RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE WITH VARYING ARGUMENTS

N. Ravikumar and S. Latha

Abstract

In this paper, we define the subclasses $\mathcal{V}_{\delta}(A, B)$ and $\mathcal{K}_{\delta}(A, B)$ of analytic functions by using $\Omega^{\delta} f(z)$. For functions belonging to these classes, we obtain coefficient estimates, distortion bounds and many more properties.

1. Introduction

Let \mathcal{A} denote the class of all analytic functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m} \tag{1.1}
\end{equation*}
$$

defined in the unit $\operatorname{disc} \mathcal{U}=\{z:|z|<1\}$. Let \mathcal{N} denote the subclass of \mathcal{A} consisting of functions normalized by $f(0)=0$ and $f^{\prime}(0)=1$ which are univalent in \mathcal{U}.

Silverman [8] defined the class $\mathcal{V}\left(\theta_{m}\right)$ as the class of all functions in \mathcal{N} such that $\arg a_{m}=\theta_{m}$ for all m. If further there exists a real number β such that $\theta_{m}+(m-1) \beta \equiv \pi(\bmod 2 \pi)$, then f is said to be in the class $\mathcal{V}\left(\theta_{m}, \beta\right)$. The union of $\mathcal{V}\left(\theta_{m}, \beta\right)$ taken over all possible sequences $\left\{\theta_{m}\right\}$ and all possible real numbers β is denoted by \mathcal{V}.

The class \mathcal{A} is closed under convolution or Hadamard product

$$
\begin{equation*}
(f * g)(z)=z+\sum_{m=2}^{\infty} a_{m} b_{m} z^{m}, \quad z \in \mathcal{U} \tag{1.2}
\end{equation*}
$$

where f is given by (1.1) and $g(z)=z+\sum_{m=2}^{\infty} b_{m} z^{m}$.
Fractional derivative of order δ of an analytic function f is defined by

$$
D_{z}^{\delta} f(z)=\frac{1}{\Gamma(1-\delta)} \frac{d}{d z} \int_{0}^{z} \frac{f(t)}{(z-t)^{\delta}} d t, \quad 0 \leq \delta \leq 1
$$

2010 AMS Subject Classification: 30C45.
Keywords and phrases: Univalent functions; Komato operator; fractional derivative; linear operator.
f is an analytic function in a simply connected region of the z-plane containing the origin and the multiplicity of $(z-t)^{-\delta}$ is removed by requiring $\log (z-t)$ to be real when $(z-t)$ is greater than 0 . Clearly $f(z)=\lim _{\delta \rightarrow 0} D_{z}^{\delta} f(z)$ and $f^{\prime}(z)=\lim _{\delta \rightarrow 1} D_{z}^{\delta} f(z)$.

For the analytic function f of the form (1.1) we put

$$
\Omega^{\delta} f(z)=\Gamma(2-\delta) z^{\delta} D_{z}^{\delta} f(z)=z+\sum_{m=2}^{\infty} K(m, \delta) a_{m} z^{m}
$$

where $K(m . \delta)=\frac{\Gamma(m+1) \Gamma(2-\delta)}{\Gamma(m+1-\delta)}$.
Now we define the class $\mathcal{V}_{\delta}(A, B)$ consisting of functions $f \in \mathcal{V}$ such that

$$
\begin{equation*}
\frac{z\left(\Omega^{\delta} f(z)\right)^{\prime}}{\Omega^{\delta} f(z)}=\frac{1+A \omega(z)}{1+B \omega(z)}, \quad-1 \leq A<B \leq 1 \tag{1.3}
\end{equation*}
$$

Here $\omega(z)$ is analytic, $\omega(0)=0$ and $|\omega(z)|<1, z \in \mathcal{U}$. The following basic result is well known.

Lemma 1.1 [Schwarz's Lemma] Let ω be analytic with $\omega(0)=0$, and $|\omega(z)|<1$ for $z \in \mathcal{U}$. Then $|\omega(z)|<|z|$. The equality holds if and only if $\omega(z)=\lambda z$, where $|\lambda|=1$.

Let $\mathcal{K}_{\delta}(A, B)$ denote the class of functions $f \in \mathcal{V}$ such that $z f^{\prime} \in \mathcal{V}_{\delta}(A, B)$.

2. Main Results

Theorem 2.1. A function $f \in \mathcal{V}$ is in $\mathcal{V}_{\delta}(A, B)$ if and only if

$$
\begin{equation*}
\sum_{m=2}^{\infty}[(B+1) m-(A+1)] K(m, \delta)\left|a_{m}\right| \leq(B-A) \tag{2.1}
\end{equation*}
$$

where $-1 \leq A<B \leq 1, m \geq 2$.
Proof. Suppose $f \in \mathcal{V}_{\delta}(A, B)$. Then

$$
\frac{z\left(\Omega^{\delta} f(z)\right)^{\prime}}{\Omega_{\delta} f(z)}=\frac{1+A \omega(z)}{1+B \omega(z)}, \quad-1 \leq A<B \leq 1
$$

From this we get,

$$
\omega(z)=\frac{z\left(\Omega^{\delta} f(z)\right)^{\prime}-\Omega^{\delta} f(z)}{\Omega^{\delta} f(z) A-z\left(\Omega^{\delta} f(z)\right)^{\prime} B}
$$

By Schwarz's Lemma, we get

$$
\begin{equation*}
\Re\left\{\frac{\sum_{m=2}^{\infty}(1-m) K(m, \delta) a_{m} z^{m-1}}{(B-A)+\sum_{m=2}^{\infty}(m B-A) K(m, \delta) a_{m} z^{m-1}}\right\}<1 \tag{2.2}
\end{equation*}
$$

Since $f \in \mathcal{V}, f$ lies in $\mathcal{V}\left(\theta_{m}, \beta\right)$ for some sequence $\left\{\theta_{m}\right\}$ and a real number β, such that $\theta_{m}+(m-1) \beta \equiv \pi(\bmod 2 \pi)$. Setting $z=r e^{i \beta}$, we get

$$
\begin{gather*}
\Re\left\{\frac{\sum_{m=2}^{\infty}(1-m) K(m, \delta)\left|a_{m}\right| r^{m-1} e^{i\left(\theta_{m}+\overline{(m-1) \beta}\right)}}{(B-A)+\sum_{m=2}^{\infty}(m B-A)\left|a_{m}\right| r^{m-1} e^{i\left(\theta_{m}+\overline{(m-1) \beta}\right)}}\right\}<1 \tag{2.3}\\
\sum_{m=2}^{\infty}(m-1) K(m, \delta)\left|a_{m}\right| r^{m-1}<(B-A)-\sum_{m=2}^{\infty}(m B-A) K(m, \delta)\left|a_{m}\right| r^{m-1}, \\
 \tag{2.4}\\
\sum_{m=2}^{\infty}\left[(B+1) m-(A+1) K(m, \delta)\left|a_{m}\right| r^{m-1}<(B-A)\right.
\end{gather*}
$$

Letting $r \rightarrow 1$, we get (2.1).
Conversely, suppose $f \in \mathcal{V}$ and satisfies (2.1). In view of (2.4), which is implied by (2.1), since $r^{m-1}<1$, we have

$$
\begin{aligned}
\left|\sum_{m=2}^{\infty}(1-m) K(m, \delta) a_{m} z^{m-1}\right| & \leq \sum_{m=2}^{\infty}(m-1) K(m, \delta)\left|a_{m}\right| r^{m-1} \\
& <(B-A)-\sum_{m=2}^{\infty}(m B-A) K(m, \delta)\left|a_{m}\right| r^{m-1} \\
& \leq\left|(B-A)-\sum_{m=2}^{\infty}(m B-A) K(m, \delta) a_{m} z^{m-1}\right|
\end{aligned}
$$

which gives (2.2) and hence it follows that $f \in \mathcal{V}_{\delta}(A, B)$.
Corollary 2.2. If $f \in \mathcal{V}$ is in $\mathcal{V}_{\delta}(A, B)$ then

$$
\left|a_{m}\right| \leq \frac{(B-A)}{[(B+1) m-(A+1)] K(m, \delta)}, \quad \text { for } \quad m \geq 2, \quad-1 \leq A<B \leq 1
$$

The equality holds for the function f given by

$$
f(z)=z+\frac{(B-A)}{[(B+1) m-(A+1)] K(m, \delta)} e^{i \theta_{m}} z^{m}, \quad z \in \mathcal{U}
$$

For parametric values $a=n+1, c=1$, we get the following result proved by Padmanabhan and Jayamala [4] as corollaries to the above theorem.

Corollary 2.3. Let $f \in \mathcal{V}$. Then $f \in \mathcal{V}_{n}(A, B)$ if and only if

$$
\sum_{m=2}^{\infty} \frac{(n+m-1)!}{(n+1)!(m-1)!} C_{m}\left|a_{m}\right|<(B-A)
$$

where $C_{m}=(B+1)(n+m)-(A+1)(n+1)$.
The equality holds for the function f given by

$$
f(z)=z+\frac{\Gamma(c+m-1) \Gamma(a+1)}{\Gamma(a+m-1) \Gamma(c)} \frac{(B-A)}{D_{m}} e^{i \theta_{m}} z^{m}, \quad z \in \mathcal{U}
$$

THEOREM 2.4. Let $f \in \mathcal{V}$. Then $f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m}$ is in $\mathcal{K}(A, B, a, c)$ if and only if

$$
\sum_{m=2}^{\infty} \frac{\Gamma(a+m-1) \Gamma(c)}{\Gamma(c+m-1) \Gamma(a+1)} m D_{m} a_{m}<B-A
$$

where $D_{m}=[(B+1)(a+m-1)-(A+1) a],-1 \leq A<B \leq 1, a, c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}$.
Now we examine the extreme points of the class $\mathcal{V}(A, B, a, c)$.
Theorem 2.5. Let $f(z) \in \mathcal{V}(A, B, a, c)$ with $\arg a_{m}=\theta_{m}$, where $\left[\theta_{m}+(m-1) \beta\right] \equiv \pi(\bmod 2 \pi)$. Define $f_{1}(z)=z$ and

$$
f_{m}(z)=z+\frac{\Gamma(c+m-1) \Gamma(a+1)}{\Gamma(a+m-1) \Gamma(c)} \frac{(B-A)}{D_{m}} e^{i \theta_{m}} z^{m}, \quad m=2,3, \ldots
$$

$-1 \leq A<B \leq 1, a, c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}, z \in \mathcal{U} . f \in \mathcal{V}(A, B, a, c)$ if and only if f can be expressed as $f(z)=\sum_{m=1}^{\infty} \mu_{m} f_{m}(z)$ where $\mu_{m} \geq 0$ and $\sum_{m=1}^{\infty} \mu_{m}=1$.

Proof. If $f(z)=\sum_{m=1}^{\infty} \mu_{m} f_{m}(z)$ with $\sum_{m=1}^{\infty} \mu_{m}=1, \mu_{m} \geq 0$, then

$$
\begin{aligned}
\sum_{m=2}^{\infty} \frac{\Gamma(a+m-1) \Gamma(c)}{\Gamma(c+m-1) \Gamma(a+1)} D_{m} \mu_{m} \cdot \frac{\Gamma(c+m-1) \Gamma(a+1)}{\Gamma(a+m-1) \Gamma(c)} \frac{(B-A)}{D_{m}} \\
=\sum_{m=2}^{\infty} \mu_{m}(B-A)=\left(1-\mu_{1}\right)(B-A) \leq(B-A)
\end{aligned}
$$

Hence $f \in \mathcal{V}(A, B, a, c)$.
Conversely, let $f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m} \in \mathcal{V}(A, B, a, c)$, define

$$
\mu_{m}=\frac{\Gamma(a+m-1) \Gamma(c)}{\Gamma(c+m-1) \Gamma(a+1)} \frac{\left|a_{m}\right| D_{m}}{(B-A)}, \quad m=2,3, \ldots
$$

and define $\mu_{1}=1-\sum_{m=2}^{\infty} \mu_{m}$. From Theorem 2.1, $\sum_{m=2}^{\infty} \mu_{m} \leq 1$ and so $\mu_{1} \geq 0$. Since $\mu_{m} f_{m}(z)=\mu_{m} f+a_{m} z^{m}, \sum_{m=1}^{\infty} \mu_{m} f_{m}(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m}=f(z)$.

Theorem 2.6. Define $f_{1}(z)=z$ and

$$
f_{m}(z)=z+\frac{\Gamma(c+m-1) \Gamma(a+1)}{\Gamma(a+m-1) \Gamma(c)} \frac{(B-A)}{D_{m}} z^{m}, \quad m=2,3, \ldots
$$

$-1 \leq A<B \leq 1, a, c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}, z \in \mathcal{U}$. Then $f \in \mathcal{K}(A, B, a, c)$ if and only if f can be expressed as $f(z)=\sum_{m=1}^{\infty} \mu_{m} f_{m}(z)$ where $\mu_{m} \geq 0$ and $\sum_{m=1}^{\infty} \mu_{m}=1$.

THEOREM 2.7. The class $\mathcal{V}(A, B, a, c)$ is closed under convex linear combination.

Proof. Let $f, g \in \mathcal{V}(A, B, a, c)$ and let

$$
f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m}, \quad g(z)=z+\sum_{m=2}^{\infty} b_{m} z^{m}
$$

For η such that $0 \leq \eta \leq 1$, it suffices to show that the function defined by $h(z)=(1-\eta) f(z)+\eta g(z), z \in \mathcal{U}$ belongs to $\mathcal{V}(A, B, a, c)$. Now

$$
h(z)=z+\sum_{m=2}^{\infty}\left[(1-\eta) a_{m}+\eta b_{m}\right] z^{m} .
$$

Applying Theorem 2.1 to $f, g \in \mathcal{V}(A, B, a, c)$, we have

$$
\begin{aligned}
\sum_{m=2}^{\infty} & \frac{\Gamma(a+m-1) \Gamma(c)}{\Gamma(c+m-1) \Gamma(a+1)} D_{m}\left[(1-\eta) a_{m}+\eta b_{m}\right] \\
& =(1-\eta) \sum_{m=2}^{\infty} \frac{\Gamma(a+m-1) \Gamma(c)}{\Gamma(c+m-1) \Gamma(a+1)} D_{m} a_{m}+\eta \sum_{m=2}^{\infty} \frac{\Gamma(a+m-1) \Gamma(c)}{\Gamma(c+m-1) \Gamma(a+1)} D_{m} b_{m} \\
& \leq(1-\eta)(B-A)+\eta(B-A)=B-A
\end{aligned}
$$

This implies that $h \in \mathcal{V}(A, B, a, c)$.
Corollary 2.8. If $f_{1}(z), f_{2}(z)$ are in $\mathcal{V}(A, B, a, c)$ then the function defined by $g(z)=\frac{1}{2}\left[f_{1}(z)+f_{2}(z)\right]$ is also in $\mathcal{V}(A, B, a, c)$.

Theorem 2.9. The class $\mathcal{K}(A, B, a, c)$ is closed under convex linear combination.

THEOREM 2.10. Let for $j=1,2, \ldots, m, f_{j}(z)=z+\sum_{m=2}^{\infty} a_{m, j} z^{m} \in$ $\mathcal{V}(A, B, a, c)$ and $0<\lambda_{j}<1$ such that $\sum_{j=1}^{m} \lambda_{j}=1$. Then the function $F(z)$ defined by $F(z)=\sum_{j=1}^{m} \lambda_{j} f_{j}(z)$ is also in $\mathcal{V}(A, B, a, c)$.

Proof. For each $j \in\{1,2, \ldots, m\}$ we obtain

$$
\sum_{m=2}^{\infty} D_{m} \frac{\Gamma(a+m-1) \Gamma(c)}{\Gamma(c+m-1) \Gamma(a+1)}\left|a_{m}\right|<B-A
$$

Since $F(z)=\sum_{j=1}^{m} \lambda_{j}\left(z-\sum_{m=2}^{\infty} a_{m, j} z^{m}\right)=z-\sum_{m=2}^{\infty}\left(\sum_{j=1}^{m} \lambda_{j} a_{m, j}\right) z^{m}$,

$$
\begin{aligned}
& \sum_{m=2}^{\infty} \frac{\Gamma(a+m-1) \Gamma(c)}{\Gamma(c+m-1) \Gamma(a+1)} D_{m}\left[\sum_{j=1}^{m} \lambda_{j} a_{m, j}\right] \\
& \quad=\sum_{j=1}^{m} \lambda_{j}\left[\sum_{m=2}^{\infty} D_{m} \frac{\Gamma(a+m-1) \Gamma(c)}{\Gamma(c+m-1) \Gamma(a+1)}\right]<\sum_{j=1}^{m} \lambda_{j}(B-A)<B-A .
\end{aligned}
$$

Therefore $F(z) \in \mathcal{V}(A, B, a, c)$.
Theorem 2.11. Let $f(z) \in \mathcal{V}(A, B, a, c)$ and Komato operator of f is defined by

$$
k(z)=\int_{0}^{1} \frac{(c+1)^{\gamma}}{\Gamma(\gamma)} t^{c}\left(\log \frac{1}{t}\right)^{\gamma-1} \frac{f(t z)}{t} d t
$$

$c>-1, \gamma \geq 0$. Then $k(z) \in \mathcal{V}(A, B, a, c)$.

Proof. We have

$$
\begin{gathered}
\int_{0}^{1} t^{c}\left(\log \frac{1}{t}\right)^{\gamma-1} d t=\frac{\Gamma(\gamma)}{(c+1)^{\gamma}} \\
\int_{0}^{1} t^{m+c-1}\left(\log \frac{1}{t}\right)^{\gamma-1} d t=\frac{\Gamma(\gamma)}{(c+1)^{\gamma}}, \quad m=2,3, \ldots \\
k(z)=\frac{(c+1)^{\gamma}}{\Gamma(\gamma)}\left[\int_{0}^{1} t^{c}\left(\log \frac{1}{t}\right)^{\gamma-1} z d t+\sum_{m=2}^{\infty} z^{m} \int_{0}^{1} a_{m} t^{m+c-1}\left(\log \frac{1}{t}\right)^{\gamma-1} d t\right] \\
=z+\sum_{m=2}^{\infty}\left(\frac{c+1}{c+m}\right)^{\gamma} a_{m} z^{m} .
\end{gathered}
$$

Since $f \in \mathcal{V}(A, B, a, c)$ and since $\left(\frac{c+1}{c+m}\right)^{\gamma}<1$, we have

$$
\sum_{m=2}^{\infty} \frac{\Gamma(a+m-1) \Gamma(c)}{\Gamma(c+m-1) \Gamma(a+1)}[(1+A)-m(1+B)]\left(\frac{c+1}{c+m}\right)^{\gamma} a_{m}<B-A
$$

In the next theorem we will find distortion bound for $L(a, c) f(z)$.
Theorem 2.12. If $f \in \mathcal{V}(A, B, a, c)$, then

$$
|z|-\frac{(B-A) \Gamma(c+1)}{D_{2} \Gamma(c)}|z|^{2} \leq|L(a, c) f(z)| \leq|z|+\frac{(B-A) \Gamma(c+1)}{D_{2} \Gamma(c)}|z|^{2}
$$

Proof. Let $f(z) \in \mathcal{V}(A, B, a, c)$. Using Theorem 2.1,

$$
\sum_{m=2}^{\infty} a_{m} \leq \frac{(B-A) \Gamma(c+1)}{D_{2} \Gamma(c)}
$$

Therefore
$|L(a, c) f(z)| \leq|z|+|z|^{2} \sum_{m=2}^{\infty} \frac{\Gamma(a+m-1) \Gamma(c)}{\Gamma(c+m-1) \Gamma(a+1)} a_{m}<|z|+\frac{(B-A) \Gamma(c+1)}{D_{2} \Gamma(c)}|z|^{2}$
and
$|L(a, c) f(z)| \geq|z|-|z|^{2} \sum_{m=2}^{\infty} \frac{\Gamma(a+m-1) \Gamma(c)}{\Gamma(c+m-1) \Gamma(a+1)} a_{m}>|z|-\frac{(B-A) \Gamma(c+1)}{D_{2} \Gamma(c)}|z|^{2}$.
REmARK 2.13. (i) For parametric values of $a=1$ and $c=1$ we get

$$
|z|-\frac{(B-A) \Gamma(c+1)}{D_{2} \Gamma(c)}|z|^{2} \leq f(z) \leq|z|+\frac{(B-A) \Gamma(c+1)}{D_{2} \Gamma(c)}|z|^{2}
$$

(ii) For parametric values of $a=2$ and $c=1$ we get

$$
1-\frac{(B-A) \Gamma(c+1)}{D_{2} \Gamma(c)}|z| \leq f^{\prime}(z) \leq 1+\frac{(B-A) \Gamma(c+1)}{D_{2} \Gamma(c)}|z|
$$

THEOREM 2.14. Let $f \in \mathcal{V}(A, B, a, c)$. Then for every $0 \leq \delta<1$ the function

$$
\mathcal{H}_{\delta}(z)=(1-\delta) f(z)+\delta \int_{0}^{z} \frac{f(t)}{t} d t
$$

Proof. We have $\mathcal{H}_{\delta}(z)=z+\sum_{m=2}^{\infty}\left(1+\frac{\delta}{m}-\delta\right) a_{m} z^{m}$. Since $\left(1+\frac{\delta}{m}-\delta\right)<1$, $m \geq 2$, so by Theorem 2.1,

$$
\begin{aligned}
& \sum_{m=2}^{\infty}\left(1+\frac{\delta}{m}-\delta\right) D_{m} a_{m} \frac{\Gamma(a+m-1) \Gamma(c)}{\Gamma(c+m-1) \Gamma(a+1)} \\
& \quad<\sum_{m=2}^{\infty} \frac{\Gamma(a+m-1) \Gamma(c)}{\Gamma(c+m-1) \Gamma(a+1)} D_{m} a_{m}<B-A
\end{aligned}
$$

Therefore $\mathcal{H}_{\delta}(z) \in \mathcal{V}(A, B, a, c)$.

REFERENCES

[1] H.S. Al-Amiri, On Ruscheweyh derivatives, Ann. Polon. Math. 38 (1980), 87-84.
[2] B.C. Carlson, D.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), 737-745.
[3] G Murugusundara Moorty, K. Vijaya, R.K. Raina, Harmonic functions with varying arguments defined by Dziok-Srivastava operator, Arch. Math. (Brno) 45 (2009), 37-46.
[4] K.S. Padmanabhan, M. Jayamala, A class of univalent functions with varying arguments, Inter. J. Math. Math. Sci 15 (1992), 517-522.
[5] P. Sharma, P. Srivastava, A note on analytic functions with varying arguments, Intern. J. Math. Archive 1 (2010), 5-9.
[6] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc 49 (1975), 109115.
[7] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach Science Publishing, Switzerland, 1993.
[8] H. Silverman, Univalent functions with varying raguments, Houston J. Math. 7 (1981).
(received 30.07.2010, revised 14.01.2011; available online 20.02.2011)
Department of Mathematics, Yuvaraja's College, University of Mysore, Mysore - 570 005, INDIA.
E-mail: ravisn.kumar@gmail.com, drlatha@gmail.com

