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ON THE EXISTENCE OF BOUNDED CONTINUOUS SOLUTION
OF HAMMERSTEIN INTEGRAL EQUATION

Azzeddine Bellour

Abstract. In this paper, we establish the existence of bounded continuous solutions over
any measurable subset of Rn of some nonlinear integral equations. Our method is based on fixed
point theorems.

1. Introduction

Nonlinear integral equations (NIE) have been studied by many authors in the
literature; see [1–3]. In this paper, we are interested in the study of the existence
of continuous solutions of the following Hammerstein integral equation,

y(t) = u(t, y(t)) +
∫

Ω

k(t, s)F (s, y(s)) ds, t ∈ Ω (1.1)

where, u(., .), F (., .) : Ω×R →, k(., .) : Ω×Ω → R are given functions, and Ω is a
measurable set in Rn, n ≥ 1, and y(.) : Ω → R is an unknown function on Ω. We
use the following notations:

Ca(Ω) = {f ∈ (Ω), such that ‖f‖∞ ≤ a} ,

we consider the space L1(Ω) with the norm ‖f(.)‖1 =
∫
Ω
|f(t)| dt < ∞, and the

space L∞(Ω) with the norm ‖f‖∞ = ess supt∈Ω |f(t)| < ∞. λ(Ω) is the Lebesgue
measure of Ω.

In the first part of this work, we use some generalized Lipschitzian conditions on
the functions u(., .), F (., .), and we require that k(., .) be bounded by a measurable
function in L1-space. Then, we use Banach’s fixed point theorem and prove the
existence as well as the uniqueness of a bounded solution belonging to C(Ω).

In the second part, we change the conditions on u(., .), k(., .), F (., .), we assume
that u(t, x) is independent of x, and we consider two cases of Ω; in both cases, we
prove the existence of a bounded solution belonging to C(Ω). Moreover, in Case 2,
Ω is compact, and we use Schauder’s fixed point theorem.

In the third part, we give an application to a two point boundary value problem.
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2. Existence and uniqueness of bounded continuous solution

Theorem 1. Suppose that the functions u(., .), k(., .), F (., .) satisfy the fol-
lowing generalized Lipschitzian conditions:

1. u(., .) is continuous on Ω×R, u(t, 0) is bounded on Ω, and u(., .) satisfies

|u(t, x)− u(t, y)| ≤ b1(t) |x− y| ,
where, b1 ∈ L∞(Ω).

2. F (., .) is measurable on Ω×R, F (., 0) ∈ L∞(Ω), and F (., .) satisfies

|F (t, x)− F (t, y)| ≤ b2(t) |x− y| ,
where, b2 : Ω → R+ is a measurable function.

3. k(., .) is continuous at the first variable, and there exists g ∈ L1(Ω) such
that for all t ∈ Ω, |k(t, s)| ≤ g(s) a.e.

4. b = ‖b1‖∞ +
∫
Ω

g(s)b2(s) ds < 1.

Then the Hammerstein integral equation (1.1) has a unique bounded solution
in C(Ω).

Proof. Let a =
‖u(t,0)‖∞+

∫
Ω

g(s)F (s,0)ds

1−b , and define the operator T from Ca(Ω)
into itself as follows:

Ty(t) = u(t, y(t)) +
∫

Ω

k(t, s)F (s, y(s)) ds, t ∈ Ω

Claim 1: The operator T is well defined. Let y ∈ Ca(Ω); then we have that
u(t, y(t)) is continuous on Ω. Next, let (tn) be a sequence in Ω converging to t.
Since,

∣∣∣∣
∫

Ω

k(tn, s)F (s, y(s)) ds−
∫

Ω

k(t, s)F (s, y(s)) ds

∣∣∣∣

≤
∫

Ω

|k(tn, s)− k(t, s)| |ab2(s) + F (s, 0)| ds,

and by Lebesgue’s Dominated Convergence Theorem, we have,

lim
tn→t

∫

Ω

|k(tn, s)− k(t, s)| |ab2(s) + F (s, 0)| ds = 0.

Then the function
∫
Ω

k(., s)F (s, y(s))ds is continuous on Ω, and so Ty(.) is contin-
uous on Ω. Moreover, for y(.) ∈ Ca(Ω), we have for all t ∈ Ω,

|Ty(t)| ≤ |u(t, y(t))|+
∣∣∣∣
∫

Ω

k(t, s)F (s, y(s)) ds

∣∣∣∣

≤ |u(t, 0)|+ b1(t) |y(t)|+
∫

Ω

g(s) |F (s, 0)| ds +
∫

Ω

g(s)b2(s) |y(s)| ds ≤ a.

Then, T is well defined.
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Claim 2: T is a contraction mapping on the Banach space (Ca(Ω), ‖.‖∞). Let,
x(.), y(.) ∈ Ca(Ω). We have,

|Tx(t)− Ty(t)| ≤ |u(t, x(t))− u(t, y(t))|+
∣∣∣∣
∫

Ω

k(t, s)(F (s, x(s))− F (s, y(s))) ds

∣∣∣∣

≤ b1(t) ‖x− y‖∞ + ‖x− y‖∞
∫

Ω

g(s)b2(s) ds ≤ b ‖x− y‖∞ .

Then by Banach’s fixed point theorem, the integral equation (1.1) has a unique
bounded solution y(.) ∈ C(Ω).

Example 1. Consider the following Hammerstein integral equation:

y(t) = h(t) +
∫ ∞

0

ln(1 + y2(s))
(1 + s2)(α + t)

ds, t ∈ [0,∞) (2.1)

where, h(.) is a bounded continuous function on [0,∞), and α is a positive number.
Let k(t, s) = 1

(1+s2)(α+t) , F (t, s) = ln(1 + y2(s)), hence by using the notations of
Theorem 1, we have b1(t) = 0, b2(t) = 1, g(s) = 1

α(1+s2) . Then by Theorem 1,
we conclude that the Hammerstein integral equation (2.1) has a unique bounded
solution yα(.) ∈ C([0,∞)) if α > π

2 .

3. Existence of bounded continuous solution

In the following, we assume that u(t, x) = v(t) in Equation (1.1).
Theorem 2. Suppose that the functions v(.), k(., .), F (., .) satisfy the follow-

ing conditions:
1. v(.) is bounded and continuous on Ω,
2. F (., .) is a measurable function, continuous at the second variable, and

satisfies one of the following two conditions:
(i) F(., .) is nonincreasing at the second variable, or
(ii) F(., .) is nondecreasing at the second variable, and for all t ∈ Ω,

v(t) +
∫

Ω

k(t, s)F (s, 0) ds ≥ 0.

Moreover F satisfies
|F (t, x)| ≤ b1(t)b2(x), fo all (t, x) ∈ Ω×R,

where, b1 : Ω → R and b2 : R → R+ are measurable functions.
3. k(., .) is a nonnegative measurable function and continuous at the first

variable; moreover there exists g ∈ L1(Ω) such that for all t ∈ Ω, k(t, s)b1(s) ≤ g(s)
a.e.,

4. there exists a > 0 satisfying ‖v‖∞ + ‖g‖1 supt∈[0,a] b2(t) ≤ a.
Then the Hammerstein integral equation (1.1) has a bounded solution in C(Ω).

Proof. Define inductively the sequence yn+1(t) = Tyn(t), n ∈ N, t ∈ Ω such
that

y0(t) =
{

a, if F (., .) is nonincreasing at the second variable,
0, if F (., .) is nondecreasing at the second variable,
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where the operator T is defined from Ca(Ω) into itself as follows:

Ty(t) = v(t) +
∫

Ω

k(t, s)F (s, y(s)) ds.

We have, similar to Theorem 1, that operator T is well defined, hence the sequence
{yn(t)} is well defined, and by induction, the sequence {yn(t)} is either nonincreas-
ing for all t ∈ Ω, or nondecreasing for all t ∈ Ω, so, it converges to some y(t) ∈ R
for all t ∈ Ω.

Then, by using Lebesgue’s Dominated Convergence Theorem, we get,

y(t) = v(t) + lim
n→∞

∫

Ω

k(t, s)F (s, yn(s)) ds = v(t) +
∫

Ω

k(t, s)F (s, y(s)) ds,

Now, to show that y(.) ∈ Ca(Ω), let (tn) be a sequence converging to t. Then,

|y(tn)− y(t)| ≤ |v(tn)− v(t)|+ b2(a)
∫

Ω

|k(tn, s)− k(t, s)| b1(s) ds,

hence by Lebesgue’s Dominated Convergence Theorem, we get y(.) ∈ Ca(Ω). Then,
(1.1) has a bounded solution y(.) ∈ C(Ω).

Example 2. Consider the Hammerstein integral equation (2.1) in Example 1,
such that the function h(.) is nonnegative on [0,∞), hence for b1(t) = 1, b2(t) =
ln(1 + t2), g(t) = 1

α(1+t2) in Theorem 2. It can be shown easily that for all α > 0
there exists a > 0 such that

‖h‖∞ +
π

2α
sup

t∈[0,a]

b2(t) ≤ a,

then by Theorem 2, we conclude that (2.1) has a bounded solution yα(.) ∈ C([0,∞))
for all α > 0.

In the following, we assume that Ω is compact, and u(t, s) = v(t), for all
(t, x) ∈ Ω×R.

In Theorem 3, the main tool in the existence proof of a solution of (1.1) is
Schauder’s fixed point theorem.

Theorem 3. Suppose that the functions v(.), k(., .), F (., .) satisfy the follow-
ing conditions:

1. v(.) is continuous on Ω,
2. F (., .) is continuous on Ω×R, and satisfies:

|F (t, x)| ≤ b1(t)b2(x), for all (t, x) ∈ Ω×R,

where, b1 ∈ L1(Ω), and b2 : R → R+ is a measurable function,
3. k(., .) is bounded on Ω× Ω and continuous at the first variable,
4. there exists a > 0 satisfying ‖v‖∞ + b supt∈[0,a] b2(t) ≤ a, where

b = sup
t∈Ω

∫

Ω

k(t, s)b1(s) ds.

Then the Hammerstein integral equation (1.1) has a bounded solution in C(Ω).
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Proof. Define the operator T from Ca(Ω) into itself as follows:

y(t) = u(t, y(t)) +
∫

Ω

k(t, s)F (s, y(s)) ds, t ∈ Ω,

then, similar to Theorem 1, the operator T is well defined.
The proof is divided into two steps:
Step 1: The operator T is continuous on (Ca(Ω), ‖.‖∞). Let {yn(.)} ⊂ Ca(Ω)

be a sequence converging to y(.) ∈ Ca(Ω). Let ε > 0, then, from the uniform
continuity of F on Ω× [−a, a], there exists n0 ∈ N such that for all n ≥ n0,

sup
t∈Ω

|F (t, yn(t))− F (t, y(t))| ≤ ε(
1 + λ (Ω) supt,s∈Ω |k(t, s)|) .

Hence, for all n ≥ n0, and for all t ∈ Ω, we have:

|Tyn(t)− Ty(t)| ≤ sup
t,s∈Ω

|k(t, s)|
∫

Ω

|F (s, yn(s))− F (s, y(s))| ds ≤ ε,

and Tyn(.) converges to Ty(.) in (Ca(Ω), ‖.‖∞), and the operator T is continuous.
Step 2: T is totally bounded, by Ascoli-Arzelà’s theorem, and we need only

to prove that F = {T y; y ∈ Ca(Ω)} is equicontinuous. Let y ∈ Ca(Ω), and let
t, l ∈ Ω. We have

|Ty(t)− Ty(l)| ≤ |v(t)− v(l)|+ sup
x∈[0, a]

b2(x)
∫

Ω

|k(t, s)− k(l, s)| b1(s) ds,

so, for each ε > 0, there exists δ > 0 such that if t, l ∈ Ω with |t − l| < δ, then
|Ty(t)− Ty(l)| < ε for all y ∈ Ca(Ω). Then F is equicontinuous, and the proof of
Theorem 5 follows from Schauder’s fixed point theorem.

Remark 1. It is obvious that if b2 is bounded in Theorem 2 (Theorem 3),
then the condition 4 in Theorem 2 (Theorem 3) holds.

4. Application

Theorem 1, and Theorem 3 immediately yield existence results for two point
boundary values problem:

{
− y

′′
(t) = F (t, y(t)) on [0, T ]

y(0) = α, y(T ) = β
, y ∈ C2([0, T ]). (4.1)

This problem can be written as a Hammerstein integral equation:

y(t) = h(t) +
∫ T

0

k(t, s)F (s, y(s)) ds, y ∈ C([0, T ]),

where h(t) = α + (β−α)
T t, and k(t, s) =

{
(T−t)

T s, 0 ≤ s ≤ t ≤ T

(T−s)
T t, 0 ≤ t ≤ s ≤ T.

The following result is directly yielded by applying Theorem 1.
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Theorem 4. Suppose that F is measurable on [0, T ] ×R, F (t, 0) is bounded
on [0, T ] and F satisfies,

|F (t, x)− F (t, y)| ≤ b2(t) |x− y| ,
where b2 : [0, T ] → R+ is a measurable function, and satisfies:

∫ T

0

(T − s)s b2(s) ds ≤ T

Then (4.1) has a unique solution in C2([0, T ]).

Also, by applying Theorem 3, the following result takes place:

Theorem 5. Suppose that
(i) F is continuous on [0, T ]×R, such that

|F (t, x)| ≤ b1(t)b2(x), for all (t, x) ∈ [0, T ]×R

where b1 : [0, T ] → R+ and b2 : R → R+ are measurable functions such that
‖b1‖ ,∞< ∞

(ii) there exists c > 0 such that max {|α| , |β|}+ T 2‖b1‖∞
8 supt∈[a,c] b2(t) ≤ c.

Then (4.1) has a solution in C2([0, T ]).

As a special case, if F (t, x) = f(t) for all (t, x) ∈ [0, T ]×R, then, we have the
following result:

Corollary 1. Suppose that
(i) f : [0, T ] → R is continuous,

|F (t, x)| ≤ b1(t)b2(x), for all (t, x) ∈ [0, T ]×R

where b1 : [0, T ] → R+ and b2 : R → R+ are measurable functions such that
‖b1‖∞ < ∞,

(ii) there exists c > 0 such that max {|α| , |β|}+ T 2

8 supt∈[a,c] f(t) ≤ c.

Then (4.1) has a solution in C2([0, T ]).
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