

{
e−

1
2 K10t

{
A1 + A2

∫ t

t0

|p(τ)| e 1
2 K10τdτ

}2
}

(4.14)

where A1 and A2 are constants depending on {K1,K2, . . . K12 and (x2(t0)+ẋ2(t0)+
ẍ2(t0))+

...
x 2(t0)+x(iv)2(t0)}. By substituting K10 = σ in the inequality (4.14), we

have

x2(t) + ẋ2(t) + ẍ2(t) +
...
x 2(t) + x(iv)2(t) ≤

{
e−

1
2 σt

{
A1 + A2

∫ t

t0

|p(τ)| e 1
2 στdτ

}2
}

,

which completes the proof.
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Proof of Theorem 2.3. From the function V defined above and the conditions
of Theorem 2.3, the conclusion of Lemma 3.1 can be obtained, as

V ≥ K1

(
x2 + y2 + z2 + u2 + w2

)
, (4.15)

and since p 6= 0 we can revise the conclusion of Lemma 3.2, i.e,

V̇ ≤ −K7(x2 + y2 + z2 + u2 + w2) + K6(|x|+ |y|+ |z|+ |u|+ |w|) |p(t)| ,
and we obtain by using the condition on p(t;x, y, z, u, w) as stated in the Theorem
2.3 that

V̇ ≤ K6(|x|+ |y|+ |z|+ |u|+ |w|)2r(t). (4.16)

By applying the Schwartz inequality to (4.16), we have

V̇ ≤ K13(x2 + y2 + z2 + u2 + w2)r(t), (4.17)

where K13 = 4K6. From inequalities (4.15) and (4.17) we have

V̇ ≤ K13V r(t). (4.18)

Integrating inequality (4.18) from 0 to t, we obtain

V (t)− V (0) ≤ K14

∫ t

0

V (s)r(s) ds. (4.19)

where K14 = K13
K1

= 4K6
K1

V (t) ≤ V (0) + K11

∫ t

0

V (s)r(s)ds. (4.20)

Applying the Grownwall-Reid-Bellman theorem to the inequality (4.20) yields

V (t) ≤ V (0) exp
(

K14

∫ t

0

r(s)ds

)
. (4.21)

This completes the proof of Theorem 2.3.

REFERENCES

[1] A.M.A. Abou-El-Ela, A.I. Sadek, On the boundedness of a certain system of fifth order
differential equation, Annals of Diff. Eqs. 14 (1998), 1–10.

[2] O.A. Adesina, Periodicity and stability results for solutions of some fifth order non-linear
differential equations, Acta Univ. Palacki. Olomuc., Fac. rer.nat., Mathematica 40 (2001),
7–16.

[3] A.U. Afuwape, O.A. Adesina, Conditions on the qualitative behaviour of solutions for certain
class of fifth-order nonlinear differential equations, Ann. Stii. Univ. Al. I. Cuza, Iasi. Mat.
46 (2000), 277–294.

[4] M.L. Cartwright, On the stability of solution of certain differential equations of the fourth
order , Quart. J. Mech.Appl. Math. 9 (1956), 185–194.

[5] E.N. Chukwu, On the boundedness and stability of solutions of some differential equations
of the fifth order , SIAM J. Math. Anal. 7 (1976), 176–194.



268 B. S. Ogundare

[6] J.O.C. Ezeilo, On the boundedness and the stability of solution of some fourth order equa-
tions, J. Math. Anal. Appl. 5 (1962), 136–146.

[7] J.O.C. Ezeilo, A stability result for solutions of a certain fourth order differential equations,
J. London Math. Soc. 37 (1962), 28–32.

[8] M. Harrow, A stability result for solutions of a certain fourth order homogeneous differential
equations, J. London Math. Soc. 42 (1967), 51–56.

[9] M. Harrow, On the boundedness and the stability of solutions of some differential equations
of the fourth order , SIAM J. Math. Anal. 1 (1970), 27–32.

[10] B.S. Ogundare, Boundedness of solutions to fourth order differential equations with oscil-
latory restoring and forcing terms, Electronic Journal of Differential Equations, Vol. 2006
(2006), No. 06, 1–6.

[11] B.S. Ogundare, On boundedness and the stability results for the solutions of certain third
order nonlinear differential equations, Kragujevac J. Math. 29 (2006), 37–48.

[12] R. Reissig, G. Sansone, R. Conti, Non-Linear Differential Equations of Higher Order, Nour-
dhoff International Publishing, Lyden, 1974.

[13] N. Rouche, P. Habets, M. Laloy, Stability Theory by Liapunov’s Direct Method, Springer
Verlag, New York, Heidelberg, Berling, 1977.

[14] A. Tiryaki, C. Tunc, On the boundedness and the stability properties for the solutions of
certain fifth order differential equations, Hacet. Bull. Nat. Sci. Eng. Ser. B., 25 (1996),
53–68

[15] A. Tiryaki, C. Tunc, Construction Lyapunov functions for certain fourth-order autonomous
differential equations, Indian J. Pure Appl. Math. 26 (1995), 225–292.

[16] A. Tiryaki, C. Tunc, Boundedness and the stability properties of solutions of certain fourth
order differential equations via the intrinsic method , Analysis 16 (1996), 325–334.

[17] C. Tunc, On the boundedness and the stability properties for the solutions of certain fifth
order differential equations, Ann. of Diff. Eqs. 12 (1996), 259–266

[18] C. Tunc, A note on the stability and boundedness results of certain fourth order differential
equations, Applied Mathematics and Computation 155 (2004), 837–843.

[19] C. Tunc, Some stability and boundedness results for the solutions of certain fourth order
differential equations, Acta Univ. Palacki Olomouc. Fac. Rerum Natur. Math. 44 (2005),
161–171.

[20] C. Tunc, An ultimate boundedness result for a certain system of fourth order nonlinear
differential equations, Differential Equations and Applications 5 (2005), 163–174.

[21] C. Tunc, Stability and boundedness of solutions to certain fourth-order differential equations,
Electronic Journal of Differential Equations, Vol. 2006 (2006), No. 35, 1–10.

[22] C. Tunc, A. Tiryaki, On the boundedness and the stability results for the solutions of cer-
tain fourth order differential equations via the intrinsic method , Applied Mathematics and
Mechanics 17 (1996), 1039–1049.

[23] Yoshizawa Taro, Stability Theory by Liapunov’s Second Method, The Mathematical Society
of Japan, 1966.

(received 27.08.2008, in revised form 13.03.2009)

Department of Pure and Applied Mathematics, University of Fort Hare, Alice, 5700 RSA.

Permanent Address: Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria.

E-mail : ogundareb@yahoo.com


