STABILITY OF SOME INTEGRAL DOMAINS ON A PULLBACK

Tariq Shah and Sadia Medhat

Abstract. Let *I* be a nonzero ideal of an integral domain *T* and let $\varphi: T \to T/I$ be the canonical surjection. If *D* is an integral domain contained in T/I, then $R = \varphi^{-1}(D)$ arises as a pullback of type \Box in the sense of Houston and Taylor such that $R \subseteq T$ is a domains extension. The stability of atomic domains, domains satisfying ACCP, HFDs, valuation domains, PVDs, AVDs, APVDs and PAVDs observed on all corners of pullback of type \Box under the assumption that the domain extension $R \subseteq T$ satisfies *Condition* 1 : For each $b \in T$ there exist $u \in \cup(T)$ and $a \in R$ such that b = ua.

1. Introduction and preliminaries

Following Cohn [13], an integral domain R is said to be *atomic* if each nonzero nonunit element of R is a product of a finite number of irreducible elements (atoms) of R. The illustrious examples of atomic domains are UFDs and Noetherian domains. An integral domain R satisfies the *ascending chain condition on principal ideals* (ACCP) if there does not exist any strict ascending chain of principal ideals of R. An integral domain R satisfies ACCP if and only if $R[\{X_{\alpha}\}]$ satisfies ACCP for any family of indeterminates $\{X_{\alpha}\}$ (cf. [1, p. 5]). However, the polynomial extension an atomic domain is not an atomic domain (see [20]). A domain satisfying ACCP is an atomic domain but the converse does not hold (see [15, 27]).

By [1], an atomic domain R is a bounded factorization domain (BFD) if for each nonzero nonunit element x of R, there is a positive integer N(x) such that whenever $x = x_1 \cdots x_n$, a product of irreducible elements of R, then $n \leq N(x)$. The best known examples of BFDs are Noetherian and Krull domains [1, Proposition 2.2]. Also, in general a BFD satisfies ACCP but the converse is not true (cf. [1, Example 2.1]).

Following Zaks [26], an atomic domain R is a half-factorial domain (HFD)if for each nonzero nonunit element x of R, if $x = x_1 \cdots x_m = y_1 \cdots y_n$ with each x_i, y_j irreducible in R, then m = n. Obviously a UFD is an HFD. A Krull domain R is an HFD if divisor class group $Cl(R) \cong 0$ or $Cl(R) \cong \mathbb{Z}_2$. An HFD is a BFD

Keywords and phrases: Pullback; condition 1.

²⁰¹⁰ AMS Subject Classification: 13G05, 16U10.

¹⁰⁹

(see [1]). By [1, Page 11], if R[Y] is an HFD, then certainly R is an HFD. However, R[Y] need not be an HFD if R is an HFD. For example $R = \mathbb{R} + X\mathbb{C}[X]$ is an HFD, but R[Y] is not an HFD, as $(X(1 + iY))(X(1 - iY)) = X^2(1 + Y^2)$ are decompositions into atoms of different lengths (cf. [1, p. 11]).

By [1], an integral domain R is known as an *idf-domain* if each nonzero nonunit element of R has at most a finite number of non-associate irreducible divisors. UFDs are examples of idf-domains. But there are idf-domains which are not even atomic. Moreover, the Noetherian domain $\mathbb{R} + X\mathbb{C}[X]$ is an HFD but not an idf-domain (cf. [1, Example 4.1(a)]).

By [1], an atomic domain R is a *finite factorization domain* (*FFD*) if each nonzero nonunit element of R has a finite number of non-associate divisors. Hence it has only a finite number of factorizations up to order and associates. Further, an integral domain R is an FFD if and only if R is an atomic idf-domain (cf. [1, Theorem 5.1]).

Following Cohn [13], an element x of an integral domain R is said to be *primal* if x divides a product a_1a_2 ; $a_1, a_2 \in R$, then x can be written as $x = x_1x_2$ such that x_i divides $a_i, i = 1, 2$. An element whose divisors are primal elements is called completely primal. An integral domain R is a *pre-Schreier* if every nonzero element x of R is primal. An integrally closed pre-Schreier domain is known as *Schreier* domain. By [13], any *GCD*-domain (an integral domain in which every pair of elements has a greatest common divisor) is a Schreier domain but the converse is not true.

By [24], an element x of an integral domain R is said to be *rigid* if whenever $r, s \in R$ and r, s divide x, then s divides r or r divides s. An integral domain R is said to be a *semirigid* domain if every nonzero element of R can be expressed as a product of a finite number of rigid elements.

We recall from [25] that: Let R be an integral domain.

property-*: $(\cap_i(a_i))(\cap_j(b_j)) = \cap_{i,j}(a_ib_j)$ for all $a_i, b_j \in \mathbb{R}$, where $i = 1, \ldots, m$ and $j = 1, \ldots, n$.

property-**: $((a) \cap (b))((c) \cap (d)) = (ac) \cap (ad) \cap (bc) \cap (bd)$, where $a, b, c, d \in R^*$.

An integral domain R is called *-domain (respectively **-domain) if it satisfies property -* (respectively property-**). An integral domain R is said to be a *locally* *-domain if for each maximal ideal M, R_M has property-*.

Condition 1. The whole study in [18, 22, 23] is based on a property for a unitary commutative ring (respectively domain) extension, known as *Condition* 1. In [18, 22, 23] the stability (ascent and descent) of UFDs, atomic domains, domains satisfying ACCP, FFDs, BFDs, HFDs, RBFDs, CK-domains, BVDs, CHFDs, idf-domains, a particular case of LHFDs, valuation domains, semirigid domains, PVDs and GCD-domains, Schreier domains, pre-Schreier domains, *-domains, **-domains, locally *-domains has been observed for a domain extension $R \subseteq T$ which satisfy *Condition* 1. In most of the situations the assumption that works is, the

conductor ideal $R: T = \{x \in R : xT \subseteq R\}$, the largest common ideal of R and T, is maximal in R.

Condition 1 : "Let $R \subseteq T$ be a unitary commutative ring (respectively domain) extension. For each $b \in T$ there exists $u \in U(T)$ and $a \in R$ such that b = ua."

The followings are a few examples of unitary (commutative) ring extensions which satisfy *Condition* 1.

EXAMPLE 1. [18, Example 1] (a) If T is a field, then the unnitart ommutative ring extension $R \subseteq T$ satisfies Condition 1.

(b) If T is a fraction ring of the ring R, then the ring extension $R \subseteq T$ satisfies Condition 1. Hence Condition 1 generalizes the concept of localization.

(c) If the ring extensions $R \subseteq T$ and $T \subseteq W$ satisfy Condition 1, then so does the ring extension $R \subseteq W$.

(d) If the ring extension $R \subseteq T$ satisfies Condition 1, then the unitary commutative ring extensions $R + XT[X] \subseteq T[X]$ and $R + XT[[X]] \subseteq T[[X]]$ also satisfy Condition 1.

The following remark provides examples of domain extensions $R \subseteq T$ satisfying *Condition* 1, where the conductor ideal R:T is a maximal ideal of R.

REMARK 1. (i) Let $F \subset K$ be any field extension, the domain extension $F + XK[X] \subseteq K[X]$ (respectively $F + XK[[X]] \subseteq K[[X]]$) satisfies *Condition* 1, where the conductor ideal F + XK[X] : K[X] (respectively F + XK[[X]] : K[[X]]) is maximal ideal in F + XK[X] (respectively in F + XK[[X]]).

(ii) Let $F \subset K$ be a field extension, where K is a root extension of F and K(Y) is the quotient field of K[Y]; then $R = F + XK(Y)[[X]] \subseteq K + XK(Y)[[X]] = T$ satisfies *Condition* 1 and R: T = XK(Y)[[X]] is the maximal ideal in R.

There are a number of examples of domain extensions $R \subseteq T$ satisfying *Condition* 1, where the conductor ideal R: T is not a maximal ideal of R. The following remark shows a few of those.

REMARK 2. (i) Let V be a valuation domain such that its quotient field K is the countable union of an increasing family $\{V_i\}_{i \in I}$ of valuation overrings of V. Let L be a proper field extension of K with L^*/K^* infinite. The it follows by [3, Example 5.3] that:

(a) The domain extension $V_i + XL[[X]] \subseteq L[[X]]$ satisfies Condition 1 since the extension $V_i \subseteq L$ satisfies Condition 1. But XL[[X]] is not a maximal ideal of $V_i + XL[[X]]$. Also note that $U(V_i + XL[[X]]) \neq U(L[[X]])$.

(b) The domain extension $V_i + XL[[X]] \subseteq K + XL[[X]]$ satisfies Condition 1, but XL[[X]] is not a maximal ideal in $V_i + XL[[X]]$. Also, $U(V_i + XL[[X]]) \neq U(K + XL[[X]])$.

(ii) The domain extension $R = \mathbb{Z}_{(2)} + X\mathbb{R}[[X]] \subseteq \mathbb{Q} + X\mathbb{R}[[X]] = T$ satisfies Condition 1, but the conductor ideal R:T is not a maximal ideal in R.

(iii) The domain extension $R = \mathbb{Z}_{(2)} + X\mathbb{R}[[X]] \subseteq \mathbb{R}[[X]] = E$ satisfies *Condi*tion 1, but the conductor ideal R : E is not a maximal ideal in R.

T. Shah, S. Medhat

Pullback. Pullback plays an important role in commutative ring theory as a great source of providing examples and counter examples. For a most recent survey article where some classes of commutative rings are characterized as a pullback see [8].

By [21, p. 51], a unitary (commutative) ring R together with ring homomorphisms $f: R \to A$ and $g: R \to B$ is called a pullback of the pair of homomorphisms $\alpha: A \to C$ and $\beta: B \to C$ if

(a) the diagram

$$\begin{array}{ccc} R & \stackrel{g}{\longrightarrow} & B \\ f \downarrow & & \downarrow^{\beta} \\ A & \stackrel{\alpha}{\longrightarrow} & C \end{array}$$

commutes.

(b) (Universal property) If there exits another ring R' with a pair of ring homomorphisms $f': R' \to A, g': R' \to B$ such that the diagram

commutes. Then there exists a unique ring homomorphism $\theta : R' \to R$ such that $f \circ \theta = f'$ and $g \circ \theta = g'$.

A pullback is said to be weak pullback for which the "Universal property" does not hold.

Every pair of ring homomorphisms $\alpha : B \to A$ and $\beta : C \to A$ has a pullback (see [21, Exercise 2.46, p. 52]).

In the following we consolidate discussions of $[21, \, \mathrm{p.}\ 51,\!52$ and Exercise 2.47] as a proposition.

PROPOSITION 1. Let A, B and C be unitary (commutative) rings such that $C \subseteq A$ and $f: B \to A$ is an onto ring homomorphism, then $L = f^{-1}(C)$ is a pullback of ring homomorphisms f and g, that is

The pullback L in Proposition 1 is a substructure of B.

Pullback of type \Box . Houston and Taylor [17] introduce a pullback of type \Box as: Let I be a nonzero ideal of an integral domain $T, \varphi: T \to T/I = E$ be the

natural surjection and D be an integral domain contained in E. Then the integral domain $R = \varphi^{-1}(D)$ arises as a pullback of the following diagram

$$\begin{array}{cccc} R = \varphi^{-1}(D) & \longrightarrow & D \\ & & & \downarrow \\ & & & \downarrow \\ T & \longrightarrow & T/I = E \end{array}$$

Here it is noticed that in fact $R \subseteq T$ and $D \subseteq E$.

J. Boynton [11] introduces the pullback as: Let $R \subseteq T$ be any unitary (commutative) ring extension and I = R : T is the nonzero conductor ideal of T into R. Setting D = R/I and E = T/I, we obtain the natural surjections $n_1 : T \longrightarrow E$, $n_2 : R \longrightarrow D$ and the inclusions $i_1 : D \hookrightarrow E$, $i_2 : R \hookrightarrow T$. These maps yield a commutative diagram, called a conductor square \Box , which defines R as a pullback of n_1 and i_1 .

$$\begin{array}{ccc} R & \stackrel{i_2}{\longrightarrow} & T \\ n_2 \downarrow & & \downarrow n_1 \\ D & \stackrel{i_1}{\longrightarrow} & E \end{array}$$

LEMMA 1. [11, Lemma 2.2] For conductor square \Box , if I = R : T is a regular ideal, then T is an overring of R.

REMARK 3. (i) Every conductor square \Box is a pullback of type \Box .

(ii) If in conductor square \Box , $R \subseteq T$ is a domain extension, then T is always an overring of R.

LEMMA 2. [17, Lemma 1.1] In a pullback of type \Box , if each maximal ideal of R contains I, then each maximal ideal of T contains I.

Recall that in a Prufer domain if every finitely generated fractional ideal is invertible. Equivalently, an integral domain R is Prufer if R_P is a valuation domain for each $P \in Spec(R)$.

In this study we shall follow the lines of the following results of [17] and [12].

THEOREM 1. [17, Theorem 1.3] In a pullback of type \Box , let I be a prime ideal in T and qf(D) = qf(E). Then R is a Prufer domain (respectively a valuation domain) if and only if D and T are Prufer domains (respectively valuation domains).

COROLLARY 1. [17, Corollary 1.4] Consider a pullback diagram of type \Box in which I is a maximal ideal of T. Then R is a Prufer domain (respectively a valuation domain) if and only if D and T are Prufer domains (respectively valuation domains) and E is quotient field of D.

The following is an example of Prufer pullback which is not a valuation domain.

T. Shah, S. Medhat

EXAMPLE 2. Every nonzero prime ideal is a maximal ideal in $T = \mathbb{Q}[X]$. Take $I = X\mathbb{Q}[X]$, so $T/I \cong \mathbb{Q}$. Further $\mathbb{Z} \cong \{a + I : a \in \mathbb{Z}\} = D \subset T/I$. Then $\varphi : \mathbb{Q}[X] \to \mathbb{Q}[X]/X\mathbb{Q}[X] \cong \mathbb{Q}$ is surjection. Consider $R = \varphi^{-1}(D) = \varphi^{-1}(\{a + I : a \in \mathbb{Z}\}) = \{h(x) \in \mathbb{Q}[X] : h(0) \in \mathbb{Z}\}$. This implies $R = \mathbb{Z} + X\mathbb{Q}[X] \subset \mathbb{Q}[X] = T$. Hence we obtain the following commutative diagram

$$R = \varphi^{-1} (D) \xrightarrow{\alpha} D$$

$$\downarrow \qquad \qquad \downarrow$$

$$T \xrightarrow{\alpha} T/I = E$$

R is a pullback of type \Box and $D \subseteq E$, whereas qf(D) = E and *I* is a maximal ideal in $\mathbb{Q}[X]$. As \mathbb{Z} and $\mathbb{Q}[X]$ are Prufer domains, so $\mathbb{Z} + X\mathbb{Q}[X]$ being Bezout, a Prufer domain (an example on [17, Corollary 1.4]). Further, also it is an example on [17, Theorem 1.3] since none of $\mathbb{Z} + X\mathbb{Q}[X], \mathbb{Q}[X]$ and \mathbb{Z} is a valuation domain.

2. Relative stability of some domain's properties on corners of a pullback

The inclusions $L \subseteq B$, $C \subseteq A$ of Proposition 1 and inclusion $R \subseteq T$ (respectively $D \subseteq E$) in the pullback of type \Box (respectively conductor square \Box) are the main motivation to consider *Condition* 1. In this new scenario the properties of the elements of the unitary commutative rings L, B, C, A (respectively integral domains R, T, D, E) are concern. In [18, 22, 23], there are inquiries for stability (ascent and descent) of some atomic and non atomic classes of integral domains for a domain extension $R \subseteq T$ which satisfy *Condition* 1. The main purpose of this study is to escort the inquiries of [18, 22, 23] and observe the stability of classes of atomic and non atomic domains on all corners of the conductor square \Box under the assumption that the domain extension $R \subseteq T$ satisfies *Condition* 1. However besides this we also added a few more results regarding stability (ascent and descent) of some atomic classes of integral domains for a domain extension $R \subseteq T$ in continuation to [18, 22, 23].

2.1. Some indispensable facts. We begin by the following proposition.

PROPOSITION 2. Let $R \subseteq T$ be a domain extension such that I is an ideal in T (hence $J = I \cap R$ is an ideal in R) and $f : T \longrightarrow T/I$ is the canonical surjection. Then

(1) $R = f^{-1}(R/J)$ is a pullback of type \Box .

(2) If T is integral over R, then T/I is integral over R/J.

Proof. (1) Since I is a nonzero ideal of T and $R/J \subseteq T/I$. Also $T \to T/I$ is surjection, so the result follows by Proposition 1.

(2) It is [5, Proposition 5.6]. \blacksquare

REMARK 4. (i) Let I be a prime ideal in T. Then I is a maximal ideal in T if and only if J is a maximal ideal in R. Indeed, as $R \subseteq T$ and T is integral over R, so T/I is integral over R/J. Now by [5, Proposition 5.7] T/I is a field if and only if R/J is a field.

(ii) Let $R \subseteq T$ be a domain extension, then $q^{-1}(R) = R + XT[X]$ arises as a pullback of the following diagram (see [19]).

$$q^{-1}(R) = R + XT[X] \longrightarrow R$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$T[X] \xrightarrow{q} T$$

(iii) The extension $q^{-1}(R) = R + XT[X] \subseteq T[X]$ satisfies Condition 1 if $R \subseteq T$ does.

(iv) By [9], if I is the common ideal of R and T, then T is an overring of R. Also it follows that $R \to R/I = D$ is the canonical surjection.

The following Theorem provides the necessary and sufficient condition for a vertical inclusion of a pullback of type \Box to satisfy *Condition* 1.

THEOREM 2. In a pullback of type \Box , let I be a nonzero common ideal for R, T, and $\varphi: T \to T/I$ be the canonical surjection. Then $R \subseteq T$ satisfies Condition 1 if and only if $D \subseteq E$ satisfies Condition 1.

Proof. Suppose $R \subseteq T$ satisfies Condition 1. For $s + I \in T/I$, $s \in T$, s = tr, where $t \in U(T)$ and $r \in R$. This means s + I = (t + I)(r + I), whereas $t + I \in U(T/I)$ and $r + I \in R/I$. Hence $D \subseteq E$ satisfies Condition 1.

The converse follows by [18, Proposition 1.2]. \blacksquare

REMARK 5. (i) In the pullback of type \Box of Example 2, we see that the extension $\mathbb{Z} \subset \mathbb{Q}$ satisfies *Condition* 1, so the extension $\mathbb{Z} + X\mathbb{Q}[X] \subset \mathbb{Q}[X]$ does and vice versa.

(ii) In a pullback of type \Box , if I is a maximal ideal in T, then E = T/I is a field and by [18, Example (ii)] $D \subseteq E$ satisfies Condition 1.

The following extends [18, Proposition 1.3] in the perspective of pullback of type \Box .

PROPOSITION 3. In a pullback of type \Box , let $\varphi^{-1}(D) = R \subseteq T$ such that I is a common ideal of R and T. If for each $t \in T \setminus I$, there exists $i \in I$ with $t + i \in U(T)$. Then

(1) I is a maximal ideal in T.

(2) The extension $R \subseteq T$ satisfies Condition 1.

Proof. (1) Let $0 \neq t \in T \setminus I$, then there exists $i \in I$ such that $t + i \in U(T)$. Thus $t + i + I \in U(T/I)$, that is $\varphi(t + i) \in U(T/I)$. So T/I is a field. Hence I is a maximal ideal in T. T. Shah, S. Medhat

(2) If $t \in I$, then t = 1.t, as $1 \in U(T)$. Let $t \in T \setminus I$, then there exists $i \in I$ such that $t+i \in U(T)$, by (1). So we may write $t = (t+i)(t+i)^{-1}t$ and obviously $(t+i)^{-1}t \in R$, as $(t+i)^{-1}t = 1+j$, where $j \in I$.

REMARK 6. In a pullback of type \Box , if $R \subseteq T$ satisfies *Condition* 1, then $(I \cap R)T = I$. Indeed, as I is an ideal of T, so $(I \cap R)T \subseteq IT \subseteq I$. Conversely let $s \in I$, then by *Condition* 1, s = rt, where $t \in U(T)$ and $r \in R$. This implies $r \in I \cap R$ and so $s = rt \in (I \cap R)T$. Hence $I \subseteq (I \cap R)T$.

REMARK 7. In a conductor square \Box , if I = R : T is a maximal in R such that the extension $R \subseteq T$ satisfies *Condition* 1, then I is a maximal in T. Indeed, let $s \in T \setminus I$, then s = tr, where $t \in U(T)$ and $r \in R$. Whereas $r \notin I$, because if $r \in I$, then $s = tr \in I$, which cause a contradiction. Now $\varphi(r)$ is unit in R/I. Thus $\varphi(s) = \varphi(t)\varphi(r)$ is unit in T/I. Hence I is a maximal in T.

2.2. Atomic generalizations of a UFD. The following extends a part of [18, Proposition 2.6].

PROPOSITION 4. In a conductor square \Box , let the domain extension $R \subseteq T$ satisfies Condition 1 and I = R : T is a maximal ideal in R. Then R is atomic (respectively has ACCP, BFD and an HFD) if and only if D and T are atomic (respectively have ACCP, BFD and an HFD).

Proof. R is atomic (respectively has ACCP, BFD and an HFD) if and only if T is atomic (respectively has ACCP, BFD and an HFD) follows by [18, Proposition 2.6]. D being a field is an atomic domain, has ACCP, a BFD and an HFD.

REMARK 8. In Proposition 4 E being a field is atomic, has ACCP, BFD and an HFD.

2.3. Valuation domain and its generalizations. By [16], an integral domain R with quotient field K is said to be a *pseudo-valuation domain* (PVD), if whenever P is a prime ideal in D and $xy \in P$, where $x, y \in K$, then $x \in P$ or $y \in P$ (i.e. in a PVD every prime ideal is strongly prime). Equivalently an integral domain R with quotient field K is said to be a PVD if for any nonzero element $x \in K$, either $x \in R$ or $ax^{-1} \in R$ for every non unit $a \in R$. A valuation domain is a PVD but the converse is not true, for example the PVD $\mathbb{R} + X\mathbb{C}[[X]]$, which is not a valuation domain.

By [2] an integral domain R is said to be an *almost valuation domain* (AVD) if for every nonzero $x \in K$, there exists an integer $n \ge 1$ (depending on x) with $x^n \in R$ or $x^{-n} \in R$. Equivalently the domain R is said to be an AVD if for each pair $a, b \in R$, there is a positive integer n = n(a, b) such that $a^n | b^n$ or $b^n | a^n$. A valuation domain is an AVD but converse is not true. For example if F is a finite field, then $R = F + X^2 F[[X]]$ is a non valuation AVD (cf. [7, Example 3.8]).

By [6], an integral domain R is said to be an almost pseudo valuation domain (APVD) if and only if R is quasilocal with maximal ideal M such that for every nonzero element $x \in K$, either $x^n \in M$ for some integer $n \ge 1$ or $ax^{-1} \in M$ for every nonunit $a \in R$. Equivalently a prime ideal P of R is a strongly primary ideal,

if $xy \in P$, where $x, y \in K$ implies that either $x^n \in P$ for some integer $n \geq 1$ or $y \in P$. If each prime ideal of R is strongly primary ideal, then R is an APVD. For example $R = \mathbb{Q} + X^4 \mathbb{Q}[[X]]$ is an APVD (cf. [6, Example 3.9]) which is not a PVD.

By [7] a prime ideal P of an integral domain R is said to be a *pseudo-strongly* prime ideal if, whenever $x, y \in K$ and $xyP \subseteq P$, then there is an integer $m \ge 1$ such that either $x^m \in R$ or $y^mP \subseteq P$. If each prime ideal in an integral domain Ris a *pseudo-strongly prime ideal*, then R is called a *pseudo-almost valuation domain* (*PAVD*). Equivalently an integral domain R is a PAVD if and only if for every nonzero element $x \in K$, there is a positive integer $n \ge 1$ such that either $x^n \in R$ or $ax^{-n} \in R$ for every nonunit $a \in R$. For example if F is a finite field, and H = F[[X]], then $R = F + FX^2 + X^4F[[X]]$ is a PAVD (cf. [7, Example 3.8]).

In general

				quasilocal
				↑
AVD		\Rightarrow		PAVD
↑				↑
VD	\Rightarrow	PVD	\Rightarrow	APVD

but none of the above implications is reversible.

We readjust [18, Lemma 1.7] as follows.

LEMMA 3. [18, Lemma 1.7] In a pullback of type \Box , let I be the common ideal in R and T. Then $R = \varphi^{-1}(\varphi(R))$, where $\varphi: T \to T/I$ is the canonical surjection.

Proof. Clearly $R \subseteq \varphi^{-1}(\varphi(R))$. Conversely, let $x \in \varphi^{-1}(\varphi(R))$, so $\varphi(x) \in \varphi(R)$ and therefore $\varphi(x) = \varphi(r)$ for some $r \in R$. This means $x - r \in I$ and therefore $x \in R$. Hence $\varphi^{-1}(\varphi(R)) \subseteq R$.

Following Zafrullah [24], an element x of an integral domain R is said to be rigid if whenever $r, s \in R$ and r and s divides x, then s divides r or r divides s. The domain R is said to be semirigid domain if every nonzero element of R can be expressed as a product of a finite number of rigid elements.

The following is an improved form of [18, Theorem 2.10].

THEOREM 3. In a conductor square \Box , let $R \subseteq T$ satisfies Condition 1 and I = R : T is the maximal ideal in R. If R is a semirigid-domain, then T is a semirigid-domain.

Proof. Suppose R is a semirigid-domain. Let $x \in T$, so either $x \in I$ or $x \in T \setminus I$. The case $x \in I$ is trivial. If $x \in T \setminus I$, then by *Condition* 1, x = ru, where $r \in R$, $u \in U(T)$. But R is semirigid-domain, so $r = r_1r_2\cdots r_n$ is a product of rigid elements in R and therefore by [18, Theorem 2.8(b)] $x = (ur_1)r_2..r_n$ is the product of rigid elements in T. Hence T is a semirigid-domain.

In the rest of the discussion we assume that I = R : T is a prime ideal.

For the sake of a quick reference we state the following lemma.

LEMMA 4. [14, Lemma 4.5(i)] Let R be a PVD and P is its prime ideal. Then R/P is a PVD.

THEOREM 4. Let $R \subseteq T$ be the domain extension which satisfies Condition 1. If R is a PVD, then T is a PVD.

Proof. Let $a, b \in T$ such that $x = \frac{a}{b} \in qf(T)$ with $b \neq 0$. So $a = a_1a_2, b = b_1b_2$, where $a_1, b_1 \in R$ and $a_2, b_2 \in U(T)$. This implies $x_1 = \frac{a_1}{b_1} \in qf(R)$, where $b_1 \neq 0$. Since R is a PVD, therefore either $x_1 = \frac{a_1}{b_1} \in R$ or $rx_1^{-1} = r\frac{b_1}{a_1} \in R$, where r is nonzero nonunit in R. If $x_1 \in R$ and $x_2 = \frac{a_2}{b_2} \in U(T)$, then $x \in T$. If $rx_1^{-1} \in R$ and $x_2 = \frac{a_2}{b_2} \in U(T)$ (hence $x_2^{-1} = \frac{b_2}{a_2} \in U(T)$), then $rx^{-1} \in T$, whereas $r \notin U(T)$.

REMARK 9. In the proof of Theorem 4 if $r \in U(T)$, then T must be a valuation domain.

REMARK 10. The converse of Theorem 4 does not hold. For example in the domain extension $\mathbb{Z} + X\mathbb{Q}[[X]] \subset \mathbb{Q}[[X]]$ which satisfies *Condition* 1, $\mathbb{Q}[[X]]$ is a DVR and hence a PVD, but $\mathbb{Z} + X\mathbb{Q}[[X]]$ is not a PVD.

In the following we extend [17, Theorem 1.3] for PVDs with the addition of $Condition \ 1.$

THEOREM 5. In a conductor square \Box , let the domain extension $R \subseteq T$ satisfy Condition 1 such that I = R : T is contained in the maximal ideal M of R and qf(D) = qf(E). Then T and D are PVDs if and only if R is a PVD.

Proof. Assume that T and D are PVDs. It is known that: M is a maximal ideal of R if and only if M/I is a maximal ideal of D. Let $x \in qf(R) = qf(T)$; then either $x \in T$ or $tx^{-1} \in T$, where $t \in T \setminus U(T)$.

If $x \in T \setminus R$, we have $x = x_1 x_2$, where $x_1 \in R$ and $x_2 \in U(T)$. So $\varphi(x_1) \in D$, $\varphi(x_2) \in U(E)$. Since D is a PVD, therefore by [16, Theorem 1.5(3)], $\varphi(x_2)^{-1} M/I \subseteq M/I$, that is $\varphi(x_2)^{-1} (m+I) \in M/I$, $(m+I) \in M/I$. This implies $x_2^{-1}m \in M$, $\varphi(m) = (m+I) \in M/I$ for some $m \in M$. So $x_1 x_1^{-1} x_2^{-1}m = x_1 m x^{-1} = a x^{-1} \in M$, where $x_1 m = a \in R \setminus U(R)$, which shows that M is strongly prime.

If $tx^{-1} \in T \setminus R$, then $tx^{-1} = ru$, where $r \in R$ and $u \in U(T)$. So $\varphi(r) \in D$, $\varphi(u) \in U(E)$. Since D is a PVD, therefore by [16, Theorem 1.5(3)] $\varphi(u)^{-1} M/I = \varphi(u^{-1}) M/I \subseteq M/I$ if and only if $u^{-1}M \subseteq M$. This implies $u^{-1}m = rr^{-1}u^{-1}m = rm (ru)^{-1} = r_1 (tx^{-1})^{-1} = r_1t^{-1}x \in M$, where $m, r_1 = rm \in M$. This implies M is a strongly prime ideal, as $t^{-1}x \in qf(R)$ and hence R is a PVD.

Conversely, by Theorem 4 T is a PVD whenever R is a PVD. By [14, Lemma 4.5(i)], if R is a PVD, then D = R/I is a PVD.

The following examples are through the D + M construction as elaborated in [10, Theorem 2.1].

REMARK 11. [4, Example 3.12] (i) In Theorem 4 there is no need to assume

that qf(D) = qf(E). For instance in the conductor square \Box

I = R : T = XC(t)[[X]] and $R \subseteq T$ satisfies Condition 1. Indeed, let $f = f_1 + Xf_2(X) \in T$. In this pullback $qf(D) \neq qf(E)$ but R, T and D are HFDs.

(ii) Let K be the field. The following is a conductor square \Box .

$$R = K + XK(Y)[[X]] \longrightarrow K$$

$$\downarrow \qquad \qquad \downarrow$$

$$T = K(Y)[[X]] \longrightarrow K(Y)$$

Whereas I = R : T = XK(Y)[[X]] is a maximal ideal in R and $R \subseteq T$ satisfies Condition 1. R is a PVD but T and K are DVRs. However $qf(D) \neq qf(E)$.

THEOREM 6. Let $R \subseteq T$ be the domain extension which satisfies Condition 1. If R is an AVD, then T is an AVD.

Proof. Let $x = \frac{a}{b} \in qf(T)$, $a, b \in T$. We may consider $a = a_1a_2, b = b_1b_2$, where $a_1, b_1 \in R$ and $a_2, b_2 \in U(T)$. Of course $\frac{a_1}{b_1} \in qf(R)$ and R is an AVD, so either $(\frac{a_1}{b_1})^n \in R$ or $(\frac{a_1}{b_1})^{-n} \in R$, where $n \ge 1$ be an integer. Similarly $u = \frac{a_2}{b_2} \in$ U(T) implies either $(\frac{a_1}{b_1}u)^n = x^n \in T$ or $(\frac{a_1}{b_1}u)^{-n} = x^{-n} \in T$.

REMARK 12. [4, Example 3.12] Let F be a finite field, and H = F(X) be the quotient field of F[X]. $R = F + Y^3 H[[Y]]$ is not an AVD but $V = H + Y^3 H[[Y]]$ is an AVD (cf. [7. Example 2.20]). Obviously $R \subseteq V$ satisfies Condition 1.

PROPOSITION 5. Let R be an AVD and P is a prime ideal of R. Then R/P is an AVD.

Proof. R is a quasilocal domain if and only if for any $a, b \in R$ either $a \mid b^n$ or $b \mid a^n$ for some $n \geq 1$, by [7, Proposition 2.7]. Now for x = a + P, $y = b + P \in R/P$, suppose that $x \nmid y^n$ for some integers $n \geq 1$. This implies that $a \nmid b^n$ for some $n \geq 1$. Therefore $b \mid a^n$ for some integers $n \geq 1$. This implies $y \mid x^n$ for some integers $n \geq 1$. This implies $y \mid x^n$ for some integers $n \geq 1$. Therefore $b \mid a^n$ for some integers $n \geq 1$. This implies $y \mid x^n$ for some integers $n \geq 1$. Thus R/P is quasilocal as well as AB-domain, by [2. Theorem 4.10]. Hence by [2, Theorem 5.6] R/P is an AVD.

THEOREM 7. In a conductor square \Box , let the domain extension $R \subseteq T$ satisfies Condition 1 such that I = R : T is the conductor ideal and qf(D) = qf(E). Then T and D are AVDs if and only if R is an AVD.

Proof. Assume that T and D are AVDs. Let $a \in qf(R) = qf(T)$, then either a^n or $a^{-n} \in T$.

(i) Consider $a^n \in T$, so by *Condition* 1, we have $a^n = a_1a_2$, where $a_1 \in R$ and $a_2 \in U(T)$. Then $\hat{a}_1 = \varphi(a_1) \in D$ and $\hat{a}_2 = \varphi(u_2) \in U(E)$. Since D is an AVD, therefore $\hat{a}_2^p \in D$ or $\hat{a}_2^{-p} \in D$, where p is a positive integer. This implies $a_2^p = \varphi^{-1}(\hat{a}_2^p) \in R$ and hence $a_1^p a_2^p = a^{np} \in R$.

Now if $\hat{a}_2^{-p} \in D$, then $a_2^{-p} = \varphi^{-1}(\hat{a}_2^{-p}) \in R$. We claim $a_1^{-p} \notin R$, if not, then $a_1^{-p} \in R$, and we may have $a_1^{-p} a_2^{-p} = a^{-np} \in R \subset T$, a contradiction to the fact that $a^{-n} \notin T$. Thus $a^{-np} \notin R$ and $\hat{a}_2^{-p} \notin D$.

(ii) Now if $a^{-n} \in T$, then by *Condition* 1, we have $a^{-n} = a_1 a_2$, where $a_1 \in R$ and $a_2 \in U(T)$. This means $\hat{a}_1 = \varphi(a_1) \in D$ and $\hat{a}_2 = \varphi(a_2) \in U(E)$. As Dis an AVD, so $\hat{a}_2^p \in D$ or $\hat{a}_2^{-p} \in D$, where p is a positive integer. This implies $a_2^p = \varphi^{-1}(\hat{a}_2^p) \in R$. This implies $a_1^p a_2^p = a^{-np} \in R$. If $\hat{a}_2^{-p} \in D$, then $a_2^{-p} = \varphi^{-1}(\hat{a}_2^{-p}) \in R$. We claim that $a_1^{-p} \notin R$; if not then $a_1^{-p} a_2^{-p} = a^{np} \in R \subset T$, which contradict to the fact that $a^n \notin T$. Thus $a^{np} \notin R$ and $\hat{a}_2^{-p} \notin D$.

Conversely, by Theorem 6, T is an AVD whenever R is an AVD. Hence it followed by Proposition 5 that D is an AVD. \blacksquare

THEOREM 8. Let the domain extension $R \subseteq T$ satisfies Condition 1 such that I = R : T is contained in the maximal ideal M of R. If R is an APVD, then T is an APVD.

Proof. Let $x = \frac{a}{b} \in qf(T)$, where $a, b \in T$. By Condition 1 $a = a_1a_2, b = b_1b_2$, where $a_1, b_1 \in R$ and $a_2, b_2 \in U(T)$. This implies $\frac{a_1}{b_1} \in qf(R)$. Since R is an APVD with maximal ideal M, then either $(\frac{a_1}{b_1})^n \in M$ for $n \ge 1$, or $r(\frac{a_1}{b_1})^{-1} \in M$, where $r \in R \setminus U(R)$ and say $u = \frac{a_2}{b_2} \in U(T)$. Let N be the maximal ideal of T such that $N \cap R = M$. Therefore either $(\frac{a_1}{b_1}u)^n \in N$ or $r(\frac{a_1}{b_1}u)^{-1} \in N$, where $r \in T \setminus U(T)$.

REMARK 13. In the proof of Theorem 8 if $r \in U(T)$, then T must be a valuation domain.

EXAMPLE 3. [4, Example 3.12] Let F be a finite field and H = F(X) is the quotient field of F[X]. $R = F + Y^2 H[[Y]]$ is not an APVD but $T = F + FY + Y^2 H[[Y]]$ is an APVD. Whereas $R \subseteq T$ does not satisfy *Condition* 1.

By [6], let S be a subset of an integral domain R with quotient field K, then $E(S) = \{x \in K : x^n \notin S \text{ for every integer } n \ge 1\}.$

PROPOSITION 6. An integral domain R is an APVD if and only if for every $x \in E(R)$ such that $ax^{-1} \in R$ for every nonunit $a \in R$.

Proof. Suppose that R is an APVD. Then R is a quasilocal by [6, Proposition 3.2]. Let M be the maximal ideal of R and $x \in E(R)$. Then by [6, Lemma 2.3] $x^{-1}M \subseteq M \subseteq R$. Conversely, assume that for every $x \in E(R)$ such that $ax^{-1} \in R$ for every nonunit $a \in R$. Let a, b be nonzero nonunit elements of R. Suppose that $a \nmid b^n$ in R for every $n \ge 1$. Then $x = b/a \in E(R)$. Hence, by hypothesis $cx^{-1} \in R$ for every nonunit c of R. In particular $a^2/b = ax^{-1} \in R$. Then $b \mid a^2$ in R. Thus by [7, Proposition 2.7], the prime ideals of R are linearly ordered. Hence R is quasilocal. Thus, by hypothesis, $ax^{-1} \in R$ for every $a \in M$. Since M is the only maximal ideal of R and $x \in E(R)$, we conclude that $ax^{-1} \in M$ for every

 $a \in M$. By [6, Lemma 2.3]BH, M is a strongly prime ideal of R. Hence R is an APVD, by [6, Theorem 3.4(2)]BH.

In the following we restate Proposition 6.

PROPOSITION 7. An integral domain R is an APVD if and only if for every $a, b \in R$ either $a^n \mid b^n$ in R for some $n \ge 1$ or $b \mid ca$ in R for every nonunit c of R.

PROPOSITION 8. Let R be an APVD and P is a prime ideal of R. Then R/P is an APVD.

Proof. Let R be an APVD and P is a prime ideal of R. Set D = R/P and let $x, y \in D$. Then x = a + P and y = b + P for some $a, b \in R$. Suppose that $x^n \nmid y^n$ in D for every positive integer $n \ge 1$. Then, $a^n \nmid b^n$ in R for every positive integer $n \ge 1$. Thus by Proposition 7, $b \mid ca$ in R for every nonunit c of R. Thus $y \mid zx$ for every nonunit z of D. Hence by Proposition 7, D is an APVD.

THEOREM 9. In a conductor square \Box , let the domain extension $R \subseteq T$ satisfy Condition 1 such that I = R : T contained in the maximal ideal M of R and qf(D) = qf(E). Then T and D are APVDs if and only if R is an APVD.

Proof. Assume that T and D are APVDs. As $I \subseteq M$, so $M/I = \varphi(M)$ is maximal ideal of D. For $x \in E(R)$, we have the following possibilities:

(i) If $x \in T \setminus R$, then $x = x_1 x_2$, where $x_1 \in R$, $x_2 \in U(T)$. So $\hat{x}_1 \in D$, $\hat{x}_2 \in U(E)$. By [6, Lemma 2.3]BH $(\hat{x}_2)^{-1}M/I \subseteq M/I$. This implies $(x_2)^{-1}M \subseteq M$, this means $x_1(x_1)^{-1}(x_2)^{-1}m = x_1(x_1x_2)^{-1}m = rx^{-1} \in M$, where $x_1m = r \in R \setminus U(R)$, $m \in M$.

(ii) If $x \in qf(T) \setminus T$, then either $x^n \in N$ or $tx^{-1} \in N$, $t \in T \setminus U(T)$, where N is maximal in T. (a) If $x^n \in N$ and $N \cap R = M$, the maximal ideal in R. Using Condition 1, $x^n = ru$, where $r \in R$ and $u \in U(T)$. This implies $\varphi(r) \in D$ and $\varphi(u) \in U(E)$. Either $\varphi(u)^t \in M/I$ or $d\varphi(u)^{-1} \in M/I$, t > 0 and $d \in D \setminus U(D)$.

If $\varphi(u)^t \in M/I$, so $\varphi(r)^t \varphi(u)^t = \varphi(ru)^t = \varphi(x^n)^t = \varphi(x^{nt}) \in M/I$. This implies $x^{nt} \in M$, a contradiction. Now, if $d\varphi(u)^{-1} \in M/I$, then there exists $m \in M$ such that $d = \varphi(m)$. This implies $\varphi(m)\varphi(u)^{-1} \in M/I$. This means $mu^{-1} = rr^{-1}mu^{-1} = m_1(ru)^{-1} = m_1x^{-n} \in M$, where $m_1 = rm \in M$.

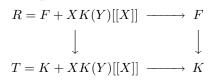
(b) Finally; if $tx^{-1} \in N$. We have $tx^{-1} = ru$, $r \in R$ and $u \in U(T)$. This implies $\varphi(r) \in D$ and $\varphi(u) \in U(E)$. Then by [6, Lemma 2.3] $\varphi(u)^{-1}M/I = \varphi(u^{-1})M/I \subseteq M/I$, this implies $u^{-1}M \subseteq M$, and $u^{-1}m = rr^{-1}u^{-1}m = r(ru)^{-1}m = r_1(ru)^{-1} = r_1(tx^{-1})^{-1} \in M$, where $m, r_1(=rm) \in M$. Thus M becomes strongly primary. Hence R is an APVD.

Conversely by Theorem 8, T is an APVD whenever R is an APVD.

By Proposition 8, D is an APVD.

EXAMPLE 4. [4, Example 3.12] Let $F \subset K$ be a field extension, where K is

the root extension of F. The pullback



is of type \Box , whereas I = R : T = XK(Y)[[X]] and $R \subseteq T$ satisfies Condition 1. R is an APVD if and only if T is a PVD. Whereas $qf(D) = F \neq K = qf(E)$.

We state the following proposition from [7] for the sake of completeness.

PROPOSITION 9. [7, Proposition 2.14] Let R be a PAVD and P be a prime ideal of R. Then R/P is a PAVD.

THEOREM 10. Let $R \subseteq T$ be a domain extension which satisfies Condition 1. If R is PAVD, then T is PAVD.

Proof. Let $x = \frac{a}{b} \in qf(T)$, $a, b \in T$. By *Condition* 1 $a = a_1a_2, b = b_1b_2$, where $a_1, b_1 \in R$, $a_2, b_2 \in U(T)$. This implies $\frac{a_1}{b_1} \in qf(R)$ and so either $(\frac{a_1}{b_1})^n \in R$ or $r(\frac{a_1}{b_1})^{-n} \in R$, where n > 0, $r \in R \setminus U(R)$, $u = \frac{a_2}{b_2} \in U(T)$. Hence either $(\frac{a_1}{b_1}u)^n \in T$ or $t(\frac{a_1}{b_1}u)^{-n} \in T$, where t = rq, where $t, q \in T \setminus U(T)$. \blacksquare

EXAMPLE 5. In domain extension $\mathbb{C}[[X^2, X^5] \subseteq \mathbb{C}[[X^2, X^3]], \mathbb{C}[[X^2, X^3]]$ is a PAVD but $\mathbb{C}[[X^2, X^5]]$ is not a PAVD. So descent does not hold.

THEOREM 11. In a conductor square \Box , let the domain extension $R \subseteq T$ satisfy Condition 1 such that I = R : T contained in the maximal ideal M of R and qf(D) = qf(E). Then T and D are PAVDs if and only if R is a PAVD.

Proof. Assume that T and D are PAVDs. As $I \subseteq M$, so $M/I = \varphi(M)$ is a maximal ideal of D. For $x \in E(R)$, we have the following possibilities:

(i) If $x \in T \setminus R$, then $x = x_1 x_2$, where $x_1 \in R, x_2 \in U(T)$. This implies $\hat{x}_1 = \varphi(x_1) \in D$, $\hat{x}_2 = \varphi(x_2) \in U(E)$. Then by [7, Lemma 2.1] $(\hat{x}_2)^{-n}M/I \subseteq M/I$, and hence $\varphi^{-1}((\hat{x}_2)^{-n}M/I) \subseteq M$. This implies $x_2^{-n}m = x_1^n x_1^{-n} x_2^{-n}m = m_1 x^{-n} \in M$, where $m, m_1 \in M$. Thus M is a pseudo-strongly prime ideal.

(ii) If $x \in Q(T) \setminus T$, then $x^n \in T$ or $tx^{-n} \in T$, for $t \in T \setminus U(T)$ and n > 0. (a) If $x^n \in T$, then $x^n = x_1 x_2$; where $x_1 \in R$ and $x_2 \in U(T)$. This implies $\varphi(x_1) \in D$ and $\varphi(x_2) \in U(E)$. By [7, Lemma 2.1] $\varphi(x_2)^{-k}M/I \subseteq M/I$, for an integer $k \ge 0$ and hence $x_2^{-k}M \subseteq M$. This implies $x_2^{-k}r = x_1^k x_1^{-k} x_2^{-k}r = r_1 x^{-kn} \in M$, for $r, r_1 = x_1^k r \in M$. Hence M is a pseudo-strongly prime ideal.

(b) Finally, if $tx^{-n} \in T$, then $tx^{-n} = ru$, where $r \in R$ and $u \in U(T)$. This implies $\varphi(r) \in D$ and $\varphi(u) \in U(E)$. By [7, Lemma 2.1] $\varphi(u)^{-k} M/I \subseteq M/I$, for an integer k > 0 and hence $u^{-k}M \subseteq M$. This implies $u^{-k}m = r^k r^{-k}u^{-k}m = m_1(tx^{-n})^{-k} \in M$, where $m, m_1(=r^km) \in M$. Thus M is a pseudo-strongly prime ideal. Hence R is a PAVD.

Conversely by Theorem 10, T is a PAVD whenever R is a PAVD. By [7, Proposition 2.14], if R is a PAVD, then D = R/I is a PAVD.

122

REFERENCES

- D.D. Anderson, D.F. Anderson, M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra, 69 (1990), 1–19.
- [2] D.D. Anderson, M. Zafrullah, Almost Bezout domains, J. Algebra, 142 (1991), 285–309.
- [3] D.D. Anderson, D.F. Anderson, M. Zafrullah, Factorization in integral domains, II, J. Algebra 152 (1992), 78–93.
- [4] D.F. Anderson, D.E. Dobbs, Pairs of rings with the same prime ideals, Can. J. Math. XXXII, 2 (1980), 362–384.
- [5] M.F. Atiyah, I.G. McDonald, Introduction to Commutative Algebra, Addison-Wesely, 1969.
- [6] A. Badawi, E. Houston, Powerful ideals, strongly primary ideals, almost pseudo-valuation domain and conducive domain, Comm. Algebra, 30, 4 (2002), 1591–1606.
- [7] A. Badawi, On pseudo-almost valuation domains, Comm. Algebra, 35 (2007), 1167–1181.
- [8] A. Badawi, On rings with divided nil ideal: a survey, Commutative Algebra Appl., (21–40), Walter De Gruyter, Germany, 2009.
- [9] E. Baghdadi, On the class group of pullback, J. Pure Appl. Algebra 169 (2002), 159-173.
- $[{\bf 10}]\,$ E. Bastida, R. Gilmer, Overrings and divisorial ideals of rings of the form D+M, Michigan Math. J. ${\bf 20}$ (1973), 79–95.
- [11] J. Boynton, Pullback of arithmetical rings, Comm. Algebra, 35, 9 (2007), 2671–2684.
- [12] J. Brewer, E. Rutter, D + M constructions with general overrings, Michigan Math. J. 23 (1976), 33–42.
- [13] P.M. Cohn, Bezout rings and their subrings, Proc. Camb. Phil. Soc., 64 (1968), 251–264.
- [14] D.E. Dobbs, Coherence, ascent of going-down, and pseudo-valuation domains, Houston J. Math. 4 (1978), 551–567.
- [15] A. Grams, Atomic domains and the ascending chain condition for principal ideals, Proc. Camb. Phil. Soc. 75 (1974), 321–329.
- [16] J.R. Hedstrom, E.G. Houston, Pseudo-valuation domains, Pacific J. Math. 4 (1978a), 551– 567.
- [17] E. Houston, J. Taylor, Arithmetic properties in pullbacks, J. Algebra, 310 (1) (2007), 235–260.
- [18] N. Radu, S. Ibrahim, T. Shah, Ascend and descend of factorization properties, Rev. Roumaine Math. Pures Appl, 45, 4 (2000), 659–669.
- [19] N. Radu, M. Zafrullah, T. Dumitrescu, Primes that become primal in a pullback, Internat. J. Comm. Rings, 1 (2002), 201–213.
- [20] M. Roitman, Polynomial extension of atomic domains, J. Pure Appl. Algebra 87 (1993), 187–199.
- [21] J. Rotman, An Introduction to Homological Algebra, Academic press, 1979.
- [22] T. Shah, A note on ascend and descend of factorization properties, Bull. Kor. Math. Soc. 43, 2 (2006), 419–424.
- [23] T. Shah, Relative ascent and descent in a domain extension, Int. Elec. J. Algebra, 7 (2010), 34–46.
- [24] M. Zafrullah, Semirigid GCD-domains, Manuscripta Math. 17 (1975), 55-66.
- [25] M. Zafrullah, On a property of pre-Schreier domains, Comm. Algebra. 15, 9 (1987), 1895– 1920.
- [26] A. Zaks, Half-factorial domain, Bull. Amer. Math. Soc. 82 (1976), 721-723.
- [27] A. Zaks, Atomic rings without a.c.c. on principal ideals, J. Algebra 74 (1982), 223–231.

(received 29.10.2010; in revised form 01.03.2011; available online 20.04.2011)

Department of Mathematics, Quaid-i-Azam University, Islamabad-Pakistan *E-mail*: stariqshah@gmail.com, sadia_midhat@hotmail.com