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STABILITY OF SOME INTEGRAL DOMAINS ON A PULLBACK

Tariq Shah and Sadia Medhat

Abstract. Let I be a nonzero ideal of an integral domain T and let ϕ : T → T/I be the
canonical surjection. If D is an integral domain contained in T/I, then R = ϕ−1 (D) arises as a
pullback of type ¤ in the sense of Houston and Taylor such that R ⊆ T is a domains extension.
The stability of atomic domains, domains satisfying ACCP, HFDs, valuation domains, PVDs,
AVDs, APVDs and PAVDs observed on all corners of pullback of type ¤ under the assumption
that the domain extension R ⊆ T satisfies Condition 1 : For each b ∈ T there exist u ∈ ∪ (T ) and
a ∈ R such that b = ua.

1. Introduction and preliminaries

Following Cohn [13], an integral domain R is said to be atomic if each nonzero
nonunit element of R is a product of a finite number of irreducible elements (atoms)
of R. The illustrious examples of atomic domains are UFDs and Noetherian do-
mains. An integral domain R satisfies the ascending chain condition on principal
ideals (ACCP ) if there does not exist any strict ascending chain of principal ideals
of R. An integral domain R satisfies ACCP if and only if R[{Xα}] satisfies ACCP
for any family of indeterminates {Xα} (cf. [1, p. 5]). However, the polynomial ex-
tension an atomic domain is not an atomic domain (see [20]). A domain satisfying
ACCP is an atomic domain but the converse does not hold (see [15, 27]).

By [1], an atomic domain R is a bounded factorization domain (BFD) if for
each nonzero nonunit element x of R, there is a positive integer N(x) such that
whenever x = x1 · · ·xn, a product of irreducible elements of R, then n ≤ N(x). The
best known examples of BFDs are Noetherian and Krull domains [1, Proposition
2.2]. Also, in general a BFD satisfies ACCP but the converse is not true (cf. [1,
Example 2.1]).

Following Zaks [26], an atomic domain R is a half-factorial domain (HFD)
if for each nonzero nonunit element x of R, if x = x1 · · ·xm = y1 · · · yn with each
xi, yj irreducible in R, then m = n. Obviously a UFD is an HFD. A Krull domain
R is an HFD if divisor class group Cl(R) ∼= 0 or Cl(R) ∼= Z2. An HFD is a BFD
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(see [1]). By [1, Page 11], if R[Y ] is an HFD, then certainly R is an HFD. However,
R[Y ] need not be an HFD if R is an HFD. For example R = R + XC[X] is an
HFD, but R[Y ] is not an HFD, as (X(1 + iY ))(X(1 − iY )) = X2(1 + Y 2) are
decompositions into atoms of different lengths (cf. [1, p. 11]).

By [1], an integral domain R is known as an idf-domain if each nonzero nonunit
element of R has at most a finite number of non-associate irreducible divisors. UFDs
are examples of idf-domains. But there are idf-domains which are not even atomic.
Moreover, the Noetherian domain R + XC[X] is an HFD but not an idf-domain
(cf. [1, Example 4.1(a)]).

By [1], an atomic domain R is a finite factorization domain (FFD) if each
nonzero nonunit element of R has a finite number of non-associate divisors. Hence
it has only a finite number of factorizations up to order and associates. Further,
an integral domain R is an FFD if and only if R is an atomic idf-domain (cf. [1,
Theorem 5.1]).

Following Cohn [13], an element x of an integral domain R is said to be primal
if x divides a product a1a2; a1, a2 ∈ R, then x can be written as x = x1x2 such
that xi divides ai, i = 1, 2. An element whose divisors are primal elements is called
completely primal. An integral domain R is a pre-Schreier if every nonzero element
x of R is primal. An integrally closed pre-Schreier domain is known as Schreier
domain. By [13], any GCD-domain (an integral domain in which every pair of
elements has a greatest common divisor) is a Schreier domain but the converse is
not true.

By [24], an element x of an integral domain R is said to be rigid if whenever
r, s ∈ R and r, s divide x, then s divides r or r divides s. An integral domain R is
said to be a semirigid domain if every nonzero element of R can be expressed as a
product of a finite number of rigid elements.

We recall from [25] that: Let R be an integral domain.

property-∗: (∩i(ai))(∩j(bj)) = ∩i,j(aibj) for all ai, bj ∈ R, where i = 1, . . . , m
and j = 1, . . . , n.

property-∗∗: ((a) ∩ (b))((c) ∩ (d)) = (ac) ∩ (ad) ∩ (bc) ∩ (bd), where a, b, c,
d ∈ R∗.

An integral domain R is called ∗-domain (respectively ∗∗-domain) if it satisfies
property -∗ (respectively property-∗∗). An integral domain R is said to be a locally
∗-domain if for each maximal ideal M , RM has property-∗.

Condition 1. The whole study in [18, 22, 23] is based on a property for a
unitary commutative ring (respectively domain) extension, known as Condition 1.
In [18, 22, 23] the stability (ascent and descent) of UFDs, atomic domains, domains
satisfying ACCP, FFDs, BFDs, HFDs, RBFDs, CK-domains, BVDs, CHFDs,
idf-domains, a particular case of LHFDs, valuation domains, semirigid domains,
PVDs and GCD-domains, Schreier domains, pre-Schreier domains, ∗-domains, ∗∗-
domains, locally ∗-domains has been observed for a domain extension R ⊆ T which
satisfy Condition 1. In most of the situations the assumption that works is, the
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conductor ideal R : T = {x ∈ R : xT ⊆ R}, the largest common ideal of R and T ,
is maximal in R.

Condition 1 : “Let R ⊆ T be a unitary commutative ring (respectively domain)
extension. For each b ∈ T there exists u ∈ U (T ) and a ∈ R such that b = ua.”

The followings are a few examples of unitary (commutative) ring extensions
which satisfy Condition 1.

Example 1. [18, Example 1] (a) If T is a field, then the unnitart ommutative
ring extension R ⊆ T satisfies Condition 1.

(b) If T is a fraction ring of the ring R, then the ring extension R ⊆ T satisfies
Condition 1. Hence Condition 1 generalizes the concept of localization.

(c) If the ring extensions R ⊆ T and T ⊆ W satisfy Condition 1, then so does
the ring extension R ⊆ W .

(d) If the ring extension R ⊆ T satisfies Condition 1, then the unitary com-
mutative ring extensions R+XT [X] ⊆ T [X] and R+XT [[X]] ⊆ T [[X]] also satisfy
Condition 1.

The following remark provides examples of domain extensions R ⊆ T satisfying
Condition 1, where the conductor ideal R : T is a maximal ideal of R.

Remark 1. (i) Let F ⊂ K be any field extension, the domain extension
F + XK[X] ⊆ K[X] (respectively F + XK[[X]] ⊆ K[[X]]) satisfies Condition 1,
where the conductor ideal F +XK[X] : K[X] (respectively F +XK[[X]] : K[[X]])
is maximal ideal in F + XK[X] (respectively in F + XK[[X]]).

(ii) Let F ⊂ K be a field extension, where K is a root extension of F and K(Y )
is the quotient field of K[Y ]; then R = F + XK(Y )[[X]] ⊆ K + XK(Y )[[X]] = T
satisfies Condition 1 and R : T = XK(Y )[[X]] is the maximal ideal in R.

There are a number of examples of domain extensions R ⊆ T satisfying
Condition 1, where the conductor ideal R : T is not a maximal ideal of R. The
following remark shows a few of those.

Remark 2. (i) Let V be a valuation domain such that its quotient field K
is the countable union of an increasing family {Vi}i∈I of valuation overrings of V .
Let L be a proper field extension of K with L∗/K∗ infinite. The it follows by [3,
Example 5.3] that:

(a) The domain extension Vi + XL[[X]] ⊆ L[[X]] satisfies Condition 1 since
the extension Vi ⊆ L satisfies Condition 1. But XL[[X]] is not a maximal ideal of
Vi + XL[[X]]. Also note that U(Vi + XL[[X]]) 6= U(L[[X]]).

(b) The domain extension Vi + XL[[X]] ⊆ K + XL[[X]] satisfies Condition
1, but XL[[X]] is not a maximal ideal in Vi + XL[[X]]. Also, U(Vi + XL[[X]]) 6=
U(K + XL[[X]]).

(ii) The domain extension R = Z(2)+XR[[X]] ⊆ Q+XR[[X]] = T satisfies
Condition 1, but the conductor ideal R : T is not a maximal ideal in R.

(iii) The domain extension R = Z(2)+XR[[X]] ⊆ R[[X]] =E satisfies Condi-
tion 1, but the conductor ideal R : E is not a maximal ideal in R.
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Pullback. Pullback plays an important role in commutative ring theory as a
great source of providing examples and counter examples. For a most recent survey
article where some classes of commutative rings are characterized as a pullback
see [8].

By [21, p. 51], a unitary (commutative) ring R together with ring homomor-
phisms f : R → A and g : R → B is called a pullback of the pair of homomorphisms
α : A → C and β : B → C if

(a) the diagram
R

g−−−−→ B

f

y
yβ

A −−−−→
α

C

commutes.
(b) (Universal property) If there exits another ring R

′
with a pair of ring

homomorphisms f
′
: R

′ → A, g
′
: R

′ → B such that the diagram

R′
g′−−−−→ B

f ′
y

yβ

A −−−−→
α

C

commutes. Then there exists a unique ring homomorphism θ : R
′ → R such that

f ◦ θ = f
′
and g ◦ θ = g

′
.

A pullback is said to be weak pullback for which the “Universal property” does
not hold.

Every pair of ring homomorphisms α : B → A and β : C → A has a pullback
(see [21, Exercise 2.46, p. 52]).

In the following we consolidate discussions of [21, p. 51,52 and Exercise 2.47]
as a proposition.

Proposition 1. Let A, B and C be unitary (commutative) rings such that
C ⊆ A and f : B → A is an onto ring homomorphism, then L = f−1 (C) is a
pullback of ring homomorphisms f and g, that is

L = f−1(C) α−−−−→ C

β

y
yg

B −−−−→
f

A

The pullback L in Proposition 1 is a substructure of B.
Pullback of type ¤. Houston and Taylor [17] introduce a pullback of type ¤

as: Let I be a nonzero ideal of an integral domain T , ϕ : T → T/I = E be the
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natural surjection and D be an integral domain contained in E. Then the integral
domain R = ϕ−1 (D) arises as a pullback of the following diagram

R = ϕ−1(D) −−−−→ D
y

y
T −−−−→ T/I = E

Here it is noticed that in fact R ⊆ T and D ⊆ E.
J. Boynton [11] introduces the pullback as: Let R ⊆ T be any unitary (com-

mutative) ring extension and I = R : T is the nonzero conductor ideal of T into R.
Setting D = R/I and E = T/I, we obtain the natural surjections n1 : T −→ E,
n2 : R −→ D and the inclusions i1 : D ↪→ E, i2 : R ↪→ T . These maps yield a
commutative diagram, called a conductor square ¤, which defines R as a pullback
of n1 and i1.

R
i2−−−−→ T

n2

y
yn1

D −−−−→
i1

E

Lemma 1. [11, Lemma 2.2] For conductor square ¤, if I = R : T is a regular
ideal, then T is an overring of R.

Remark 3. (i) Every conductor square ¤ is a pullback of type ¤.
(ii) If in conductor square ¤, R ⊆ T is a domain extension, then T is always

an overring of R.

Lemma 2. [17, Lemma 1.1] In a pullback of type ¤, if each maximal ideal of
R contains I, then each maximal ideal of T contains I.

Recall that in a Prufer domain if every finitely generated fractional ideal is
invertible. Equivalently, an integral domain R is Prufer if RP is a valuation domain
for each P ∈ Spec(R).

In this study we shall follow the lines of the following results of [17] and [12].

Theorem 1. [17, Theorem 1.3] In a pullback of type ¤, let I be a prime
ideal in T and qf (D) = qf (E). Then R is a Prufer domain (respectively a valu-
ation domain) if and only if D and T are Prufer domains (respectively valuation
domains).

Corollary 1. [17, Corollary 1.4] Consider a pullback diagram of type ¤
in which I is a maximal ideal of T . Then R is a Prufer domain (respectively a
valuation domain) if and only if D and T are Prufer domains (respectively valuation
domains) and E is quotient field of D.

The following is an example of Prufer pullback which is not a valuation domain.
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Example 2. Every nonzero prime ideal is a maximal ideal in T = Q [X].
Take I = XQ [X], so T/I ∼= Q. Further Z ∼= {a + I : a ∈ Z} = D ⊂ T/I.
Then ϕ : Q [X] → Q [X] /XQ [X] ∼= Q is surjection. Consider R = ϕ−1 (D) =
ϕ−1 ({a + I : a ∈ Z}) = {h (x) ∈ Q [X] : h (0) ∈ Z}. This implies R = Z+XQ [X] ⊂
Q [X] = T . Hence we obtain the following commutative diagram

R = ϕ−1 (D) α−−−−→ D
y

y
T −−−−→

ϕ
T/I = E

R is a pullback of type ¤ and D ⊆ E, whereas qf (D) = E and I is a maximal ideal
in Q [X]. As Z and Q [X] are Prufer domains, so Z+XQ [X] being Bezout, a Prufer
domain (an example on [17, Corollary 1.4]). Further, also it is an example on [17,
Theorem 1.3] since none of Z+ XQ [X] ,Q [X] and Z is a valuation domain.

2. Relative stability of some domain’s properties
on corners of a pullback

The inclusions L ⊆ B, C ⊆ A of Proposition 1 and inclusion R ⊆ T (respec-
tively D ⊆ E) in the pullback of type ¤ (respectively conductor square ¤) are
the main motivation to consider Condition 1. In this new scenario the properties
of the elements of the unitary commutative rings L,B, C,A (respectively integral
domains R, T, D,E) are concern. In [18, 22, 23], there are inquiries for stability
(ascent and descent) of some atomic and non atomic classes of integral domains for
a domain extension R ⊆ T which satisfy Condition 1. The main purpose of this
study is to escort the inquiries of [18, 22, 23] and observe the stability of classes of
atomic and non atomic domains on all corners of the conductor square ¤ under the
assumption that the domain extension R ⊆ T satisfies Condition 1. However be-
sides this we also added a few more results regarding stability (ascent and descent)
of some atomic and non atomic classes of integral domains for a domain extension
R ⊆ T in continuation to [18, 22, 23].

2.1. Some indispensable facts. We begin by the following proposition.

Proposition 2. Let R ⊆ T be a domain extension such that I is an ideal in
T (hence J = I ∩R is an ideal in R) and f : T −→ T/I is the canonical surjection.
Then

(1) R = f−1 (R/J) is a pullback of type ¤.
(2) If T is integral over R, then T/I is integral over R/J .

Proof. (1) Since I is a nonzero ideal of T and R/J ⊆ T/I. Also T → T/I is
surjection, so the result follows by Proposition 1.

(2) It is [5, Proposition 5.6].
Remark 4. (i) Let I be a prime ideal in T . Then I is a maximal ideal in T if

and only if J is a maximal ideal in R. Indeed, as R ⊆ T and T is integral over R,
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so T/I is integral over R/J . Now by [5, Proposition 5.7] T/I is a field if and only
if R/J is a field.

(ii) Let R ⊆ T be a domain extension, then q−1 (R) = R + XT [X] arises as a
pullback of the following diagram (see [19]).

q−1 (R) = R + XT [X] −−−−→ R
y

y
T [X] −−−−→

q
T

(iii) The extension q−1 (R) = R + XT [X] ⊆ T [X] satisfies Condition 1 if
R ⊆ T does.

(iv) By [9], if I is the common ideal of R and T , then T is an overring of R.
Also it follows that R → R/I = D is the canonical surjection.

The following Theorem provides the necessary and sufficient condition for a
vertical inclusion of a pullback of type ¤ to satisfy Condition 1.

Theorem 2. In a pullback of type ¤, let I be a nonzero common ideal for R,
T , and ϕ : T → T/I be the canonical surjection. Then R ⊆ T satisfies Condition
1 if and only if D ⊆ E satisfies Condition 1.

Proof. Suppose R ⊆ T satisfies Condition 1. For s + I ∈ T/I, s ∈ T , s =
tr, where t ∈ U(T ) and r ∈ R. This means s + I = (t + I) (r + I), whereas
t + I ∈ U (T/I) and r + I ∈ R/I. Hence D ⊆ E satisfies Condition 1.

The converse follows by [18, Proposition 1.2].

Remark 5. (i) In the pullback of type ¤ of Example 2, we see that the
extension Z ⊂ Q satisfies Condition 1, so the extension Z+ XQ [X] ⊂ Q [X] does
and vice versa.

(ii) In a pullback of type ¤, if I is a maximal ideal in T , then E = T/I is a
field and by [18, Example (ii)] D ⊆ E satisfies Condition 1.

The following extends [18, Proposition 1.3] in the perspective of pullback of
type ¤.

Proposition 3. In a pullback of type ¤, let ϕ−1 (D) = R ⊆ T such that I is a
common ideal of R and T . If for each t ∈ T\I, there exists i ∈ I with t+ i ∈ U (T ).
Then

(1) I is a maximal ideal in T .

(2) The extension R ⊆ T satisfies Condition 1.

Proof. (1) Let 0 6= t ∈ T\I, then there exists i ∈ I such that t + i ∈ U (T ).
Thus t + i + I ∈ U (T/I), that is ϕ (t + i) ∈ U (T/I). So T/I is a field. Hence I is
a maximal ideal in T .
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(2) If t ∈ I, then t = 1.t , as 1 ∈ U (T ). Let t ∈ T\I, then there exists i ∈ I

such that t+i ∈ U (T ), by (1). So we may write t = (t + i) (t + i)−1
t and obviously

(t + i)−1
t ∈ R, as (t + i)−1

t = 1 + j, where j ∈ I.
Remark 6. In a pullback of type ¤, if R ⊆ T satisfies Condition 1, then

(I ∩R)T = I. Indeed, as I is an ideal of T , so (I ∩R)T ⊆ IT ⊆ I. Conversely
let s ∈ I, then by Condition 1, s = rt, where t ∈ U (T ) and r ∈ R. This implies
r ∈ I ∩R and so s = rt ∈ (I ∩R)T . Hence I ⊆ (I ∩R)T .

Remark 7. In a conductor square ¤, if I = R : T is a maximal in R such
that the extension R ⊆ T satisfies Condition 1, then I is a maximal in T . Indeed,
let s ∈ T\I, then s = tr, where t ∈ U (T ) and r ∈ R. Whereas r /∈ I, because if
r ∈ I, then s = tr ∈ I, which cause a contradiction. Now ϕ (r) is unit in R/I.Thus
ϕ (s) = ϕ (t)ϕ (r) is unit in T/I. Hence I is a maximal in T .

2.2. Atomic generalizations of a UFD. The following extends a part of
[18, Proposition 2.6].

Proposition 4. In a conductor square ¤, let the domain extension R ⊆ T
satisfies Condition 1 and I = R : T is a maximal ideal in R. Then R is atomic
(respectively has ACCP, BFD and an HFD) if and only if D and T are atomic
(respectively have ACCP, BFD and an HFD).

Proof. R is atomic (respectively has ACCP, BFD and an HFD) if and only if
T is atomic (respectively has ACCP, BFD and an HFD) follows by [18, Proposition
2.6]. D being a field is an atomic domain, has ACCP, a BFD and an HFD.

Remark 8. In Proposition 4 E being a field is atomic, has ACCP, BFD and
an HFD.

2.3. Valuation domain and its generalizations. By [16], an integral
domain R with quotient field K is said to be a pseudo-valuation domain (PV D),
if whenever P is a prime ideal in D and xy ∈ P , where x, y ∈ K, then x ∈ P or
y ∈ P (i.e. in a PVD every prime ideal is strongly prime). Equivalently an integral
domain R with quotient field K is said to be a PVD if for any nonzero element
x ∈ K, either x ∈ R or ax−1 ∈ R for every non unit a ∈ R. A valuation domain is
a PVD but the converse is not true, for example the PVD R + XC[[X]], which is
not a valuation domain.

By [2] an integral domain R is said to be an almost valuation domain (AVD)
if for every nonzero x ∈ K, there exists an integer n ≥ 1 (depending on x) with
xn ∈ R or x−n ∈ R. Equivalently the domain R is said to be an AVD if for each
pair a, b ∈ R, there is a positive integer n = n(a, b) such that an | bn or bn | an. A
valuation domain is an AVD but converse is not true. For example if F is a finite
field, then R = F + X2F [[X]] is a non valuation AVD (cf. [7, Example 3.8]).

By [6], an integral domain R is said to be an almost pseudo valuation domain
(APVD) if and only if R is quasilocal with maximal ideal M such that for every
nonzero element x ∈ K, either xn ∈ M for some integer n ≥ 1 or ax−1 ∈ M for
every nonunit a ∈ R. Equivalently a prime ideal P of R is a strongly primary ideal,
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if xy ∈ P , where x, y ∈ K implies that either xn ∈ P for some integer n ≥ 1 or
y ∈ P . If each prime ideal of R is strongly primary ideal, then R is an APVD.
For example R = Q+ X4Q [[X]] is an APVD (cf. [6, Example 3.9]) which is not a
PVD.

By [7] a prime ideal P of an integral domain R is said to be a pseudo-strongly
prime ideal if, whenever x, y ∈ K and xyP ⊆ P , then there is an integer m ≥ 1
such that either xm ∈ R or ymP ⊆ P . If each prime ideal in an integral domain R
is a pseudo-strongly prime ideal, then R is called a pseudo-almost valuation domain
(PAVD). Equivalently an integral domain R is a PAVD if and only if for every
nonzero element x ∈ K, there is a positive integer n ≥ 1 such that either xn ∈ R
or ax−n ∈ R for every nonunit a ∈ R. For example if F is a finite field, and
H = F [[X]], then R = F + FX2 + X4F [[X]] is a PAVD (cf. [7, Example 3.8]).

In general
quasilocal

⇑
AV D ⇒ PAV D
⇑ ⇑

V D ⇒ PV D ⇒ APV D

but none of the above implications is reversible.
We readjust [18, Lemma 1.7] as follows.

Lemma 3. [18, Lemma 1.7] In a pullback of type ¤, let I be the common ideal
in R and T . Then R = ϕ−1 (ϕ (R)), where ϕ : T → T/I is the canonical surjection.

Proof. Clearly R ⊆ ϕ−1 (ϕ (R)). Conversely, let x ∈ ϕ−1 (ϕ (R)), so ϕ (x) ∈
ϕ (R) and therefore ϕ (x) = ϕ (r) for some r ∈ R. This means x − r ∈ I and
therefore x ∈ R. Hence ϕ−1 (ϕ (R)) ⊆ R.

Following Zafrullah [24], an element x of an integral domain R is said to be
rigid if whenever r, s ∈ R and r and s divides x, then s divides r or r divides s.
The domain R is said to be semirigid domain if every nonzero element of R can be
expressed as a product of a finite number of rigid elements.

The following is an improved form of [18, Theorem 2.10].

Theorem 3. In a conductor square ¤, let R ⊆ T satisfies Condition 1 and
I = R : T is the maximal ideal in R. If R is a semirigid-domain, then T is a
semirigid-domain.

Proof. Suppose R is a semirigid-domain. Let x ∈ T , so either x ∈ I or x ∈ T\I.
The case x ∈ I is trivial. If x ∈ T\I, then by Condition 1, x = ru, where r ∈ R,
u ∈ U (T ). But R is semirigid-domain, so r = r1r2 · · · rn is a product of rigid
elements in R and therefore by [18, Theorem 2.8(b)] x = (ur1)r2..rn is the product
of rigid elements in T . Hence T is a semirigid-domain.

In the rest of the discussion we assume that I = R : T is a prime ideal.
For the sake of a quick reference we state the following lemma.
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Lemma 4. [14, Lemma 4.5(i)] Let R be a PVD and P is its prime ideal. Then
R/P is a PVD.

Theorem 4. Let R ⊆ T be the domain extension which satisfies Condition 1.
If R is a PVD, then T is a PVD.

Proof. Let a, b ∈ T such that x = a
b ∈ qf(T ) with b 6= 0. So a = a1a2, b = b1b2,

where a1, b1 ∈ R and a2, b2 ∈ U(T ). This implies x1 = a1
b1
∈ qf(R), where b1 6= 0.

Since R is a PVD, therefore either x1 = a1
b1
∈ R or rx−1

1 = r b1
a1
∈ R, where r is

nonzero nonunit in R. If x1 ∈ R and x2 = a2
b2
∈ U(T ), then x ∈ T . If rx−1

1 ∈ R and
x2 = a2

b2
∈ U(T ) (hence x−1

2 = b2
a2
∈ U(T )), then rx−1 ∈ T , whereas r /∈ U(T ).

Remark 9. In the proof of Theorem 4 if r ∈ U(T ), then T must be a valuation
domain.

Remark 10. The converse of Theorem 4 does not hold. For example in the
domain extension Z + XQ[[X]] ⊂ Q[ [X]] which satisfies Condition 1, Q[ [X]] is a
DVR and hence a PVD, but Z+ XQ[[X]] is not a PVD.

In the following we extend [17, Theorem 1.3] for PVDs with the addition of
Condition 1.

Theorem 5. In a conductor square ¤, let the domain extension R ⊆ T satisfy
Condition 1 such that I = R : T is contained in the maximal ideal M of R and
qf(D) = qf(E). Then T and D are PVDs if and only if R is a PVD.

Proof. Assume that T and D are PVDs. It is known that: M is a maximal
ideal of R if and only if M/I is a maximal ideal of D. Let x ∈ qf(R) = qf(T );
then either x ∈ T or tx−1 ∈ T , where t ∈ T\U(T ).

If x ∈ T\R, we have x = x1x2, where x1 ∈ R and x2 ∈ U(T ). So
ϕ (x1) ∈ D, ϕ (x2) ∈ U(E). Since D is a PVD, therefore by [16, Theorem
1.5(3)], ϕ (x2)

−1
M/I ⊆ M/I, that is ϕ (x2)

−1 (m + I) ∈ M/I, (m + I) ∈ M/I.
This implies x−1

2 m ∈ M , ϕ (m) = (m + I) ∈ M/I for some m ∈ M . So
x1x1

−1x−1
2 m = x1mx−1 = ax−1 ∈ M , where x1m = a ∈ R\U(R), which shows

that M is strongly prime.

If tx−1 ∈ T\R, then tx−1 = ru, where r ∈ R and u ∈ U(T ). So ϕ (r) ∈ D,
ϕ (u) ∈ U(E). Since D is a PVD, therefore by [16, Theorem 1.5(3)] ϕ (u)−1

M/I =
ϕ

(
u−1

)
M/I ⊆ M/I if and only if u−1M ⊆ M . This implies u−1m = rr−1u−1m =

rm (ru)−1 = r1

(
tx−1

)−1 = r1t
−1x ∈ M , where m, r1 = rm ∈ M . This implies M

is a strongly prime ideal, as t−1x ∈ qf(R) and hence R is a PVD.

Conversely, by Theorem 4 T is a PVD whenever R is a PVD. By [14, Lemma
4.5(i)], if R is a PVD, then D = R/I is a PVD.

The following examples are through the D + M construction as elaborated in
[10, Theorem 2.1].

Remark 11. [4, Example 3.12] (i) In Theorem 4 there is no need to assume
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that qf(D) = qf(E). For instance in the conductor square ¤
R = R+XC(t)[[X]] −−−−→ R = D

y
y

T = C(t)+XC(t)[[X]] −−−−→ C(t) = E

I = R : T = XC(t)[[X]] and R ⊆ T satisfies Condition 1. Indeed, let f =
f1 + Xf2(X) ∈ T . In this pullback qf(D) 6= qf(E) but R, T and D are HFDs.

(ii) Let K be the field. The following is a conductor square ¤.

R = K + XK(Y )[[X]] −−−−→ K
y

y
T = K(Y )[[X]] −−−−→ K(Y )

Whereas I = R : T = XK(Y )[[X]] is a maximal ideal in R and R ⊆ T satisfies
Condition 1. R is a PVD but T and K are DVRs. However qf(D) 6= qf(E).

Theorem 6. Let R ⊆ T be the domain extension which satisfies Condition 1.
If R is an AVD, then T is an AVD.

Proof. Let x = a
b ∈ qf (T ), a, b ∈ T . We may consider a = a1a2, b = b1b2,

where a1, b1 ∈ R and a2, b2 ∈ U (T ). Of course a1
b1
∈ qf (R) and R is an AVD, so

either (a1
b1

)n ∈ R or (a1
b1

)−n ∈ R, where n ≥ 1 be an integer. Similarly u = a2
b2
∈

U (T ) implies either (a1
b1

u)n = xn ∈ T or (a1
b1

u)−n = x−n ∈ T .

Remark 12. [4, Example 3.12] Let F be a finite field, and H = F (X) be the
quotient field of F [X]. R = F + Y 3H [[Y ]] is not an AVD but V = H + Y 3H [[Y ]]
is an AVD (cf. [7. Example 2.20]). Obviously R ⊆ V satisfies Condition 1.

Proposition 5. Let R be an AVD and P is a prime ideal of R. Then R/P
is an AVD.

Proof. R is a quasilocal domain if and only if for any a, b ∈ R either a | bn or
b | an for some n ≥ 1, by [7, Proposition 2.7]. Now for x = a+P , y = b+P ∈ R/P ,
suppose that x - yn for some integers n ≥ 1. This implies that a - bn for some
n ≥ 1. Therefore b | an for some integers n ≥ 1. This implies y | xn for some
integers n ≥ 1. Thus R/P is quasilocal as well as AB-domain, by [2. Theorem
4.10]. Hence by [2, Theorem 5.6] R/P is an AVD.

Theorem 7. In a conductor square ¤, let the domain extension R ⊆ T
satisfies Condition 1 such that I = R : T is the conductor ideal and qf(D) = qf(E).
Then T and D are AVDs if and only if R is an AVD.

Proof. Assume that T and D are AVDs. Let a ∈ qf(R) = qf (T ), then either
an or a−n ∈ T .

(i) Consider an ∈ T , so by Condition 1, we have an = a1a2, where a1 ∈ R
and a2 ∈ U(T ). Then â1 = ϕ(a1) ∈ D and â2 = ϕ(u2) ∈ U(E). Since D is an
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AVD, therefore â
p

2 ∈ D or â
−p

2 ∈ D, where p is a positive integer. This implies
ap
2 = ϕ−1(â

p

2) ∈ R and hence ap
1a

p
2 = anp ∈ R.

Now if â
−p

2 ∈ D, then a−p
2 = ϕ−1(â

−p

2 ) ∈ R. We claim a−p
1 /∈ R, if not, then

a−p
1 ∈ R, and we may have a−p

1 a−p
2 = a−np ∈ R ⊂ T , a contradiction to the fact

that a−n /∈ T . Thus a−np /∈ R and â
−p

2 /∈ D.
(ii) Now if a−n ∈ T , then by Condition 1, we have a−n = a1a2, where a1 ∈ R

and a2 ∈ U(T ).This means â1 = ϕ(a1) ∈ D and â2 = ϕ(a2) ∈ U(E). As D

is an AVD, so â
p

2 ∈ D or â
−p

2 ∈ D, where p is a positive integer.This implies
ap
2 = ϕ−1(â

p

2) ∈ R. This implies ap
1a

p
2 = a−np ∈ R. If â

−p

2 ∈ D, then a−p
2 =

ϕ−1(â
−p

2 ) ∈ R. We claim that a−p
1 /∈ R; if not then a−p

1 a−p
2 = anp ∈ R ⊂ T , which

contradict to the fact that an /∈ T . Thus anp /∈ R and â
−p

2 /∈ D.
Conversely, by Theorem 6, T is an AVD whenever R is an AVD. Hence it

followed by Proposition 5 that D is an AVD.

Theorem 8. Let the domain extension R ⊆ T satisfies Condition 1 such that
I = R : T is contained in the maximal ideal M of R. If R is an APVD, then T is
an APVD.

Proof. Let x = a
b ∈ qf(T ), where a, b ∈ T . By Condition 1 a = a1a2, b = b1b2,

where a1, b1 ∈ R and a2, b2 ∈ U (T ). This implies a1
b1
∈ qf(R). Since R is an APVD

with maximal ideal M , then either (a1
b1

)n ∈ M for n ≥ 1, or r(a1
b1

)−1 ∈ M , where
r ∈ R\U(R) and say u = a2

b2
∈ U(T ). Let N be the maximal ideal of T such that

N ∩R = M . Therefore either (a1
b1

u)n ∈ N or r(a1
b1

u)−1 ∈ N , where r ∈ T\U(T ).

Remark 13. In the proof of Theorem 8 if r ∈ U(T ), then T must be a
valuation domain.

Example 3. [4, Example 3.12] Let F be a finite field and H = F (X) is the
quotient field of F [X]. R = F + Y 2H[[Y ]] is not an APVD but T = F + FY +
Y 2H[[Y ]] is an APVD. Whereas R ⊆ T does not satisfy Condition 1.

By [6], let S be a subset of an integral domain R with quotient field K, then
E(S) = {x ∈ K : xn /∈ S for every integer n ≥ 1}.

Proposition 6. An integral domain R is an APVD if and only if for every
x ∈ E(R) such that ax−1 ∈ R for every nonunit a ∈ R.

Proof. Suppose that R is an APVD. Then R is a quasilocal by [6, Proposition
3.2]. Let M be the maximal ideal of R and x ∈ E(R). Then by [6, Lemma 2.3]
x−1M ⊆ M ⊆ R. Conversely, assume that for every x ∈ E(R) such that ax−1 ∈ R
for every nonunit a ∈ R. Let a, b be nonzero nonunit elements of R. Suppose
that a - bn in R for every n ≥ 1. Then x = b/a ∈ E(R). Hence, by hypothesis
cx−1 ∈ R for every nonunit c of R. In particular a2/b = ax−1 ∈ R. Then b | a2 in
R. Thus by [7, Proposition 2.7], the prime ideals of R are linearly ordered. Hence
R is quasilocal. Thus, by hypothesis, ax−1 ∈ R for every a ∈ M . Since M is the
only maximal ideal of R and x ∈ E(R), we conclude that ax−1 ∈ M for every
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a ∈ M . By [6, Lemma 2.3]BH, M is a strongly prime ideal of R. Hence R is an
APVD, by [6, Theorem 3.4(2)]BH.

In the following we restate Proposition 6.

Proposition 7. An integral domain R is an APVD if and only if for every
a, b ∈ R either an | bn in R for some n ≥ 1 or b | ca in R for every nonunit c of R.

Proposition 8. Let R be an APVD and P is a prime ideal of R. Then R/P
is an APVD.

Proof. Let R be an APVD and P is a prime ideal of R. Set D = R/P and let
x, y ∈ D. Then x = a + P and y = b + P for some a, b ∈ R. Suppose that xn - yn

in D for every positive integer n ≥ 1. Then, an - bn in R for every positive integer
n ≥ 1. Thus by Proposition 7, b | ca in R for every nonunit c of R.Thus y | zx for
every nonunit z of D. Hence by Proposition 7, D is an APVD.

Theorem 9. In a conductor square ¤, let the domain extension R ⊆ T
satisfy Condition 1 such that I = R : T contained in the maximal ideal M of R
and qf(D) = qf(E). Then T and D are APVDs if and only if R is an APVD.

Proof. Assume that T and D are APVDs. As I ⊆ M , so M/I = ϕ(M) is
maximal ideal of D. For x ∈ E(R), we have the following possibilities:

(i) If x ∈ T\R, then x = x1x2, where x1 ∈ R, x2 ∈ U(T ). So x̂1 ∈ D, x̂2 ∈
U(E). By [6, Lemma 2.3]BH (x̂2)−1M/I ⊆ M/I. This implies (x2)−1M ⊆ M , this
means x1(x1)−1(x2)−1m = x1(x1x2)−1m = rx−1 ∈ M , where x1m = r ∈ R\U(R),
m ∈ M .

(ii) If x ∈ qf(T )\T , then either xn ∈ N or tx−1 ∈ N , t ∈ T\U(T ), where N
is maximal in T . (a) If xn ∈ N and N ∩ R = M , the maximal ideal in R. Using
Condition 1, xn = ru, where r ∈ R and u ∈ U(T ). This implies ϕ(r) ∈ D and
ϕ (u) ∈ U(E). Either ϕ (u)t ∈ M/I or dϕ (u)−1 ∈ M/I, t > 0 and d ∈ D\U(D).

If ϕ (u)t ∈ M/I, so ϕ (r)t
ϕ (u)t = ϕ (ru)t = ϕ (xn)t = ϕ (xnt) ∈ M/I. This

implies xnt ∈ M , a contradiction. Now, if dϕ (u)−1 ∈ M/I, then there exists
m ∈ M such that d = ϕ (m). This implies ϕ (m)ϕ (u)−1 ∈ M/I. This means
mu−1 = rr−1mu−1 = m1(ru)−1 = m1x

−n ∈ M , where m1 = rm ∈ M .

(b) Finally; if tx−1 ∈ N . We have tx−1 = ru, r ∈ R and u ∈ U(T ). This
implies ϕ (r) ∈ D and ϕ (u) ∈ U (E). Then by [6, Lemma 2.3] ϕ (u)−1

M/I =
ϕ

(
u−1

)
M/I ⊆ M/I, this implies u−1M ⊆ M , and u−1m = rr−1u−1m =

r(ru)−1m = r1(ru)−1 = r1(tx−1)−1 ∈ M , where m, r1(= rm) ∈ M . Thus M
becomes strongly primary. Hence R is an APVD.

Conversely by Theorem 8, T is an APVD whenever R is an APVD.

By Proposition 8, D is an APVD.

Example 4. [4, Example 3.12] Let F ⊂ K be a field extension, where K is
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the root extension of F . The pullback

R = F + XK(Y )[[X]] −−−−→ F
y

y
T = K + XK(Y )[[X]] −−−−→ K

is of type ¤, whereas I = R : T = XK(Y )[[X]] and R ⊆ T satisfies Condition 1.
R is an APVD if and only if T is a PVD. Whereas qf(D) = F 6= K = qf(E).

We state the following proposition from [7] for the sake of completeness.

Proposition 9. [7, Proposition 2.14] Let R be a PAVD and P be a prime
ideal of R. Then R/P is a PAVD.

Theorem 10. Let R ⊆ T be a domain extension which satisfies Condition 1.
If R is PAVD, then T is PAVD.

Proof. Let x = a
b ∈ qf (T ) , a, b ∈ T . By Condition 1 a = a1a2, b = b1b2, where

a1, b1 ∈ R, a2, b2 ∈ U (T ). This implies a1
b1
∈ qf (R) and so either (a1

b1
)n ∈ R or

r(a1
b1

)−n ∈ R, where n > 0, r ∈ R\U(R), u = a2
b2
∈ U(T ). Hence either (a1

b1
u)n ∈ T

or t(a1
b1

u)−n ∈ T , where t = rq, where t, q ∈ T\U(T ).

Example 5. In domain extension C[[X2, X5] ⊆ C[[X2, X3]], C[[X2, X3]] is a
PAVD but C[[X2, X5]] is not a PAVD. So descent does not hold.

Theorem 11. In a conductor square ¤, let the domain extension R ⊆ T
satisfy Condition 1 such that I = R : T contained in the maximal ideal M of R
and qf(D) = qf(E). Then T and D are PAVDs if and only if R is a PAVD.

Proof. Assume that T and D are PAVDs. As I ⊆ M , so M/I = ϕ(M) is a
maximal ideal of D. For x ∈ E(R), we have the following possibilities:

(i) If x ∈ T\R, then x = x1x2, where x1 ∈ R, x2 ∈ U(T ). This implies x̂1 =
ϕ(x1) ∈ D, x̂2 = ϕ(x2) ∈ U(E). Then by [7, Lemma 2.1] (x̂2)−nM/I ⊆ M/I, and
hence ϕ−1 ((x̂2)−nM/I) ⊆ M . This implies x−n

2 m = xn
1x−n

1 x−n
2 m = m1x

−n ∈ M ,
where m,m1 ∈ M . Thus M is a pseudo-strongly prime ideal.

(ii) If x ∈ Q(T )\T , then xn ∈ T or tx−n ∈ T , for t ∈ T\U(T ) and n > 0. (a)
If xn ∈ T , then xn = x1x2; where x1 ∈ R and x2 ∈ U(T ). This implies ϕ(x1) ∈ D
and ϕ(x2) ∈ U(E). By [7, Lemma 2.1] ϕ(x2)−kM/I ⊆ M/I, for an integer k ≥ 0
and hence x−k

2 M ⊆ M . This implies x−k
2 r = xk

1x−k
1 x−k

2 r = r1x
−kn ∈ M , for

r, r1 = xk
1r ∈ M . Hence M is a pseudo-strongly prime ideal.

(b) Finally, if tx−n ∈ T , then tx−n = ru, where r ∈ R and u ∈ U(T ). This
implies ϕ (r) ∈ D and ϕ (u) ∈ U(E). By [7, Lemma 2.1] ϕ (u)−k

M/I ⊆ M/I, for
an integer k > 0 and hence u−kM ⊆ M . This implies u−km = rkr−ku−km =
m1(tx−n)−k ∈ M , where m, m1(= rkm) ∈ M . Thus M is a pseudo-strongly prime
ideal. Hence R is a PAVD.

Conversely by Theorem 10, T is a PAVD whenever R is a PAVD. By [7,
Proposition 2.14], if R is a PAVD, then D = R/I is a PAVD.
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