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ON COMPACT-COVERING AND SEQUENCE-COVERING
IMAGES OF METRIC SPACES
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Abstract. In this paper we study the characterizations of compact-covering and 1-sequence-
covering (resp. 2-sequence-covering) images of metric spaces and give a positive answer to the
following question: How to characterize first countable spaces whose each compact subset is
metrizable by certain images of metric spaces?

1. Introduction

To find internal characterizations of certain images of metric spaces is one of
the central problems in General Topology. In 1973, E. Michael and K. Nagami [16]
obtained a characterization of compact-covering and open images of metric spaces.

It is well known that the compact-covering and open images of metric spaces
are the first countable spaces whose each compact subset is metrizable. However,
its inverse does not hold [16]. For the first countable spaces whose each compact
subset is metrizable, how to characterize them by certain images of metric spaces?

The sequence-covering maps play an important role on mapping theory about
metric spaces [6, 9]. In this paper, we give the characterization of a compact-
covering and 1-sequence-covering (resp. 2-sequence-covering) image of a metric
space, and positively answer the question posed by S. Lin in [11, Question 2.6.5].

All spaces considered here are T2 and all maps are continuous and onto. The
letter N is the set of all positive natural numbers. Readers may refer to [10] for
unstated definition and terminology.

2. Compact-covering and 1-sequence-covering images

In this section some characterizations of images of metric spaces by compact-
covering and 1-sequence-covering maps are given.
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Definition 2.1. [4] Let X be a space, and P ⊂ X.
(1) A convergent sequence {xn} in X is called eventually in P , if for each sequence

{xn} converging to x, there is an m ∈ N such that {x} ∪ {xn : n ≥ m} ⊂ P ;
(2) P is called a sequential neighborhood of x in X, if for each sequence {xn}

converging to x, {xn} is eventually in P ;
(3) P is called a sequentially open set in X, if P is a sequential neighborhood of

each of its points;
(4) X is called a sequential space, if each sequentially open set is open in X.

Definition 2.2. Let P =
⋃

x∈X Px be a cover of a space X such that for each
x ∈ X, (a) if U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px; (b) the family Px is a
network of x in X, i.e., x ∈ ⋂Px, and if x ∈ U and U is open in X, then P ⊂ U
for some P ∈ Px.

The family P is called a weak base for X [3], if for every G ⊂ X, the set G
must be open in X whenever for each x ∈ G there exists P ∈ Px such that P ⊂ G,
where Px is called a weak base at x ∈ X. The family P is an sn-network of X [8],
if each element of Px is a sequential neighborhood of x for each x ∈ X, where Px

is called an sn-network at x ∈ X. A space X is snf (resp. gf)-countable, if X has
an sn-network (resp. a weak base) P such that each Px is countable.

We know that each gf -countable space is sequential by [18].

Definition 2.3. Let X be a space. Then X is called a k-space [5], if for every
subset A of X such that K ∩ A is closed in K for each compact subset K in X,
A is closed in X. A space X is Fréchet [4], if whenever x ∈cl(A) ⊂ X, there is a
sequence in A converging to the point x.

It is easy to check that the following relations:

first-countable spaces ⇒ Fréchet spaces ⇒ sequential spaces ⇒ k-spaces.

Definition 2.5. Let f : X → Y be a map.
(1) f is a compact-covering map [15], if each compact subset of Y is the image of

some compact subset of X under f ;
(2) f is a sequence-covering map [17], if whenever {yn} is a convergent sequence

in Y , there exists a convergent sequence {xn} in X with each xn ∈ f−1(yn);
(3) f is a 1-sequence-covering map [8], if for each y ∈ Y , there is x ∈ f−1(y) such

that whenever {yn} is a sequence converging to y ∈ Y , there is a sequence
{xn} converging to x ∈ X with each xn ∈ f−1(yn);

(4) f is a pseudo-open map [2], if whenever f−1(y) ⊂ U and U is open in X, then
y ∈Int(f(U));

(5) f is an almost-open map [1], if for each y ∈ Y , there is x ∈ f−1(y) such that
whenever U is a neighborhood of x in X, then f(U) is a neighborhood of f(y)
in Y .
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Obviously, we have the following relations:

open maps ⇒ almost-open maps ⇒ pseudo-open maps ⇒ quotient maps.

Lemma 2.5. [17] Let f : X → Y be a map. If Y is a sequential space and f is
a sequence-covering map, then f is a quotient map.

Lemma 2.6. [12] A space X is a 1-sequence-covering image of a metric space
if and only if X is an snf -countable space.

Corollary 2.7. [12] A space X is a 1-sequence-covering and quotient image
of a metric space if and only if X is a gf -countable space.

Lemma 2.8. [16] A space X is a compact-covering image of a metric space if
and only if each compact subset of X is metrizable.

Lemma 2.9. [11] Let f :X → Y be a map.
(1) If Y is a k-space and f is a compact-covering map, then f is a quotient map;
(2) If Y is a Fréchet space and f is a quotient map, then f is a pseudo-open map.

Lemma 2.10. [9] Let f : X → Y be a map. If X is a first-countable space, then
f is an almost-open map if and only if f is a 1-sequence-covering and pseudo-open
map.

Theorem 2.11. The following are equivalent for a space X.
(1) X is a compact-covering and 1-sequence-covering image of a metric space;
(2) X is a compact-covering image of a metric space, and a 1-sequence-covering

image of a metric space;
(3) X is an snf -countable space of which all compact subsets are metrizable.

Proof. (1) ⇒ (2) is obvious. (2) ⇒ (3) by Lemmas 2.6 and 2.8. Next, we show
that (3) ⇒ (1).

Let X be an snf -countable space all compact subsets of which are metrizable.
By Lemma 2.6, there are a metric space M1 and a 1-sequence-covering map f :
M1 → X. By Lemma 2.8, there are a metric space M2 and a compact-covering
map g : M2 → X. Put M = M1 ⊕ M2, and define h : M → X by h|M1 = f
and h|M2 = g. Then M is a metric space and h is a compact-covering and 1-
sequence-covering map. In fact, for any compact subset K of X, g : M2 → X
is a compact-covering map. So there exists a compact subset L of M2 such that
g(L) = K. Since L ⊂ M2 ⊂ M , we have h(L) = g(L) = K. For each x ∈ X,
there exists an α ∈ f−1(x) ∩M1 ⊂ M such that whenever {xn} is a sequence in
X converging to x, there exists a sequence {αn} converging to α in M1 with each
αn ∈ f−1(xn) ⊂ h−1(xn). Therefore, h is a compact-covering and 1-sequence-
covering map.

S. Lin [11] posed a question as follow: For the first countable spaces whose
each compact subset is metrizable, how to characterize them by certain images of
metric spaces? We can answer this question by the following corollary.
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Corollary 2.12. The following are equivalent for a space X.
(1) X is a compact-covering and almost-open image of a metric space;
(2) X is a compact-covering image of a metric space, and an almost-open image

of a metric space;
(3) X is a first-countable space whose every compact subset is metrizable.

Proof. (1)⇒(2) is obvious.
(2)⇒(3). It is easy to check that the first countability is preserved by almost-

open maps.
(3)⇒(1). In view of Theorem 2.11, the space X is a compact-covering and

1-sequence-covering image of a metric space. Thus, by Lemmas 2.5, 2.9 and 2.10,
the space X is a compact-covering and almost-open image of a metric space.

By Lemma 2.5, Corollary 2.7 and Theorem 2.11, we have the following corol-
lary.

Corollary 2.13. The following are equivalent for a space X.
(1) X is a compact-covering, 1-sequence-covering and quotient image of a metric

space;
(2) X is a compact-covering image of a metric space, and a 1-sequence-covering

and quotient image of a metric space;
(3) X is a gf -countable space whose each compact subset is metrizable.

Finally, we give some examples to show some relations between compact-
covering images of metric spaces and 1-sequence-covering images of metric spaces.

Example 2.14. There exists a non-snf -countable space whose each compact
subset is metrizable.

Proof. Let X be the sequential fan Sω [10, Example 3.1.8]. Then X is a
Fréchet space, which is not first-countable. Thus X is not snf -countable. Since
each compact subset of X is countable and X is T2, it is easy to check that each
compact subset of X is metrizable.

Example 2.15. There is an snf -countable space whose each compact subset
is metrizable, but it is not a k-space.

Proof. Put X = N ∪ {p}, p ∈ βN −N . Endow X with the subspace topology
of Stone-Čech βN . Since each compact subset of X is finite and X is T2, each
compact subset of X is metrizable. Since any convergent sequence in βN is trivial,
the space βN is snf -countable. Then X is snf -countable. Since N is not a closed
subspace of X, it is obvious that X is not a k-space.

We give a new definition for the following Example.
Let A be a non-empty subset in X. A countable family {Vn}n∈N of subsets of

X is called a countable sn-network of A in X if it satisfies that:
(1) for each open set V in X with A ⊂ V , there is an n ∈ N such that A ⊂ Vn ⊂ V ;
(2) for each n ∈ N, Vn is a sequential neighborhood of each point in A.
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Example 2.16. There is a first-countable space X whose each compact subset
is metrizable, but some compact subset of X does not have a countable sn-network
in X.

Proof. Let X be the butterfly space [14]. Then X is first-countable such that all
compact subsets of X are metrizable, and the compact subset I×{0} in X doesn’t
have a countable neighborhood base. Since X is first-countable, each sequential
neighborhood of a point x ∈ X is a neighborhood of x in X, which implies that
I × {0} doesn’t have a countable sn-network in X.

3. Compact-covering and 2-sequence-covering images

In this section, we mainly discuss some characterizations of images of metric
spaces by compact-covering and 2-sequence-covering maps.

Definition 3.1. [8] Let f : X → Y be a map. f is a 2-sequence-covering
map, if for each y ∈ Y and each x ∈ f−1(y) such that whenever {yn} is a sequence
converging to y ∈ Y , there is a sequence {xn} converging to x ∈ X with each
xn ∈ f−1(yn).

Obviously, we have the following relations:

2-sequence-covering maps ⇒ 1-sequence-covering maps ⇒ sequence-covering maps.

Definition 3.2. [10] Let A be a non-empty subset of a space X. A countable
family {Vn}n∈N of open subsets of X is called a countable neighborhood base of
A in X if for each open set V in X with A ⊂ V , there is an n ∈ N such that
K ⊂ Vn ⊂ V .

Definition 3.3. [16] Suppose that A is a non-empty subset of a space X, and
B is a family of open subsets of X. The family B is called an outer base of A in X
if for each x ∈ A and an open set V in X with x ∈ V , there exists B ∈ B such that
x ∈ B ⊂ V .

Similarly, we have the following two definitions.

Definition 3.4. Let A be a non-empty subset of a space X. A countable
family {Vn}n∈N of subsets of X is called a countable so-network of A in X if it
satisfies that:

(1) for each open set V in X with A ⊂ V , there is an n ∈ N such that K ⊂ Vn ⊂ V ;
(2) for each n ∈ N, Vn is a sequentially open set in X.

Definition 3.5. Suppose A is a non-empty subset of a space X and B is a
family of subsets of X, B is called an outer so-network of A in X if it satisfies that:
(1) each element of B is a sequentially open set in X;
(2) for each x ∈ A∩V and V is open in X, there exists B ∈ B such that x ∈ B ⊂ V .
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Lemma 3.6. [8] Let f : X → Y be a map and {yn} be a sequence converging
to y ∈ Y . If {Bm}m∈N is a decreasing network at some point x ∈ f−1(y) in X,
and {yn} is eventually in f(Bm) for every m ∈ N , then there is a sequence {xn}
converging to x such that each xn ∈ f−1(yn).

Lemma 3.7. [9] A space X is Fréchet if and only if for each x ∈ X, each
sequential neighborhood of x in X is a neighborhood of x in X.

Lemma 3.8. [9] Let f : X → Y be a map. If X is first-countable, then f is an
open map if and only if f is a 2-sequence-covering and quotient map.

Now, we recall the concepts of Ponomarev’s system and the CC-property.
Assume that P is a network of a space X. Put P = {Pα}α∈Λ, and endow Λ

with the discrete topology. Put

M = {α = (αi) ∈ Λω : {Pαi
}i∈N is a network at some xα ∈ X}.

Then M , which is a subspace of the Tychonoff product space Λω, is a metric space.
Define a function f : M → X by f(α) = xα. Then f(α) ∈ ⋂

i∈N Pαi
, and f is well

defined. (f, M, X,P) is called a Ponomarev’s system [13].
Let K be a subset of X. F is called a cfp-covering [19] of K, if F is a cover of

K in X such that it can be precisely refined by some finite cover of K consisting
of closed subsets of K.

Let P be a collection of subsets of X, and K be a subset of X. We say that P
has the CC-property [13] on K, if whenever C is a non-empty compact subset of
K, and V a neighborhood of C in X, then there exists a subset F of P such that
F is a cfp-cover of C and

⋃F ⊂ V .

Lemma 3.9. [10] Suppose (f,M,X,P) is a Ponomarev’s system. If K is a
compact subset of X, and there exists a countable subfamily PK of P such that
PK has the CC-property on K, then there is a compact subset L of M such that
f(L) = K.

Lemma 3.10. Suppose each compact subset of a space X is metrizable, and K
is a subset of X. If B is an outer so-network of K in X, then B has the CC-property
on K.

Proof. Let H ⊂ K ∩ V , where H is a compact subset of K and V is a
neighborhood of H in X. If x ∈ H, then there exists Bx ∈ B such that x ∈ Bx ⊂ V .
By Lemma 3.7 and the metrizability of H, we have

x ∈ intH(Bx ∩H) ⊂ Bx ∩H ⊂ Bx.

Since H is regular, there is an open set Vx of H such that

x ∈ Vx ⊂ clH(Vx) = V x ⊂ intH(Bx ∩H) ⊂ Bx.

Since {Vx}x∈H is an open cover of H, it has a finite subcover {Vxi}i≤n such that
H =

⋃
i≤n V xi ⊂

⋃
i≤n Bxi ⊂ V and {Bxi}i≤n is precisely refined by {V xi}i≤n.

Therefore, the family B has the CC-property on K.
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Lemma 3.11. Assume that every compact subset of a space X has a countable
outer so-network, then X is a compact-covering and 2-sequence-covering image of
a metric space.

Proof. Let BK be a countable outer so-network of a compact subset K in X.
Let B =

⋃{BK : K is a compact subset of X}, and denote B = {Bα : α ∈ A}. Let
(f, M, X,B) be the Ponomarev’s system. Since BK |K is a countable network of K,
the compact subset K is metrizable. In view of Lemmas 3.9 and 3.10, it is easy
to see that f : X → Y is a compact-covering map. In the following we shall prove
that f is a 2-sequence-covering map.

For each x ∈ X and β = (αi) ∈ f−1(x), {Bαi
}i∈N ⊂ B is an sn-network of

x in X. For each n ∈ N , put Cn = {(γi) ∈ M : γi = αi whenever i ≤ n}. Then
{Cn : n ∈ N} is a decreasing neighborhood base of β in M . Then f(Cn) =

⋂
i≤n Bαi

for n ∈ N .

In fact, if γ = (γi) ∈ Cn, then f(γ) ∈ ⋂
i∈N Bγi

⊂ ⋂
i≤n Bαi

and f(Cn) ⊂⋂
i≤n Bαi . Suppose that z ∈ ⋂

i≤n Bαi . Choose a countable subfamily {Bδi}i∈N of
B such that

(1) δi = αi whenever i ≤ n;

(2) {Bδi}i∈N is a network at z in X.

Put δ = (δi) ∈ Aω. Then δ ∈ Cn and z = f(δ) ∈ f(Cn). Thus
⋂

i≤n Bαi ⊂
f(Cn). So f(Cn) =

⋂
i≤n Bαi .

Assume that {xj} is a sequence in X converging to the point x. Since f(Cn)
is a sequential neighborhood of x in X, by Lemma 3.6, there exists a sequence {βj}
with each βj ∈ f−1(xj) such that {βj} converges to β. Therefore, the map f is
compact-covering and 2-sequence-covering.

Lemma 3.12. If a space X is a compact-covering and 2-sequence-covering
image of a metric space, then every compact subset of X is metrizable and has a
countable so-network in X.

Proof. Assume that f : M → X is a compact-covering and 2-sequence-covering
map. For each compact subset K of X, there exists a compact subset L in M such
that f(L) = K. Suppose that {Vn}n∈N is a decreasing countable open neighbor-
hood base of L in M . In the following we shall prove that {f(Vn)}n∈N is a countable
so-network of K in X.

(1) For each n ∈ N , K = f(L) ⊂ f(Vn) by L ⊂ Vn. Assume that U is an open
set of X with K ⊂ U , then L ⊂ f−1(K) ⊂ f−1(U) ⊂ M . There exists a k ∈ N
such that L ⊂ Vk ⊂ f−1(U), so K = f(L) ⊂ f(Vk) ⊂ U .

(2) For each y ∈ f(Vn), there is xy ∈ Vn such that f(xy) = y. Since f is a 2-
sequence-covering map, for each sequence {yi} converging to y, there is xi ∈ f−1(yi)
such that the sequence {xi} converges to xy ∈ Vn. Therefore, {xi} is eventually in
Vn and {yi} is eventually in f(Vn), that is, f(Vn) is a sequentially open set in X.
By Lemma 2.8, every compact subset of X is metrizable.
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Lemma 3.13. If each compact subset of a space X is metrizable and has a
countable so-network in X, then it has a countable outer so-network in X.

Proof. Assume that K is a metrizable and compact subset of X. Then K has
a countable base {Un}n∈N in K. Suppose that {Vn}n∈N is a countable so-network
of K in X. Let

A = {(n,m) ∈ N2 : Um ⊂ Un}.
For each (n,m, k) ∈ A×N , Um ∩ (K \ Un) = ∅ by Um ⊂ Un.

There exists an open set Un,m in X such that

Um ⊂ Un,m ⊂ Un,m ⊂ X \ (K \ Un).

Put W (n,m, k) = Un,m ∩ Vk, Λ = {F : F is a finite subset of A × N} and
H = {∩{W (n,m, k) : (n,m, k) ∈ F}}F∈Λ. Then H is a countable family of subsets
of X. For each x ∈ K, define Bx = {α ∈ A×N : x ∈ W (α)} and H(F ) = ∩{W (α) :
α ∈ F} with F ⊂ Bx.

Let Hx ={H(F ) : F ⊂ Bx and F is finite}. Then H =
⋃

x∈K Hx. In the
following we shall prove that H is an outer so-network of K in X.

(1) For any H(F1),H(F2) ∈ Hx, we can obtain that F1 ⊂ Bx, F2 ⊂ Bx and
F1, F2 are both finite by the definition of Hx. Let F = F1 ∪ F2. Then H(F ) ∈ Hx

and H(F ) ⊂ H(F1) ∩H(F2).
(2) Suppose that U is an open neighborhood of x in X and there doesn’t exist

any finite subset F of Bx such that x ∈ H(F ) ⊂ U . Choose a point p(F ) ∈ H(F )\U .
Put

Q(F ) = {p(F ′) : F ′ is a finite subset of Bx and F ⊂ F ′}.
Then U ∩Q(F ) = ∅ and K ∩Q(F ) 6= ∅. Otherwise, there exists a k ∈ N such that
Vk ∩Q(F ) = ∅. Because K is a regular space and {Un}n∈N is a base of K, there
exists (n,m) ∈ N2 such that x ∈ Um ⊂ Un. Denote α = (n,m, k), F ′ = F ∪ {α},
then α ∈ Bx and p(F ′) ∈ W (α)∩Q(F ) ⊂ Vk ∩Q(F ) = ∅, which is a contradiction.

If F1 ⊂ F2, then Q(F2) ⊂ Q(F1) and {K ∩Q(F ) : F is a finite subset of Bx}
is closed under finite intersections. Since K is a compact set, K ∩ (∩{Q(F ) : F is
a finite subset of Bx}) 6= ∅.

On the other hand, for any y ∈ K \{x}, since K is a regular space, there exists
(n,m) ∈ N2 such that x ∈ Um ⊂ Um ⊂ Un ⊂ K \{y}, thus Un,m ⊂ X \ (K \Un) ⊂
X \ {y}. For any k ∈ N, let α = (n,m, k), then α ∈ Bx and y /∈ Un,m.

Since Q({α}) = {p(F ′) : F ′ is a finite subset of Bx and α ∈ F ′}⊂ H({α}) =
W (α) ⊂ Un,m, y /∈ Q({α}), (K\{x}) ∩ (∩{Q(F ) : F is a finite subset of Bx}) = ∅
and ∩{K ∩ Q(F ) : F is a finite subset of Bx}= {x} ⊂ U . Because K is compact,
there exists a finite subset F of Bx such that x ∈ K ∩ Q(F ) ⊂ U , and thus
U ∩ Q(F ) 6= ∅, which is a contradiction. Therefore, there exists a finite subset F
of Bx such that H(F ) ⊂ U and x ∈ H(F ) ⊂ U .

In a word, we have proved that Hx is a network at x in X.



Compact-covering and sequence-covering images 105

(3) For any H(F ) ∈ Hx, H(F ) = ∩{W (α) : α ∈ F}, so we only need to prove
that W (α) is a sequentially open set in X. By the definition of W (α), we have
x ∈ W (α) = Un,m ∩ Vk in which Un,m is an open set of X and Vk is a sequentially
open set of K in X. Therefore, W (α) is a sequentially open set in X, that is, H(F )
is a sequentially open set in X.

By (1)∼(3), we can obtain that if each compact subset of X is metrizable and
has a countable so-network in X, then it has a countable outer so-network in X.

The following Theorem holds by Lemmas 3.11, 3.12 and 3.13.

Theorem 3.14. The following are equivalent for a space X.
(1) X is a compact-covering and 2-sequence-covering image of a metric space;
(2) Each compact subset of X is metrizable and has a countable so-network in X;
(3) Every compact subset of X has a countable outer so-network in X.

Theorem 3.14 extends a result of Michael and Nagami [16], see Corollary 3.15.

Corollary 3.15. [16] The following are equivalent for a space X.
(1) X is a compact-covering and open image of a metric space;
(2) Each compact subset of X is metrizable and has a countable neighborhood base

in X;
(3) Every compact subset of X has a countable outer base in X.

Finally, we give some examples to show the relations between compact-covering
images of metric spaces and 2-sequence-covering images of metric spaces.

Example 3.16. There exists a space X whose every compact subset is metriz-
able and has a countable sn-network in X, but X is not a compact-covering and
2-sequence-covering image of any metric space.

Proof. Let S1 = {0} ∪ { 1
n : n ∈ N} and I = [0, 1]. Define X = I × S1 and

Y = I × (S1 − {0}).
Endow X with the following topology [7]: Y has the usual Euclidean topology

as a subspace of X. Define a typical neighborhood of (t, 0) ∈ X to be of the form

{(t, 0)} ∪ (∪{V (t, k) : k ≥ n}), n ∈ N ;

where V (t, k) is a open neighborhood of (t, 1
k ) in I × { 1

k}.
Put M = (⊕{I × { 1

n : n ∈ N}) ⊕ (⊕{{t} × S1 : t ∈ I}) and define f from
M onto X such that f is an obvious mapping. Then f is a compact-covering,
1-sequence-covering, quotient, and two-to-one mapping from the locally compact
metric M onto X [9, Example 1.5.4].

In the following we shall prove that each compact subset of X has a countable
sn-network in X. Suppose that K is a compact subset of X. Since I × {0} is a
closed discrete subspace of X and any compact subset of a discrete space is finite,
we have K∩(I×{0}) is finite, denote it by {(ti, 0)}i≤m. Put K0 =

⋃
i≤m({ti}×S1).
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If K \ (K0 ∪ (
⋃

j≤n(I × { 1
j }))) 6= ∅ for each n ∈ N , then there exist a sequence

{jn} ⊂ N and {xn} ⊂ X such that jm 6= jn if m 6= n, jn → +∞ and xn ∈
K ∩ (I × { 1

jn
}) \K0 for each n ∈ N . Suppose that x is an accumulation point of

{xn} in K. Then x ∈ K ∩ (I ×{0}). Thus, there exists i ≤ m such that x = (ti, 0).
For each n ∈ N , we choose an open neighborhood V (ti, jn) of (ti, 1

jn
) in I × { 1

jn
}

such that xn /∈ V (ti, jn). For each k ∈ N \ {jn : n ∈ N}, put V (ti, k) = I × { 1
k}.

Define
W = {x} ∪ (

⋃

k∈N

V (ti, k)),

then x ∈ W and W is open in X and xn /∈ W , which is a contradiction.
Therefore, there exists an n ∈ N such that K ⊂ K0 ∪ (

⋃
j≤n(I × { 1

j })), i.e.,

K = (
⋃

j≤n

((I × {1
j
}) ∩K)) ∪ (

⋃

i≤m

(({ti} × S1) ∩K)).

Since I × { 1
j } is a closed subspace of X and K is a compact subset of X,

(I ×{ 1
j })∩K is a compact subset of I ×{ 1

j }. Thus (I ×{ 1
j })∩K has a countable

neighborhood base {Vn}n∈N in I × { 1
j }. For each (ti, 1

j ) ∈ (I × { 1
j }) ∩K, if there

is a sequence {xn} converging to (ti, 1
j ) in X, then {xn} is eventually in an open

neighborhood V (ti, j) of (ti, 1
j ) in I × { 1

j }. Therefore, it is easy to check that
{Vn}n∈N is a countable sn-network of (I × { 1

j }) ∩ K in X. Similarly, it is easy
to prove that ({ti} × S1) ∩K has a countable sn-network in X. Hence, K has a
countable sn-network in X.

Since (0, 0) ∈ (I − {0})× S1 and for any sequence {xn} converging to (0,0)
in X, there are at most finitely many elements which are not in {0} × S1, every
sequence in (I − {0})× S1 can’t converge to (0,0). Thus, X is not a Fréchet space.
Since sequential spaces are preserved by quotient maps, X is a sequential space.
If X is a compact-covering and 2-sequence-covering image of a metric space, by
Lemma 3.8, f is an open map. Hence, X is a first-countable space, but X is not a
Fréchet space, which is a contradiction.

Example 3.17. A compact-covering and 2-sequence-covering image of a met-
ric space need not to be a quotient image of a metric space.

Proof. Let X = N ∪ {p}, p ∈ βN\N . Endow X with discrete topology. Then
X is a metric space. Put Y = N ∪ {p}, endow Y with the subspace topology of
βN .

Define f : X → Y by f(x) = x for each x ∈ X. Since each compact subset of
Y is finite, f is a compact-covering map. It is easy to check that f is a 2-sequence-
covering map. Since Y is not a k-space, Y is not a quotient image of any metric
space.
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