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ON VITALI SETS AND THEIR UNIONS

Vitalij A. Chatyrko

Abstract. It is well known that any Vitali set on the real line R does not possess the Baire
property. In this article we prove the following:

Let S be a Vitali set, Sr be the image of S under the translation of R by a rational number
r and F= {Sr : r is rational}. Then for each non-empty proper subfamily F ′ of F the union ∪F ′
does not possess the Baire property.

Our starting point is the classical theorem by Vitali [3] stating the existence
of subsets of the real line R, called below Vitali sets, which are non-Lebesgue
measurable. Recall that if one considers a Vitali set S on the real line R then
each its image Sx under the translation of R by a real number x is also a Vitali
set. Moreover, the family F= {Sr : r is rational} is disjoint and its union is R.
Such decompositions of the real line R are used in measure theory to show the
nonexistence of a certain type of measure.

Recall that a subset A of R possesses the Baire property if and only if there is
an open set O and two meager sets M, N such that A = (O \M) ∪N . Note that
the Vitali sets do not possess the Baire property. This can be easily seen from the
following known properties of Vitali sets:
(A) each Vitali set is not meager;
(B) each Vitali set does not contain the set O \M for any non-empty open subset

O of R and any meager set M .
Really, if a Vitali set S possesses the Baire property then there is an open set

O and two meager sets M, N such that S = (O \M) ∪N . If O = ∅ then S = N ,
i.e. S is meager. But this is impossible by (A). So O 6= ∅ and S ⊃ O \M . However
this inclusion is impossible by (B). Hence S does not possess the Baire property.
The first proof of (B) belongs to Vitali (cf. [2]), another one the reader can find in
Proposition 3.1.

Let us say now that a subset A of R possesses Vitali property if there exist a
non-empty open set O and a meager set M such that A ⊃ O \M .
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We continue with the following question.
For what proper subfamilies F ′ of F do the unions

⋃F ′ not possess the Baire
property (resp. the Vitali property)?

Here we present characterizations for countable union of nonmeager sets of a
hereditarily Lindelöf space R:
(1) to be the union (O\M)∪N , where O is an open set and M, N are meager sets

of R (Theorem 2.1); as a corollary we show that for each non-empty proper
subfamily F ′ of F the union

⋃F ′ does not possess the Baire property (see
Theorem 3.1); and

(2) to have a complement in R which contains the set O \M , where O is a non-
empty open set and M is a meager set of R (Theorem 2.2); as a corollary we
get a characterization of those non-empty proper subfamilies F ′ of F which
unions

⋃F ′ possess the Vitali property (see Theorem 3.2);

1. Preliminary notations

Let R be the real line. For x ∈ R denote by Tx the translation of R by x, i.e.
Tx(y) = y + x for each y ∈ R.

The equivalence relation E on R is defined as follows. For x, y ∈ R, let xEy
if and only if x − y ∈ Q, where Q is the set of rational numbers. Let us denote
the equivalence classes by Eα, α ∈ I. Note that |I| = c. It is evident that for each
α ∈ I and each x ∈ Eα, Eα = Tx(Q). Hence every equivalence class Eα is dense
in R.

A Vitali set here is any subset S of R such that |S ∩ Eα| = 1 for each α ∈ I.
Let S be a Vitali set. For each x ∈ R put Sx = Tx(S). Note that Sx is a

Vitali set. Observe also that S0 = S and Sx2 = Sx2−x1(Sx1) for any x1, x2 ∈ R.
Moreover, if r1, r2 ∈ Q and r1 6= r2 then Sr1 ∩ Sr2 = ∅ and

⋃

r∈Q
Sr = R. (*)

Recall also that a subset A of a topological space R is called meager in R if A is the
union of countably many nowhere dense in R sets, otherwise A is called nonmeager
in R. It is evident that if B ⊂ A ⊂ R then B is meager in R whenever A is meager
in R, and A is nonmeager in R whenever B is nonmeager in R.

Our terminology follows [1] and [2].

2. Countable unions of nonmeager sets in a hereditarily Lindelöf space

Let R be a topological space.

Definition 2.1. Let X be a nonmeager subset in R. Put OX = IntR(ClR(X)).
Note that OX 6= ∅. Define further
X ′ = {x ∈ X ∩OX : there is an open nbd V of x such that V ∩X is meager}
and X ′′ = (X ∩OX) \X ′.
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Lemma 2.1. Let X be a nonmeager set in R. Then the set Y = X ∩ (R \
ClR OX) is nowhere dense in R.

Proof. Since Y ⊂ X (resp. Y ⊂ R \ ClR OX), we have IntR(ClR(Y )) ⊂ OX

(resp. IntR(ClR(Y )) ⊂ R \OX). Hence, IntR(ClR(Y )) = ∅.

Proposiiton 2.1. Let X be a nonmeager set in R and X ′ be Lindelöf. Then

(i) the set X ′ is meager;

(ii) the set X \X ′′ is meager and X ′′ 6= ∅;
(iii) for any open subset V of R such that V ∩X ′′ 6= ∅, the set V ∩X ′′ is nonmeager;

In particular, the set X ′′ = X ′′ ∩R is nonmeager and so OX′′ 6= ∅.

Proof. (i) For each x ∈ X ′ there is an open neighbourhood Vx of x such that
Vx ∩ X is meager. Note that X ′ =

⋃{Vx ∩ X ′ : x ∈ X ′}. Since X ′ is Lindelöff,
there exists a sequence {xi}∞i=1 of points of X ′ such that

⋃{Vx ∩X ′ : x ∈ X ′} =⋃∞
i=1(Vxi ∩X ′). Note that the set Vxi ∩X ′ ⊂ Vxi ∩X is meager for each i. So the

set X ′ is also meager.

(ii) Let us note that X \X ′′ = (X ∩ (R \ClR OX)) ∪ (X ∩BdR OX) ∪X ′ and
each term of the union is meager. Hence, the union X \X ′′ is meager. Since X is
nonmeager, we have X ′′ 6= ∅.

(iii) Since V ∩X ′′ 6= ∅, the set V ∩X = V ∩ (X ′′ ∪ (X \X ′′)) = (V ∩X ′′) ∪
(V ∩ (X \X ′′)) is nonmeager. By (ii) the set V ∩ (X \X ′′) is meager. Hence, the
set (V ∩X ′′) is nonmeager.

Corollary 2.1. Let X be a nonmeager set in R and X ′ be Lindelöf. Then

(i) X ′′ ⊂ ClR(OX′′);

(ii) the set X \OX′′ is meager;

(iii) for any non-empty open subset V of OX′′ the set V ∩X ′′ is nonmeager.

Proof. Let us note that by Proposition 2.1 (iii) the set X ′′ is nonmeager and
OX′′ 6= ∅.

(i) Assume that Y = X ′′ \ ClR(OX′′) = X ′′ ∩ (R \ ClR(OX′′) 6= ∅. It follows
from Lemma 2.1 that the set Y is nowhere dense in R. Observe also that the set
R \ClR(OX′′) is open. Hence by Proposition 2.1 (iii), Y must be nonmeager. This
is a contradiction.

(ii) By (i) we have X ∩ (R \ ClR(OX′′)) ⊂ X \ X ′′. Now it follows from
Proposition 2.1 (ii) that X ∩ (R \ClR(OX′′)) is meager. Hence, the set X \OX′′ =
(X ∩ (R \ ClR(OX′′))) ∪ (X ∩ BdR(OX′′)) is also meager.

(iii) Since V ∩ X ′′ 6= ∅, it follows from Proposition 2.1 (iii) that V ∩ X ′′ is
nonmeager.

Theorem 2.1. Let R be a hereditarily Lindelöf topological space, A be a non-
empty set with |A| ≤ ℵ0 and X(α) be nonmeager in R for each α ∈ A. Then the
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set U =
⋃{(X(α)) : α ∈ A} is equal to the union (O \M) ∪N for some open set

O and some meager sets M,N iff OX′′(α) \ U is meager for each α ∈ A.

Proof. “⇒”. Let us assume that U = (O \M) ∪ N for some open set O and
some meager sets M,N , and the set A(α∗) = OX′′(α∗) \ U is nonmeager for some
α∗ ∈ A. Since U is a nonmeager set, we have O 6= ∅.

It follows from Proposition 2.1 (iii) that A′′(α∗) is nonmeager and so the
set V = OA′′(α∗) is non-empty. Since A′′(α∗) ⊂ A(α∗) ⊂ OX′′(α∗), we have
V = IntR(ClR(A′′(α∗))) ⊂ IntR(ClR(OX′′(α∗)). But IntR(ClR(OX′′(α∗))) =
IntR(ClR(IntR(ClR(X ′′(α∗))))) = IntR(ClR(X ′′(α∗))) = OX′′(α∗). So we get that
V ⊂ OX′′(α∗). It follows from Corollary 2.1 (iii) that the set X ′′(α∗) ∩ V is non-
meager.

Put W = O ∩ V . Note that W 6= ∅. Really, if O ∩ V = ∅ then we have that
X ′′(α∗) ∩ V ⊂ X(α∗) ∩ V ⊂ U ∩ V = ((O \M) ∪N) ∩ V ⊂ N . Recall that the set
N is meager and the set X ′′(α∗) ∩ V is nonmeager. This is a contradiction.

Since W is a non-empty subset of V , it follows from Corollary 2.1 (iii) that the
set A′′(α∗)∩W is nonmeager. Note that A′′(α∗) ⊂ A(α∗) ⊂ R \U and W ⊂ O. So
A′′(α∗) ∩W ⊂ O \ U = O \ ((O \M) ∪N) ⊂ M . Recall that the set M is meager.
Consequently, the set A′′(α∗) ∩ W is also meager. This is again a contradiction.
The necessity is proved.

“⇐”. Let us put O =
⋃{OX′′(α) : α ∈ A}, M =

⋃{OX′′(α) \ U : α ∈ A}
and N =

⋃{X(α) \ OX′′(α) : α ∈ A}. Note that the set O is non-empty, open
and M,N are meager sets (see Corollary 2.1 (ii) for N). Observe also that U =
U ∩ R = (U ∩ O) ∪ ((R \ O) ∩ U), U ∩ O = O \ (O \ U), M1 = O \ U ⊂ M ,
N1 = (R \ O) ∩ U ⊂ N . Thus U = (O \M1) ∪N1, where the set O is non-empty
and open, and the sets M1, N1 are meager. The sufficiency is also proved.

Theorem 3.2. Let R be a hereditarily Lindelöf topological space, A be a non-
empty set with |A| ≤ ℵ0 and X(α) be nonmeager in R for each α ∈ A. Then the
set R \ (

⋃{(X(α)) : α ∈ A}) contains the difference O \ M for some non-empty
open set O and some meager set M if and only if ClR(

⋃{X ′′(α) : α ∈ A}) 6= R.

Proof. Let us put U =
⋃{(X(α)) : α ∈ A}.

“⇒”. Assume that R\U contains the set O\M , where O is a non-empty open
subset of R and M is a meager set.

So
⋃{X(α) ∩O : α ∈ A} = (

⋃{X(α) : α ∈ A}) ∩O = U ∩O ⊂ M . Note that
for each α ∈ A we have X ′′(α) ∩ O ⊂ X(α) ∩ O ⊂ U ∩ O. Since M is meager, for
each α ∈ A the set X ′′(α) ∩ O must be meager. But it follows from Proposition
2.1 (iii) that

⋃{X ′′(α) ∩O : α ∈ A} = (
⋃{X ′′(α) : α ∈ A}) ∩O = ∅.

So ClR(
⋃{X ′′(α) : α ∈ A}) 6= R. The necessity is proved.

“⇐”. Note that
R \U = R \ ⋃{X(α) : α ∈ A} = R \ ⋃{X ′′(α)

⋃
(X(α)\X ′′(α)) : α ∈ A} =

R \ ((
⋃{X ′′(α) : α ∈ A}) ∪ (

⋃{X(α) \X ′′(α) : α ∈ A})) =
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(R \ ⋃{X ′′(α) : α ∈ A}) \⋃{X(α) \X ′′(α) : α ∈ A} ⊃
(R \ ClR(

⋃{X ′′(α) : α ∈ A})) \⋃{X(α) \X ′′(α) : α ∈ A}.
Since ClR(

⋃{X ′′(α) : α ∈ A}) 6= R, the set O = R \ ClR(
⋃{X ′′(α) : α ∈

A}) 6= ∅. Put M =
⋃{X \X ′′(α) : α ∈ A}. Since |A| ≤ ℵ0 and for each α ∈ A the

set X \X ′′(α) is meager (see Proposition 2.1 (ii)), we have that even M is meager.
Moreover, R \ U ⊃ O \M . The sufficiency is also proved.

3. Unions of Vitali sets and the Vitali (resp. Baire) property

Proposition 3.1. Let S(i) be a Vitali set for each i ≤ n, where n is some
integer ≥ 1. Then

⋃n
i=1 S(i) does not possess the Vitali property. (Hence

⋃n
i=1 S(i)

does not possess the Baire property.)

Proof. Put U =
⋃n

i=1 S(i). Assume that there is a non-empty open set O and
a meager set M such that U ⊃ O \M . Since O 6= ∅ and U consists of finitely many
Vitali sets, Eα ∩ (O \ U) 6= ∅ for each α ∈ I. So we can find a Vitali set S such
that S ⊂ O and S ∩ U = ∅. Hence S ⊂ M . Note that S is nonmeager and M is
meager. This is a contradiction.

Remark 3.1. Since equality (∗) is valid, Proposition 3.1 can not be extended
in general onto countable unions. However we can prove the following statement.

Theorem 3.1. If S is a Vitali set and A is a non-empty proper subset of Q
then the set U(S,A) =

⋃{Sr : r ∈ A} does not possess the Baire property.

Proof. Put V = IntR(ClR S′′) and Vr = Tr(V ) for each r ∈ Q. Note that
Vr = IntR(ClR(Sr)′′) for each r ∈ Q. Recall that V 6= ∅ (see Proposition 2.1 (iii))
and hence Vr 6= ∅ for each r ∈ Q.

Assume that U(S,A) possesses the Baire property.
Claim. For any r1 ∈ A and r2 ∈ Q \ A we have Vr1 ∩ Vr2 = ∅.
Proof. Suppose that W = Vr1 ∩ Vr2 6= ∅. Since W is a non-empty open subset

of Vr2 it follows from Corollary 2.1 (iii) that the set W ∩ (Sr2)
′′ is nonmeager. Note

also that W ∩ (Sr2)
′′ ⊂ Vr1 ∩ Sr2 ⊂ Vr1 \ U(S,A). Hence by Theorem 2.1 the set

U(S,A) does not possess the Baire property. This is a contradiction. So W = ∅.
The claim is proved.

We continue with the proof of the theorem. It follows from the claim that
(
⋃{Vr1 : r1 ∈ A}) ∩ (

⋃{Vr2 : r2 ∈ Q \ A}) = ∅. But the family {Vr : r ∈ Q} is
evidently an open cover of R. Thus we have a contradiction with the connectedness
of R. The theorem is proved.

Theorem 3.2. If S is a Vitali set and A is a non-empty proper subset of Q
then the set

⋃{Sr : r ∈ A} possesses the Vitali property if and only if ClR(
⋃{(Sr)′′ :

r ∈ Q \ A}) 6= R.

Proof. Note that
⋃{Sr : r ∈ A} = R \ ⋃{Sr : r ∈ Q \ A}. Apply then

Theorem 2.2.
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4. Concluding remarks

Some of our results can be considered as particular answers to the following
general problem: Let G be a topological group acting on a topological space X.
Assume that A ⊂ G, B ⊂ X, and let P be a topological property. For what A,B
does A ·B possess (or not possess) the property P?

Really, in this paper we have studied the additive group G = R of the real
numbers acting on the real line X = R by the natural way: x · y = x + y, where
x ∈ G and y ∈ X, and the Baire property (respectively, the Vitali property). It is
easy to see that some of our results can be rewritten as follows.
(a) If A is finite and B is the union of finitely many Vitali sets then A · B does

not possess the Baire property (respectively, the Vitali property) (Proposition
3.1);

(b) if A is a non-empty proper subset of Q and B is a Vitali set then A · B does
not possess the Baire property (Theorem 3.1);

(c) if A is a non-empty proper subset of Q and B is a Vitali set then A ·B possess
the Vitali property iff ClR(

⋃{(r ·B)′′ : r ∈ Q \ A}) 6= R (Theorem 3.2).
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