ϕ-RECURRENT TRANS-SASAKIAN MANIFOLDS

H. G. Nagaraja

Abstract

In this paper we present some results for ϕ recurrent trans-Sasakian manifolds. We find conditions for such manifolds to be of constant curvature. Finally we give an example of a 3-dimensional ϕ - recurrent trans-Sasakian manifold.

1. Introduction

A class of almost contact metric manifolds known as trans-Sasakian manifolds was introduced by J. A. Oubina [6] in 1985. This class contains α-Sasakian, β Kenmotsu and co-symplectic manifolds. An almost contact metric structure on a manifold M is called a trans-Sasakian structure if the product manifold $M \times R$ belongs to the class W_{4}, a class of Hermitian manifolds which are closely related to a locally conformal Kähler manifolds. Trans-Sasakian manifolds were studied extensively by J. C. Marrero [5], M. M. Tripathi [8], U. C. De [2, 3, 4] and others. M. M. Tripathi [8] proved that trans-Sasakian manifolds are always generalized quasi-Sasakian.
U. C. De et al. [2] generalized the notion of local ϕ-symmetry and introduced the notion of ϕ-recurrent Sasakian manifolds. In the present paper we study ϕ recurrent trans-Sasakian manifolds. In Section 3, we prove that a conformally flat ϕ-recurrent trans-Sasakian manifold is a manifold of constant curvature. In the same section trans-Sasakian manifolds with η-parallel Ricci-tensor are considered and we prove that the scalar curvature of such a manifold is a constant. In Section 4 , it is proved that a ϕ-recurrent conformally flat trans-Sasakian manifold is η Einstein. Finally we construct an example of a 3 -dimensional ϕ-recurrent transSasakian manifold. This verifies the results proved in Section 3.

2. Preliminaries

Let M be a $(2 n+1)$-dimensional almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g), where ϕ, ξ, η are tensor fields on M of types

2010 AMS Subject Classification: 53C25.
Keywords and phrases: Trans-Sasakian; ϕ-recurrent; conformally flat; η-parallel; η-Einstein; constant curvature.
$(1,1),(1,0),(0,1)$ respectively and g is the Riemannian metric on M such that

$$
\begin{equation*}
\text { (a) } \phi^{2}=-I+\eta \otimes \xi, \quad \text { (b) } \eta(\xi)=1, \quad \text { (c) } \phi(\xi)=0, \quad \text { (d) } \eta \circ \phi=0 \tag{2.1}
\end{equation*}
$$

The Riemanian metric g on M satisfies the condition

$$
\begin{align*}
g(\phi X, \phi Y) & =g(X, Y)-\eta(X) \eta(Y) \tag{2.2}\\
g(X, \phi Y) & =-g(\phi X, Y) \tag{2.3}
\end{align*}
$$

$\forall X, Y \in T M$. An almost contact metric structure (ϕ, ξ, η, g) in M is called a transSasakian structure [1] if the product manifold $(M \times R, J, G)$ belongs to the class W_{4}, where J is the complex structure on $(M \times R)$ defined by

$$
\begin{equation*}
J\left(X, \lambda \frac{d}{d t}\right)=\left(\phi-\lambda \xi, \eta(X) \frac{d}{d t}\right) \tag{2.4}
\end{equation*}
$$

for all vector fields X on M and smooth functions λ on $(M \times R)$ and G is the product metric on $(M \times R)$. This may be expressed by the following condition [1]

$$
\begin{equation*}
\left(\nabla_{X} \phi\right)(Y)=\alpha(g(X, Y) \xi-\eta(Y) X)+\beta(g(\phi X, Y) \xi-\eta(Y) \phi X) \tag{2.5}
\end{equation*}
$$

where α and β are smooth functions on M .
From (2.5), we have

$$
\begin{align*}
\left(\nabla_{X} \xi\right) & =-\alpha(\phi X)+\beta(X-\eta(X) \xi) \tag{2.6}\\
\left(\nabla_{X} \eta\right)(Y) & =-\alpha g(\phi X, Y)+\beta(\phi X, \phi Y) \tag{2.7}
\end{align*}
$$

In a $(2 n+1)$-dimensional trans-Sasakian manifold, from (2.5), (2.6), (2.7), we can derive [3]

$$
\begin{align*}
& R(X, Y) \xi=\left(\alpha^{2}-\beta^{2}\right)(\eta(Y) X-\eta(X) Y)+2 \alpha \beta(\eta(Y) \phi X-\eta(X) \phi Y) \\
&-(X \alpha) \phi Y+(Y \alpha) \phi X-(X \beta) \phi^{2} Y+(Y \beta) \phi^{2} X \tag{2.8}\\
& S(X, \xi)=\left(2 n\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right) \eta(X)-(2 n-1)(X \beta)-(\phi X) \alpha . \tag{2.9}
\end{align*}
$$

Further we have

$$
\begin{equation*}
2 \alpha \beta+\xi \alpha=0 \tag{2.10}
\end{equation*}
$$

In a conformally flat manifold the curvature tensor R satisfies

$$
\begin{align*}
& R(X, Y, Z, W)=\frac{1}{2 n-1}[S(Y, Z) g(X, W)+g(Y, Z) S(X, W)-S(X, Z) g(Y, W) \\
& \quad-g(X, Z) S(Y, W)]-\frac{r}{2 n(2 n-1)}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \tag{2.11}
\end{align*}
$$

From (2.8) we have

$$
\begin{equation*}
R(\xi, X, Y, \xi)=\left(\alpha^{2}-\beta^{2}-\xi \beta\right) g(\phi X, \phi Y) \tag{2.12}
\end{equation*}
$$

Suppose α and β are constants. Then from (2.9), (2.11), (2.12), we obtain

$$
\begin{equation*}
S(X, Y)=\left(\frac{r}{2 n}-\left(\alpha^{2}-\beta^{2}\right)\right) g(\phi X, \phi Y)-2 n\left(\alpha^{2}-\beta^{2}\right) \eta(X) \eta(Y) \tag{2.13}
\end{equation*}
$$

Applying (2.13) in (2.11), we get

$$
\begin{align*}
R(X, Y) Z & =\frac{1}{2 n-1}\left[\left(\frac{r}{2 n}-2\left(\alpha^{2}-\beta^{2}\right)\right)(g(Y, Z) X-g(X, Z) Y)\right. \\
+ & \left(\frac{r}{2 n}+(2 n+1)\right)\left(\alpha^{2}-\beta^{2}\right)\{(g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi) \\
& +(\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y)\}] . \tag{2.14}
\end{align*}
$$

From (2.10), for constants α and β, we have
Proposition 2.1. A trans-Sasakian manifold with α and β are constants is either β-Sasakian or α-Kenmotsu or co-symplectic.

It is well known that β-Sasakian manifolds are quasi Sasakian and α-Kenmotsu manifold are $C\left(-\alpha^{2}\right)$ manifolds. Hence we have the following corollary.

Corollary 2.1. In a trans-Sasakian manifold M with α and β are constants, one of the following holds.
(i) M is quasi Sasakian (ii) M is a $C\left(-\alpha^{2}\right)$ manifold (iii) M is co-symplectic.

3. Conformally flat ϕ-recurrent trans-Sasakian manifolds

Definition 3.1 A trans-Sasakian manifold is said to be ϕ-recurrent if

$$
\begin{equation*}
\phi^{2}\left(\nabla_{W} R\right)(X, Y) Z=A(W) R(X, Y) Z \tag{3.1}
\end{equation*}
$$

$\forall \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W} \in \mathrm{TM}$.
Differentiating (2.14) covariantly with respect to W, we get

$$
\begin{align*}
& \left(\nabla_{W} R\right)(X, Y) Z=\frac{1}{2 n-1}\left[\left(\frac{d r(W)}{2 n}(g(Y, Z) X-g(X, Z) Y)+\left(\frac{d r(W)}{2 n}\{(g(Y, Z) \eta(X) \xi\right.\right.\right. \\
& \quad-g(X, Z) \eta(Y) \xi)+(\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y)\}]+\left[\left(\frac{r}{2 n}+3\left(\alpha^{2}-\beta^{2}\right)\right.\right. \\
& \left\{g(Y, Z)\left(\left(\nabla_{W} \eta\right)(X) \xi-\eta(X)\left(\nabla_{W} \xi\right)\right)-g(X, Z)\left(\left(\nabla_{W} \eta\right)(Y) \xi-\eta(Y)\left(\nabla_{W} \xi\right)\right)\right. \\
& \left.\left.\quad+\left(\nabla_{W} \eta\right)(Y) \eta(Z)+\eta(Y)\left(\nabla_{W} \eta\right)(Z)-\left(\nabla_{W} \eta\right)(X) \eta(Z)-\eta(X)\left(\nabla_{W} \eta\right)(Z)\right\}\right] \tag{3.2}
\end{align*}
$$

We may assume that all vector fields X, Y, Z, W are orthogonal to ξ. Then (3.2) takes the form

$$
\begin{align*}
& \left(\nabla_{W} R\right)(X, Y) Z=\frac{1}{2 n-1}\left[\left(\frac{d r(W)}{2 n}\right)(g(Y, Z) X-g(X, Z) Y)\right. \\
& \left.\quad+\left(\frac{r}{2 n}+3\left(\alpha^{2}-\beta^{2}\right)\right)\left\{g(Y, Z)\left(\nabla_{W} \eta\right)(X)-g(X, Z)\left(\nabla_{W} \eta\right)(Y)\right\} \xi\right] \tag{3.3}
\end{align*}
$$

Applying ϕ^{2} to both sides of (3.3), we get

$$
A(W) R(X, Y) Z=\frac{1}{2 n-1}\left[\frac{d r(W)}{2 n}(g(Y, Z) X-g(X, Z) Y)\right]
$$

i.e.

$$
R(X, Y) Z=\frac{1}{2 n(2 n-1)}\left[\frac{d r(W)}{A(W)}(g(Y, Z) X-g(X, Z) Y)\right]
$$

Putting $W=e_{i}$ in the above equation, where $\left\{e_{i}\right\}$ is an orthonormal basis of the tangent space at any point of the manifold and taking summation over $i, 1 \leq i \leq$ $2 n+1$, we obtain

$$
R(X, Y) Z=\lambda(g(Y, Z) X-g(X, Z) Y)
$$

where $\lambda=\left(\frac{d r\left(e_{i}\right)}{2 n(2 n-1) A\left(e_{i}\right)}\right)$ is a scalar. Since A is non zero, λ will be a constant. Therefore M is of constant curvature λ. Thus we can state that

Theorem 3.1. A conformally flat ϕ-recurrent trans-Sasakian manifold of dimension greater than 3 is a manifold of constant curvature provided α and β are constants.

Since three dimensional Riemannian manifolds are conformally flat, we have
Corollary 3.1. A three dimensional ϕ-recurrent trans-Sasakian manifold is a manifold of constant curvature.

Now from Proposition 2.1 and the above corollary, we have
Corollary 3.2. A three dimensional ϕ-recurrent β-Sasakian manifold (or α Kenmotsu manifold or co-symplectic manifold) is a manifold of constant curvature.

By virtue of (2.1)(a) and (3.1), we have

$$
-\left(\nabla_{W} R\right)(X, Y) Z+\eta\left(\left(\nabla_{W} R\right)(X, Y) Z\right) \xi=A(W) R(X, Y) Z
$$

from which we get

$$
\begin{equation*}
-g\left(\left(\nabla_{W} R\right)(X, Y) Z, U\right)+\eta\left(\left(\nabla_{W} R\right)(X, Y) Z\right) \eta(U)=A(W) R(X, Y, Z, U) \tag{3.4}
\end{equation*}
$$

Putting $X=U=e_{i}$ and summing over $i=1, \ldots, 2 n+1$, we get

$$
\begin{equation*}
-\left(\nabla_{W} S\right)(Y, Z)+\sum \eta\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) Z\right) \eta\left(e_{i}\right)=A(W) S(Y, Z) \tag{3.5}
\end{equation*}
$$

The second term of (3.5) by putting $Z=\xi$ takes the form $g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right) g\left(e_{i}, \xi\right)$. Consider

$$
\begin{align*}
g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right)=g\left(\nabla_{W}\right. & \left.R\left(e_{i}, Y\right) \xi, \xi\right)-g\left(R\left(\nabla_{W} e_{i}, Y\right) \xi, \xi\right) \\
& -g\left(R\left(e_{i}, \nabla_{W} Y\right) \xi, \xi\right)-g\left(R\left(e_{i}, Y\right) \nabla_{W} \xi, \xi\right) \tag{3.6}
\end{align*}
$$

at $P \in M$.
Using (2.8), (2.1)(d) and $g(X, \xi)=\eta(X)$, we obtain

$$
\begin{align*}
& g\left(R\left(e_{i}, \nabla_{W} Y\right) \xi, \xi\right)=g\left(\left(\alpha^{2}-\beta^{2}\right)\left(\eta\left(\nabla_{W} Y\right) e_{i}-\eta\left(e_{i}\right)\left(\nabla_{W} Y\right)\right)\right. \\
& \left.+2 \alpha \beta\left(\eta\left(\nabla_{W} Y\right) \phi e_{i}-\eta\left(e_{i}\right) \phi\left(\nabla_{W} Y\right)\right)+\left(\nabla_{W} Y\right) \alpha\right) \phi e_{i}- \\
& \quad\left(e_{i} \alpha\right) \phi\left(\nabla_{W} Y\right)-\left(e_{i} \beta\right) \phi^{2}\left(\nabla_{W} Y\right)+\left(\nabla_{W} Y \beta\right) \phi^{2} e_{i}=0 . \tag{3.7}
\end{align*}
$$

By virtue of $g\left(R\left(e_{i}, Y\right) \xi, \xi\right)=g\left(R(\xi, \xi) e_{i}, Y\right)=0$ and (3.7), (3.6) reduce to

$$
\begin{equation*}
g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right)=g\left(\nabla_{W} R\left(e_{i}, Y\right) \xi, \xi\right)-g\left(R\left(e_{i}, Y\right) \nabla_{W} \xi, \xi\right) \tag{3.8}
\end{equation*}
$$

Since $\left(\nabla_{X} g\right)=0$, we have $g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right)+g\left(R\left(e_{i}, Y\right) \xi, \nabla_{W} \xi\right)=0$, which implies

$$
\begin{equation*}
g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right)=-g\left(R\left(e_{i}, Y\right) \xi, \nabla_{W} \xi\right)-g\left(R\left(e_{i}, Y\right) \nabla_{W} \xi, \xi\right) \tag{3.9}
\end{equation*}
$$

Using (2.6) and by the skew symmetry of R, we get

$$
\begin{aligned}
& g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right)= \\
= & g\left(R\left(e_{i}, Y\right) \xi,-\alpha(\phi W)+\beta(W-\eta(W) \xi)\right)+g\left(R\left(e_{i}, Y\right)-\alpha(\phi W)+\beta(W-\eta(W) \xi), \xi\right) \\
= & \left.g\left(R\left(-\alpha(\phi W)+\beta(W-\eta(W) \xi, \xi) Y, e_{i}\right),\right)\right)+g\left(R(\xi,-\alpha(\phi W)+\beta(W-\eta(W) \xi)) Y, e_{i}\right) .
\end{aligned}
$$

Multiplying the above equation by $\eta\left(e_{i}\right)=g\left(\xi, e_{i}\right)$ and summing over $i=1, \ldots$, $2 n+1$, we get

$$
\begin{aligned}
& \sum \eta\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) Z\right) g\left(e_{i}, \xi\right)= \\
& =\sum\left\{g\left(R\left(-\alpha(\phi W)+\beta(W-\eta(W) \xi, \xi) Y, e_{i}\right)\right) g\left(e_{i}, \xi\right)+\right. \\
& \left.\quad g\left(R(\xi,-\alpha(\phi W)+\beta(W-\eta(W) \xi)) Y, e_{i}\right) g\left(e_{i}, \xi\right)\right\}= \\
& \quad=\{g(R(-\alpha(\phi W)+\beta(W-\eta(W) \xi, \xi) Y, \xi)) \\
& \quad+g(R(\xi,-\alpha(\phi W)+\beta(W-\eta(W) \xi)) Y, \xi)\}=0
\end{aligned}
$$

Replacing Z by ξ in (3.5) and using (2.9) we get

$$
\begin{equation*}
-\left(\nabla_{W} S\right)(X, \xi)=A(W)\left\{2 n\left(\alpha^{2}-\beta^{2}\right) \eta(X)\right\} \tag{3.10}
\end{equation*}
$$

provided α and β are constants. Now from

$$
\left(\nabla_{X} S\right)(Y, \xi)=\nabla_{X} S(Y, \xi)-S\left(\nabla_{X} Y, \xi\right)-S\left(Y, \nabla_{X} \xi\right)
$$

Using (2.6) and (2.9), for constant α and β, we have

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, \xi)=2 n\left(\alpha^{2}-\beta^{2}\right)\left[\left(\nabla_{X} \eta\right)(Y)+\beta \eta(X) \eta(Y)\right]+S(Y, \alpha \phi X-\beta X) \tag{3.11}
\end{equation*}
$$

From (3.11), (2.3) and (2.7), we obtain

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, \xi)=2 n\left(\alpha^{2}-\beta^{2}\right)[\beta g(X, Y)-\alpha g(X, \phi Y)]+S(Y, \alpha \phi X-\beta X) \tag{3.12}
\end{equation*}
$$

From (3.10) and (3.12), we have

$$
\begin{equation*}
-A(X)\left\{2 n\left(\alpha^{2}-\beta^{2}\right) \eta(Y)\right\}=2 n\left(\alpha^{2}-\beta^{2}\right)[\beta g(X, Y)-\alpha g(X, \phi Y)]+S(Y, \alpha \phi X-\beta X) \tag{3.13}
\end{equation*}
$$

Replacing Y by ϕY in (3.13) and using (2.2), we obtain
$2 n\left(\alpha^{2}-\beta^{2}\right)[\beta g(X, \phi Y)+\alpha g(X, Y)-\alpha \eta(X) \eta(Y)]+\alpha S(\phi Y, \phi X)-\beta S(\phi Y, X)=0$ i.e.

$$
\begin{equation*}
-\alpha S(\phi Y, \phi X)+\beta S(\phi Y, X)=2 n\left(\alpha^{2}-\beta^{2}\right)[\beta g(X, \phi Y)+\alpha g(\phi X, \phi Y)] \tag{3.14}
\end{equation*}
$$

Interchanging Y and X in (3.14) and by using the skew symmetry of ϕ, we obtain

$$
\begin{equation*}
-\alpha S(\phi X, \phi Y)=2 n \alpha\left(\alpha^{2}-\beta^{2}\right)(g(\phi X, \phi Y)) \tag{3.15}
\end{equation*}
$$

By skew symmetry of ϕ and using (2.9), we obtain $S(\phi X, \phi Y)=-S\left(\phi^{2} X, Y\right)=$ $S(X, Y)-2 n\left(\alpha^{2}-\beta^{2}\right) \eta(X) \eta(Y)$. Substituting this in (3.15), we get

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{3.16}
\end{equation*}
$$

where $a=2 n\left(\alpha^{2}-\beta^{2}\right)$, i.e. M is η-Einstein. Thus we have
Theorem 3.2 A ϕ-recurrent conformally flat trans-Sasakian manifold is η Einstein provided α and β are constants.

Corollary 3.3 A 3-dimensional ϕ-recurrent trans-Sasakian manifold is η Einstein provided α and β are constants.

4. Trans-Sasakian manifolds with η-parallel Ricci tensor

Let us consider a trans-Sasakian manifold M of dimension $2 \mathrm{n}+1$ with η - parallel Ricci tensor. Replacing Y by $\phi \mathrm{Y}$ and Z by $\phi \mathrm{Z}$ in (2.13), we obtain

$$
\begin{equation*}
S(\phi X, \phi Y)=\left(\frac{r}{2 n}-\left(\alpha^{2}-\beta^{2}\right)\right)(g(X, Y)-\eta(X) \eta(Y) \tag{4.1}
\end{equation*}
$$

Differentiating (4.1) covariantly with respect to X we obtain

$$
\begin{align*}
\left(\nabla_{X} S\right)(\phi Y, \phi Z) & =\left(\frac{d r(X)}{2 n}\right)(g(Y, Z) X-\eta(Y) \eta(Z)) \\
& \left.-\left(\frac{r}{2 n}-\left(\alpha^{2}-\beta^{2}\right)\right)\left\{\left(\nabla_{X} \eta\right)(Y) \eta(Z)+\eta(Y)\left(\nabla_{X} \eta\right)(Z)\right\}\right] \tag{4.2}
\end{align*}
$$

Suppose the Ricci tensor is η-parallel. Then we obtain
$\left(\frac{d r(X)}{2 n}\right)(g(Y, Z)-\eta(Y) \eta(Z))=\left[\left(\frac{r}{2 n}-\left(\alpha^{2}-\beta^{2}\right)\right)\left\{\left(\nabla_{X} \eta\right)(Y) \eta(Z)+\eta(Y)\left(\nabla_{X} \eta\right)(Z)\right\}\right]$.
Putting $Y=Z=e_{i}$ in (4.3), where $\left\{e_{i}\right\}$ is an orthonormal basis and summing over $\mathrm{i}=1, \ldots, 2 \mathrm{n}+1$, we obtain

$$
\begin{equation*}
d r(X)=\left(\frac{r}{2 n}-2\left(\alpha^{2}-\beta^{2}\right)\right)\left(\nabla_{X} \eta\right)(\xi) \tag{4.4}
\end{equation*}
$$

Since $\eta(\xi)=1$, from (2.5), we have $\left(\nabla_{X} \eta\right)(\xi)=0$. Thus from (4.4), we obtain $d r(X)=0$ or r is a constant. Thus we have

THEOREM 4.1. In a conformally flat trans-Sasakian manifold with η-parallel Ricci tensor, the scalar curvature is constant provided α and β are constants.

Corollary 4.1. A 3-dimensional trans-Sasakian manifold with η-parallel Ricci tensor, the scalar curvature is constant provided α and β are constants.

5. Example of ϕ-recurrent trans-Sasakian manifolds

Consider three dimensional manifold $M=\left\{(x, y, z) \in R^{3} \backslash z \neq 0\right\}$, where (x, y, z) are the standard coordinates of R^{3}. The vector fields

$$
\begin{equation*}
e_{1}=\frac{x}{z} \frac{\partial}{\partial x}, \quad e_{2}=\frac{y}{z} \frac{\partial}{\partial y}, \quad e_{3}=\frac{\partial}{\partial z} \tag{5.1}
\end{equation*}
$$

are linearly independent at each point of M. Let g be the Riemannian metric defined by

$$
\begin{equation*}
g\left(e_{1}, e_{1}\right)=1, g\left(e_{2}, e_{2}\right)=1, g\left(e_{3}, e_{3}\right)=1, g\left(e_{1}, e_{2}\right)=0, g\left(e_{1}, e_{3}\right)=0, g\left(e_{2}, e_{3}\right)=0 \tag{5.2}
\end{equation*}
$$

Let η be the 1-form defined by $\eta(X)=g(X, \xi)$ for any vector field X. Let ϕ be the $(1,1)$ tensor field defined by

$$
\begin{equation*}
\phi\left(e_{1}\right)=e_{2}, \phi\left(e_{2}\right)=-e_{1}, \phi\left(e_{3}\right)=0 \tag{5.3}
\end{equation*}
$$

Then by using the linearity of ϕ and g we have $\phi^{2} X=-X+\eta(X) \xi$, with $\xi=e_{3}$.
Further $g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y)$ for any vector fields X and Y. Hence for $e_{3}=\xi$, the structure defines an almost contact structure on M. Let ∇ be the Levi-Civita connection with respect to the metric g, then we have

$$
\begin{equation*}
\left[e_{1}, e_{2}\right]=0,\left[e_{1}, e_{3}\right]=\frac{1}{z} e_{1},\left[e_{2}, e_{3}\right]=\frac{1}{z} e_{2} \tag{5.4}
\end{equation*}
$$

The Riemannian connection ∇ of the metric g is given by

$$
\begin{array}{rl}
2 g\left(\nabla_{X} Y, Z\right)=X g(Y, Z)+Y & g(Z, X)-Z g(X, Y) \\
& -g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y]) \tag{5.5}
\end{array}
$$

Using (5.5), we have

$$
2 g\left(\nabla_{e_{1}} e_{3}, e_{1}\right)=2 g\left(\frac{1}{z} e_{1}, e_{1}\right)+2 g\left(e_{2}, e_{1}\right)=2 g\left(\frac{1}{z} e_{1}+e_{2}, e_{1}\right)
$$

since $g\left(e_{1}, e_{2}\right)=0$. Thus

$$
\begin{equation*}
\nabla_{e_{1}} e_{3}=\frac{1}{z} e_{1}+e_{2} \tag{5.6}
\end{equation*}
$$

Again by (5.5) we get,

$$
2 g\left(\nabla_{e_{2}} e_{3}, e_{2}\right)=2 g\left(\frac{1}{z} e_{2}, e_{2}\right)-2 g\left(e_{1}, e_{2}\right)=2 g\left(\frac{1}{z} e_{2}-e_{1}, e_{2}\right)
$$

since $g\left(e_{1}, e_{2}\right)=0$. Therefore we have

$$
\begin{equation*}
\nabla_{e_{2}} e_{3}=\frac{1}{z} e_{2}-e_{1} \tag{5.7}
\end{equation*}
$$

Again from (5.5) we have

$$
\begin{gather*}
\nabla_{e_{3}} e_{3}=0, \quad \nabla_{e_{1}} e_{1}=\frac{-1}{z} e_{1}, \quad \nabla_{e_{1}} e_{2}=0 \\
\nabla_{e_{2}} e_{1}=0, \quad \nabla_{e_{2}} e_{1}=0, \quad \nabla_{e_{2}} e_{2}=-\frac{1}{z} e_{2} \tag{5.8}\\
\nabla_{e_{3}} e_{1}=0, \quad \nabla_{e_{3}} e_{2}=0
\end{gather*}
$$

The manifold M satisfies (2.5) with $\alpha=-1$ and $\beta=\frac{1}{z}$. Hence M is a transSasakian manifold. Using the relations (5.6), (5.7) and (5.8), the non-vanishing components of the curvature tensor are computed as follows:

$$
\begin{align*}
& R\left(e_{1}, e_{3}\right) e_{3}=\frac{1}{z^{2}} e_{1}, \quad R\left(e_{3}, e_{1}\right) e_{3}=-\frac{1}{z^{2}} e_{1} \\
& R\left(e_{2}, e_{3}\right) e_{3}=\frac{1}{z^{2}} e_{2}, \tag{5.9}
\end{align*} \quad R\left(e_{3}, e_{2}\right) e_{3}=-\frac{1}{z^{2}} e_{2} .
$$

The vectors $\left\{e_{1}, e_{2}, e_{3}\right\}$ form a basis of M and so any vector X can be written as $X=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}$ where $a_{i} \in R^{+}, i=1,2,3$. From (5.9), we have

$$
\left(\nabla_{X} R\right)\left(e_{1}, e_{3}\right) e_{3}=-\frac{2 a_{3}}{z^{3}} e_{1}
$$

and

$$
\left(\nabla_{X} R\right)\left(e_{2}, e_{3}\right) e_{3}=-\frac{2 a_{3}}{z^{3}} e_{2}
$$

Applying ϕ^{2} to both sides of the above equations and using (5.3), we obtain

$$
\phi^{2}\left(\left(\nabla_{X} R\right)\left(e_{1}, e_{3}\right) e_{3}\right)=A(X) R\left(e_{1}, e_{3}\right) e_{3}
$$

and

$$
\phi^{2}\left(\left(\nabla_{X} R\right)\left(e_{2}, e_{3}\right) e_{3}\right)=A(X) R\left(e_{2}, e_{3}\right) e_{3}
$$

where $A(X)=\frac{2 a_{3}}{z}$ is a non vanishing 1-form. This implies that there exists a ϕ-recurrent trans-Sasakian manifold of dimension 3.

From the non vanishing curvature components as given in (5.9), we have

$$
R\left(e_{1}, e_{3}\right) e_{3}=\lambda\left(g\left(e_{3}, e_{3}\right) e_{1}-g\left(e_{1}, e_{3}\right) e_{3}\right)
$$

and

$$
R\left(e_{2}, e_{3}\right) e_{3}=\lambda\left(g\left(e_{3}, e_{3}\right) e_{2}-g\left(e_{2}, e_{3}\right) e_{3}\right)
$$

This verifies Corollary 3.2.

REFERENCES

[1] D.E. Blair, J.A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Matematiques 34 (1990), 199-207.
[2] U.C. De, A.A. Shaikh, S. Biswas, On ϕ-recurrent Sasakian manifolds, Novi Sad J. Math. 33 (2003), 43-48.
[3] U.C. De, M.M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J. 43 (2003), 247-255.
[4] U.C. De, A. Yildiz, A.F. Yaliniz, Locally ϕ-symmetric normal almost contact metric manifolds of dimension 3, Appl. Math. Lett. 22 (2009), 723-727.
[5] J.C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura. Appl. 162 (1992), 77-86.
[6] J.A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32 (1985), 187-193.
[7] T. Takahashi, Sasakian ϕ-symmetric spaces, Tohoku Math. J. 29 (1977), 91-113.
[8] M.M. Tripathi, Trans-Sasakian manifolds are generalised quasi-Sasakian, Nepali Math. Sci. Rep. 18 (1999-2000), No.1-2, (2001), 11-14.
(received 11.11.2009; in revised form 29.11.2010)
Department of Mathematics, Central College, Bangalore University, Bangalore-560 001, India
E-mail: hgnraj@yahoo.com

