ON THE EXISTENCE OF BOUNDED CONTINUOUS SOLUTION OF HAMMERSTEIN INTEGRAL EQUATION

Azzeddine Bellour

Abstract. In this paper, we establish the existence of bounded continuous solutions over any measurable subset of \mathbb{R}^n of some nonlinear integral equations. Our method is based on fixed point theorems.

1. Introduction

Nonlinear integral equations (NIE) have been studied by many authors in the literature; see [1-3]. In this paper, we are interested in the study of the existence of continuous solutions of the following Hammerstein integral equation,

$$y(t) = u(t, y(t)) + \int_{\Omega} k(t, s) F(s, y(s)) \, ds, \quad t \in \Omega$$

$$(1.1)$$

where, $u(.,.), F(.,.) : \Omega \times \mathbf{R} \to k(.,.) : \Omega \times \Omega \to \mathbf{R}$ are given functions, and Ω is a measurable set in $\mathbf{R}^n, n \ge 1$, and $y(.) : \Omega \to \mathbf{R}$ is an unknown function on Ω . We use the following notations:

$$C_a(\Omega) = \{ f \in (\Omega), \text{ such that } \|f\|_{\infty} \le a \}$$

we consider the space $L^1(\Omega)$ with the norm $||f(.)||_1 = \int_{\Omega} |f(t)| dt < \infty$, and the space $L^{\infty}(\Omega)$ with the norm $||f||_{\infty} = \text{ess sup}_{t \in \Omega} |f(t)| < \infty$. $\lambda(\Omega)$ is the Lebesgue measure of Ω .

In the first part of this work, we use some generalized Lipschitzian conditions on the functions u(.,.), F(.,.), and we require that k(.,.) be bounded by a measurable function in L_1 -space. Then, we use Banach's fixed point theorem and prove the existence as well as the uniqueness of a bounded solution belonging to $C(\Omega)$.

In the second part, we change the conditions on u(.,.), k(.,.), F(.,.), we assume that u(t, x) is independent of x, and we consider two cases of Ω ; in both cases, we prove the existence of a bounded solution belonging to $C(\Omega)$. Moreover, in Case 2, Ω is compact, and we use Schauder's fixed point theorem.

In the third part, we give an application to a two point boundary value problem.

²⁰¹⁰ AMS Subject Classification: 45N05, 47J05.

Keywords and phrases: Hammerstein integral equations; fixed point theorems.

2. Existence and uniqueness of bounded continuous solution

THEOREM 1. Suppose that the functions u(.,.), k(.,.), F(.,.) satisfy the following generalized Lipschitzian conditions:

1. u(.,.) is continuous on $\Omega \times \mathbf{R}$, u(t,0) is bounded on Ω , and u(.,.) satisfies

$$|u(t,x) - u(t,y)| \le b_1(t) |x - y|,$$

where, $b_1 \in L^{\infty}(\Omega)$.

2. F(.,.) is measurable on $\Omega \times \mathbf{R}$, $F(.,0) \in L^{\infty}(\Omega)$, and F(.,.) satisfies

$$|F(t,x) - F(t,y)| \le b_2(t) |x - y|,$$

where, $b_2: \Omega \to \mathbf{R}^+$ is a measurable function.

3. k(.,.) is continuous at the first variable, and there exists $g \in L^1(\Omega)$ such that for all $t \in \Omega$, $|k(t,s)| \leq g(s)$ a.e.

4. $b = ||b_1||_{\infty} + \int_{\Omega} g(s)b_2(s) \, ds < 1.$

Then the Hammerstein integral equation (1.1) has a unique bounded solution in $C(\Omega)$.

Proof. Let $a = \frac{\|u(t,0)\|_{\infty} + \int_{\Omega} g(s)F(s,0)ds}{1-b}$, and define the operator T from $C_a(\Omega)$ into itself as follows:

$$Ty(t) = u(t, y(t)) + \int_{\Omega} k(t, s) F(s, y(s)) \, ds, \quad t \in \Omega$$

Claim 1: The operator T is well defined. Let $y \in C_a(\Omega)$; then we have that u(t, y(t)) is continuous on Ω . Next, let (t_n) be a sequence in Ω converging to t. Since,

$$\begin{split} \left| \int_{\Omega} k(t_n, s) F(s, y(s)) \, ds - \int_{\Omega} k(t, s) F(s, y(s)) \, ds \right| \\ & \leq \int_{\Omega} \left| k(t_n, s) - k(t, s) \right| \left| ab_2(s) + F(s, 0) \right| \, ds, \end{split}$$

and by Lebesgue's Dominated Convergence Theorem, we have,

$$\lim_{t_n \to t} \int_{\Omega} |k(t_n, s) - k(t, s)| |ab_2(s) + F(s, 0)| \, ds = 0.$$

Then the function $\int_{\Omega} k(.,s)F(s,y(s))ds$ is continuous on Ω , and so Ty(.) is continuous on Ω . Moreover, for $y(.) \in C_a(\Omega)$, we have for all $t \in \Omega$,

$$|Ty(t)| \le |u(t, y(t))| + \left| \int_{\Omega} k(t, s) F(s, y(s)) \, ds \right|$$

$$\le |u(t, 0)| + b_1(t) \, |y(t)| + \int_{\Omega} g(s) \, |F(s, 0)| \, ds + \int_{\Omega} g(s) b_2(s) \, |y(s)| \, ds \le a.$$

Then, T is well defined.

Bounded continuous solution of Hammerstein integral equation

Claim 2: T is a contraction mapping on the Banach space $(C_a(\Omega), \|.\|_{\infty})$. Let, $x(.), y(.) \in C_a(\Omega)$. We have,

$$|Tx(t) - Ty(t)| \le |u(t, x(t)) - u(t, y(t))| + \left| \int_{\Omega} k(t, s)(F(s, x(s)) - F(s, y(s))) \, ds \right|$$

$$\le b_1(t) \, ||x - y||_{\infty} + ||x - y||_{\infty} \int_{\Omega} g(s)b_2(s) \, ds \le b \, ||x - y||_{\infty} \, .$$

Then by Banach's fixed point theorem, the integral equation (1.1) has a unique bounded solution $y(.) \in C(\Omega)$.

EXAMPLE 1. Consider the following Hammerstein integral equation:

$$y(t) = h(t) + \int_0^\infty \frac{\ln(1+y^2(s))}{(1+s^2)(\alpha+t)} \, ds, \ t \in [0,\infty)$$
(2.1)

where, h(.) is a bounded continuous function on $[0, \infty)$, and α is a positive number. Let $k(t,s) = \frac{1}{(1+s^2)(\alpha+t)}$, $F(t,s) = \ln(1+y^2(s))$, hence by using the notations of Theorem 1, we have $b_1(t) = 0$, $b_2(t) = 1$, $g(s) = \frac{1}{\alpha(1+s^2)}$. Then by Theorem 1, we conclude that the Hammerstein integral equation (2.1) has a unique bounded solution $y_{\alpha}(.) \in C([0,\infty))$ if $\alpha > \frac{\pi}{2}$.

3. Existence of bounded continuous solution

In the following, we assume that u(t, x) = v(t) in Equation (1.1).

THEOREM 2. Suppose that the functions v(.), k(.,.), F(.,.) satisfy the following conditions:

1. v(.) is bounded and continuous on Ω ,

2. F(.,.) is a measurable function, continuous at the second variable, and satisfies one of the following two conditions:

(i) F(., .) is nonincreasing at the second variable, or

(ii) F(., .) is nondecreasing at the second variable, and for all $t \in \Omega$,

$$v(t) + \int_{\Omega} k(t,s) F(s,0) \, ds \ge 0$$

Moreover F satisfies

$$|F(t,x)| \leq b_1(t)b_2(x), \text{ fo all } (t,x) \in \Omega \times \mathbf{R},$$

where, $b_1: \Omega \to \mathbf{R}$ and $b_2: \mathbf{R} \to \mathbf{R}_+$ are measurable functions.

3. k(.,.) is a nonnegative measurable function and continuous at the first variable; moreover there exists $g \in L^1(\Omega)$ such that for all $t \in \Omega$, $k(t,s)b_1(s) \leq g(s)$ a.e.,

4. there exists a > 0 satisfying $||v||_{\infty} + ||g||_1 \sup_{t \in [0,a]} b_2(t) \le a$.

Then the Hammerstein integral equation (1.1) has a bounded solution in $C(\Omega)$.

Proof. Define inductively the sequence $y_{n+1}(t) = Ty_n(t), n \in \mathbf{N}, t \in \Omega$ such that

 $y_0(t) = \begin{cases} a, & \text{if } F(.,.) \text{ is nonincreasing at the second variable,} \\ 0, & \text{if } F(.,.) \text{ is nondecreasing at the second variable,} \end{cases}$

A. Bellour

where the operator T is defined from $C_a(\Omega)$ into itself as follows:

$$Ty(t) = v(t) + \int_{\Omega} k(t,s)F(s,y(s)) \, ds.$$

We have, similar to Theorem 1, that operator T is well defined, hence the sequence $\{y_n(t)\}$ is well defined, and by induction, the sequence $\{y_n(t)\}$ is either nonincreasing for all $t \in \Omega$, or nondecreasing for all $t \in \Omega$, so, it converges to some $y(t) \in \mathbf{R}$ for all $t \in \Omega$.

Then, by using Lebesgue's Dominated Convergence Theorem, we get,

$$y(t) = v(t) + \lim_{n \to \infty} \int_{\Omega} k(t, s) F(s, y_n(s)) \, ds = v(t) + \int_{\Omega} k(t, s) F(s, y(s)) \, ds,$$

Now, to show that $y(.) \in C_a(\Omega)$, let (t_n) be a sequence converging to t. Then,

$$|y(t_n) - y(t)| \le |v(t_n) - v(t)| + b_2(a) \int_{\Omega} |k(t_n, s) - k(t, s)| b_1(s) \, ds$$

hence by Lebesgue's Dominated Convergence Theorem, we get $y(.) \in C_a(\Omega)$. Then, (1.1) has a bounded solution $y(.) \in C(\Omega)$.

EXAMPLE 2. Consider the Hammerstein integral equation (2.1) in Example 1, such that the function h(.) is nonnegative on $[0, \infty)$, hence for $b_1(t) = 1$, $b_2(t) = \ln(1+t^2)$, $g(t) = \frac{1}{\alpha(1+t^2)}$ in Theorem 2. It can be shown easily that for all $\alpha > 0$ there exists a > 0 such that

$$||h||_{\infty} + \frac{\pi}{2\alpha} \sup_{t \in [0,a]} b_2(t) \le a,$$

then by Theorem 2, we conclude that (2.1) has a bounded solution $y_{\alpha}(.) \in C([0, \infty))$ for all $\alpha > 0$.

In the following, we assume that Ω is compact, and u(t,s) = v(t), for all $(t,x) \in \Omega \times \mathbf{R}$.

In Theorem 3, the main tool in the existence proof of a solution of (1.1) is Schauder's fixed point theorem.

THEOREM 3. Suppose that the functions v(.), k(.,.), F(.,.) satisfy the following conditions:

1. v(.) is continuous on Ω ,

2. F(.,.) is continuous on $\Omega \times \mathbf{R}$, and satisfies:

$$|F(t,x)| \le b_1(t)b_2(x), \text{ for all } (t,x) \in \Omega \times \mathbf{R},$$

where, $b_1 \in L^1(\Omega)$, and $b_2 : \mathbf{R} \to \mathbf{R}_+$ is a measurable function,

3. k(.,.) is bounded on $\Omega \times \Omega$ and continuous at the first variable,

4. there exists a > 0 satisfying $||v||_{\infty} + b \sup_{t \in [0,a]} b_2(t) \le a$, where

$$b = \sup_{t \in \Omega} \int_{\Omega} k(t, s) b_1(s) \, ds$$

Then the Hammerstein integral equation (1.1) has a bounded solution in $C(\Omega)$.

130

Proof. Define the operator T from $C_a(\Omega)$ into itself as follows:

$$y(t)=u(t,y(t))+\int_{\Omega}k(t,s)F(s,y(s))\,ds,\quad t\in\Omega,$$

then, similar to Theorem 1, the operator T is well defined.

The proof is divided into two steps:

Step 1: The operator T is continuous on $(C_a(\Omega), \|.\|_{\infty})$. Let $\{y_n(.)\} \subset C_a(\Omega)$ be a sequence converging to $y(.) \in C_a(\Omega)$. Let $\epsilon > 0$, then, from the uniform continuity of F on $\Omega \times [-a, a]$, there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$,

$$\sup_{t\in\Omega} |F(t, y_n(t)) - F(t, y(t))| \le \frac{\epsilon}{\left(1 + \lambda\left(\Omega\right) \sup_{t,s\in\Omega} |k(t,s)|\right)}$$

Hence, for all $n \ge n_0$, and for all $t \in \Omega$, we have:

$$|Ty_n(t) - Ty(t)| \le \sup_{t,s \in \Omega} |k(t,s)| \int_{\Omega} |F(s,y_n(s)) - F(s,y(s))| \, ds \le \epsilon,$$

and $Ty_n(.)$ converges to Ty(.) in $(C_a(\Omega), \|.\|_{\infty})$, and the operator T is continuous.

Step 2: T is totally bounded, by Ascoli-Arzelà's theorem, and we need only to prove that $F = \{T \ y; \ y \in C_a(\Omega)\}$ is equicontinuous. Let $y \in C_a(\Omega)$, and let $t, l \in \Omega$. We have

$$|Ty(t) - Ty(l)| \le |v(t) - v(l)| + \sup_{x \in [0, a]} b_2(x) \int_{\Omega} |k(t, s) - k(l, s)| b_1(s) \, ds,$$

so, for each $\epsilon > 0$, there exists $\delta > 0$ such that if $t, l \in \Omega$ with $|t - l| < \delta$, then $|Ty(t) - Ty(l)| < \epsilon$ for all $y \in C_a(\Omega)$. Then F is equicontinuous, and the proof of Theorem 5 follows from Schauder's fixed point theorem.

REMARK 1. It is obvious that if b_2 is bounded in Theorem 2 (Theorem 3), then the condition 4 in Theorem 2 (Theorem 3) holds.

4. Application

Theorem 1, and Theorem 3 immediately yield existence results for two point boundary values problem:

$$\begin{cases} -y^{''}(t) = F(t, y(t)) \text{ on } [0, T] \\ y(0) = \alpha, \ y(T) = \beta \end{cases}, \ y \in C^2([0, T]). \tag{4.1}$$

This problem can be written as a Hammerstein integral equation:

$$y(t) = h(t) + \int_0^T k(t,s)F(s,y(s))\,ds, \quad y \in C([0,T]),$$

where $h(t) = \alpha + \frac{(\beta-\alpha)}{T}t$, and $k(t,s) = \begin{cases} \frac{(T-t)}{T}s, & 0 \le s \le t \le T\\ \frac{(T-s)}{T}t, & 0 \le t \le s \le T. \end{cases}$

The following result is directly yielded by applying Theorem 1.

A. Bellour

THEOREM 4. Suppose that F is measurable on $[0,T] \times \mathbf{R}$, F(t,0) is bounded on [0,T] and F satisfies,

$$F(t,x) - F(t,y) \le b_2(t) |x - y|,$$

where $b_2: [0,T] \to \mathbf{R}^+$ is a measurable function, and satisfies:

$$\int_0^T (T-s)s \ b_2(s) \, ds \le T$$

Then (4.1) has a unique solution in $C^2([0,T])$.

Also, by applying Theorem 3, the following result takes place:

THEOREM 5. Suppose that

(i) F is continuous on $[0,T] \times \mathbf{R}$, such that

$$|F(t,x)| \le b_1(t)b_2(x), \text{ for all } (t,x) \in [0,T] \times \mathbf{R}$$

where $b_1 : [0,T] \to \mathbf{R}_+$ and $b_2 : \mathbf{R} \to \mathbf{R}_+$ are measurable functions such that $\|b_1\|_{\infty} < \infty$

(ii) there exists c > 0 such that $\max\{|\alpha|, |\beta|\} + \frac{T^2 ||b_1||_{\infty}}{8} \sup_{t \in [a,c]} b_2(t) \le c$. Then (4.1) has a solution in $C^2([0,T])$.

As a special case, if F(t, x) = f(t) for all $(t, x) \in [0, T] \times \mathbf{R}$, then, we have the following result:

COROLLARY 1. Suppose that

(i) $f:[0,T] \to \mathbf{R}$ is continuous,

$$|F(t,x)| \leq b_1(t)b_2(x), \text{ for all } (t,x) \in [0,T] \times \mathbf{R}$$

where $b_1 : [0,T] \to \mathbf{R}_+$ and $b_2 : \mathbf{R} \to \mathbf{R}_+$ are measurable functions such that $\|b_1\|_{\infty} < \infty$,

(ii) there exists c > 0 such that $\max\{|\alpha|, |\beta|\} + \frac{T^2}{8} \sup_{t \in [a,c]} f(t) \le c$.

Then (4.1) has a solution in $C^2([0,T])$.

REFERENCES

- J. Banas, Z. Knap, Integrable solutions of a functional-integral equation, Revista Mat. de la Univ. omplutense de Madrid 2 (1989), 31–38.
- [2] G. Emmanuele, An existence theorem for Hammerstein integral equations, Portug. Math. 51 (1994), 607–611.
- [3] A.H. Marc, R. Precup, Nonnegative solutions of nonlinear integral equations in ordered Banach spaces, Fixed Point Theory 5 (2004), 65–70.
- [4] E. Zeidler, Nonlinear Functional Analysis and its Applications, Springer-Verlag, 1991.

(received 03.05.2010; in revised form 25.09.2010)

Department of Mathematics, Ecole Normale Superieure de Constantine, Constantine-Algeria *E-mail*: bellourazze123@yahoo.com

132