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ON CERTAIN SEPARABLE AND CONNECTED
REFINEMENTS OF THE EUCLIDEAN TOPOLOGY

Gerald Kuba

Abstract. Write c for the cardinality of the continuum and let η be the Euclidean topology
on R. Let Σ be the family of all σ-ideals I on R such that

⋃
I is dense and Q ∩

⋃
I = ∅. Then

for each I ∈ Σ the family η/I of all sets X \Y with X ∈ η and Y ∈ I is a topology on R. Such a
refinement of η always preserves separability and connectedness, but destroys metrizability (and
first countability almost always) and makes the space totally pathwise disconnected. Nevertheless,
the separable Hausdorff space (R, η/I) still has the two metric properties that every point is
reachable by a sequence of points within any fixed countable dense set and that (even in the
absence of first countability) sequential continuity is strong enough to entail continuity. In detail
we investigate further main properties in the four most interesting cases when the σ-ideal I
consists of either all countable sets or all null sets or all meager sets or all sets contained in R\Q.

Finally we track down a subfamily Σ1 of Σ with cardinality 22c
such that (R, η/I) and (R, η/J )

are never homeomorphic for distinct I,J in Σ1.

1. Introduction

As usual, c is the cardinality of R and 2κ is the cardinality of the power
set of a set of cardinality κ. (In particular, c = 2ℵ0 . Naturally, 2κ > κ.) Let
η :=

{
X ⊂ R | ∀x ∈ X∃a, b ∈ R : x ∈]a, b[⊂ X

}
be the Euclidean topology and

δ := {X | X ⊂ R} be the discrete topology on the real number line. In a very
natural way we will construct five topologies ρ, ϑ, λ, µ, γ strictly finer than η and
strictly coarser than δ and check all properties given by the table below. In the
table, Y means Yes and N means No and the set X is either R or [a, b] ⊂ R with
a < b. If X = R then replace S with N, if X = [a, b] then replace S with Y.

Beside the three special topologies ϑ, λ, µ we will construct 22c

refinements
τ of η such that all spaces (R, τ) are mutually non-homeomorphic and have the
property of being separable and connected and totally pathwise disconnected and
not first countable. There is not one Hausdorff space with this property included
in the famous catalogue [9] of 143 topological spaces.
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Further, all the separable and not first countable Hausdorff spaces (R, τ) have
the following metric approximation property and metric continuity property.

(MAP) If D is a countable dense subset of the space, then every point in the space
is the limit of a convergent sequence of points in D.

(MCP) If f is a function from the space into an arbitrary regular space, then f is
continuous if and only if f is sequentially continuous.

X with the induced topology of η ρ ϑ λ µ γ δ

(countably) compact S N N N N N N
locally compact Y N N N N N Y
pseudocompact S S S S S S N
σ-compact Y N N N N N N
ℵ1-compact Y Y Y N N N N
Lindelöf Y Y Y N N N N
connected Y Y Y Y Y Y N
locally connected Y N N N N N Y
path connected Y N N N N N N
locally path connected Y N N N N N Y
totally pathwise disconnected N Y Y Y Y Y Y
first countable Y Y N N N Y Y
second countable Y Y N N N N N
separable Y Y Y Y Y Y N
T0 ∧ T1 ∧ T2 ∧ T2 1

2
Y Y Y Y Y Y Y

T3 ∨ T3 1
2
∨ T4 ∨ T5 Y N N N N N Y

first category N N N Y N Y N
exactly c open sets Y Y Y N N N N
exactly 2c open sets N N N Y Y Y Y

2. Four refinements of the Euclidean topology

For abbreviation, if τ is a topology on X, then we say that Y ⊂ X is τ -closed
when Y is closed in the space (X, τ). Similarly we speak of τ -open sets, τ -compact
sets, τ -connected sets, τ -dense sets etc.

A σ-ideal I on a non-empty set X is any nonempty family of subsets of X
which is closed under countable unions and where always K ∈ I when K ⊂ L and
L ∈ I. (In particular, ∅ ∈ I and I is closed under arbitrary intersections.) Note
that for the sake of simplicity we follow [2] in not ruling out X ∈ I. In other words,
we also regard the power set P(X) of X to be a σ-ideal on X.

Theorem 1. Let (X, τ) be a topological space and let I be a σ-ideal on the set
X. If (X, τ) is second countable, then the family

τ/I :=
{
U \A | U ∈ τ ∧A ∈ I}

is a topology on X which is (not necessarily strictly) finer than τ .
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Theorem 1 is an immediate consequence of [2, Theorems 4.2 and 4.4]. But
alternatively, an elementary proof of Theorem 1 is a rather easy and beautiful ex-
ercise. It should be mentioned that if (X, τ) is not assumed to be second countable,
then the statement in Theorem 1 is not necessarily true. (For a nice counterexample
let (X, τ) be the first countable Hausdorff space of all countable ordinals equipped
with the order topology and let I be the family of all countable subsets of X.)

Let Ic be the family of all countable sets of irrational numbers. Let In be the
family of all Lebesgue null sets of irrational numbers and let Im be the family of
all subsets of R \ Q which are meager in the Euclidean space (R, η). (Of course,
the three families are σ-ideals on R \ Q.) Referring to Theorem 1 we define the
following topologies on R.

ϑ := η/Ic =
{
U \A | U ⊂ R ∧ Uη-open ∧A ⊂ R \Q ∧A countable

}

λ := η/In =
{
U \A | U ⊂ R ∧ Uη-open ∧A ⊂ R \Q ∧A null

}

µ := η/Im =
{
U \A | U ⊂ R ∧ Uη-open ∧A ⊂ R \Q ∧A η-meager

}

Since a countable set is always null and meager, both topologies λ and µ are
finer than the topology ϑ. The topology ϑ is strictly finer than the Euclidean
topology η because ϑ ⊃ η and, e.g. , the set {π/n | 0 < n ∈ N} is ϑ-closed but not
η-closed. Although ϑ is strictly finer than η, the following theorem shows that ϑ is
not larger than η from the set theoretic point of view. Further, the theorem implies
in a rather harsh way that both topologies λ and µ are strictly finer than ϑ.

Theorem 2. The family ϑ is equipollent with η and hence ϑ has cardinality
c. Both families λ and µ have cardinality 2c.

Proof. The statement on λ and µ is true because if D is the Cantor set, which
has cardinality c and is both null and η-meager, then each of the 2c subsets of D\Q
is λ-closed and µ-closed. Since the family η has cardinality c, this is also true for
the family ϑ because a set of cardinality c contains precisely c countable subsets.

The reason for the special role of the set Q in the definitions of the topologies
ϑ and λ and µ is so that Q is obviously kept as a dense subset of R and hence the
spaces (R, ϑ) and (R, λ) and (R, µ) are separable Hausdorff spaces. We choose the
set Q merely for the sake of simply speaking. (Of course, our story would be the
same if Q were replaced with any countable η-dense subset of R.) In this connection
it should be mentioned that, although considering ideals on a basic space X in order
to construct refinements of its topology is an old idea [4] which has entailed some
occasional investigations [3],[5],[7],[8], our approach of considering only σ-ideals
on the basic space X = R which are also σ-ideals on the complement of a fixed
countable dense subset of R leads to several new results.

Although the three spaces (R, ϑ) and (R, λ) and (R, µ) take their stand between
the Euclidean space (R, η) and the discrete space (R, δ), which both are metric
spaces, the following theorem shows that the three spaces (R, ϑ) and (R, λ) and
(R, µ) are not first countable whence they are not metrizable.

Theorem 3. Every local ϑ-basis of ϑ-open sets at an arbitrary point has
cardinality c. Every local λ-basis and every local µ-basis is uncountable.
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Proof. Fix a ∈ R and let N be a collection of ϑ-open ϑ-neighborhoods of
a and write N = {Eλ \ Aλ | λ ∈ Λ} with η-open η-neighborhoods Eλ of a and
countable sets Aλ of irrationals 6= a. Suppose that the cardinality of Λ is less
than c. (By Theorem 2, the cardinality cannot be greater than c when the sets
Eλ \ Aλ(λ ∈ Λ) are distinct.) Then S =

⋃{Aλ | λ ∈ Λ} is a set of irrationals
6= a with cardinality less than c as well. Thus for every n ∈ N we can choose a
number an in ]a, a + 2−n] \ (S ∪Q). Naturally, every set Eλ \Aλ contains a certain
number an. Therefore R \ {an | n ∈ N} is a ϑ-open ϑ-neighborhood of a which
does not contain any set from the collection N . Thus N cannot be a local ϑ-basis
at a. By an analogous argument, a local λ-basis and a local µ-basis can never be
countable.

Remark. In standard set theory it is unprovable that a nonempty open in-
terval cannot be covered by less than c null or meager sets respectively (cf. [1]).
Therefore we cannot prove that the cardinality of a local λ-basis or a local µ-basis
is not smaller than c. (Note that, in view of Theorem 2, there are local λ-bases of
λ-open sets and local µ-bases of µ-open sets with cardinality 2c. Of course, in the
topology η and hence also in the topology ϑ there are local bases with cardinality
2c provided that the definition of a local base does not exclude non-open sets.)

By Theorem 2, the space (R, ϑ) cannot be homeomorphic to (R, λ) or (R, µ).
In view of the famous duality between measure and category (cf. [6]) the question
arises whether the two spaces (R, λ) and (R, µ) are homeomorphic. The following
theorem shows that this is not the case.

Theorem 4. The space (R, λ) is of first category. The spaces (R, ϑ) and (R, µ)
are of second category. (In other words, R is λ-meager but not ϑ-meager and not
µ-meager.)

Proof. Recall that a subset M of a space X is meager if and only if it equals
a countable union of nowhere dense subsets of X. Note further that N ⊂ X is
nowhere dense if and only if every nonempty open subset of X contains a nonempty
open set disjoint from N .

In order to show that R is λ-meager take a bijective function i 7→ ri from N
onto Q and define η-open and hence λ-open sets

Uj :=
⋃ {]

ri − 1
2i+j , ri + 1

2i+j

[ | i ∈ N}
(j ∈ N).

Since Q ⊂ Uj , every set Uj is λ-dense and hence the sets R\Uj are all nowhere
λ-dense. Naturally, L =

⋂{Uj | j ∈ N} is a null set. Thus L \ Q is a null set
and hence λ-closed. Therefore the set L \Q is nowhere λ-dense because it cannot
contain a nonempty λ-open set since such a set must have a positive Lebesgue
measure. Thus R equals⋃ {{x} | x ∈ L ∩Q} ∪ (L \Q) ∪⋃ {

R \ Uj | j ∈ N
}

which is a countable union of nowhere λ-dense sets.
In order to show that R is not µ-meager suppose indirectly that F is a countable

family of nowhere µ-dense sets which covers R. Now for a fixed set N ∈ F and
arbitrary r, s ∈ Q with r < s there exist an η-meager set Ars ⊂ R \Q and numbers
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r′, s′ ∈ Q so that both ∅ 6=]r′, s′[\Ars ⊂]r, s[ and ]r′, s′[∩(N \ Ars) = ∅. We must
have r ≤ r′ < s′ ≤ s since an η-meager set cannot contain an interval I 6⊂ {a}.
Now put AN :=

⋃{Ars | r, s ∈ Q ∧ r < s}. Then for every N ∈ F the set N \ AN

is nowhere η-dense because every interval ]r, s[ 6= ∅ contains an interval ]r′, s′[ 6= ∅
disjoint from N \AN . As a countable union of η-meager sets the set AN is η-meager.
Consequently, R equals the η-meager set

⋃{N \ AN | N ∈ F} ∪⋃{AN | N ∈ F}
and this is impossible. Obviously, the same argument shows that R is not ϑ-meager
and this concludes the proof of Theorem 4.

Remark. The first statement of Theorem 4 is very close to [5, Theorem 11]
which says that the space (R, η/L) is of first category where L is the σ-ideal of
all Lebesgue null sets L ⊂ R. But our proof is different because (R, η/L) is not
separable since naturally every countable subset of R is closed in the space (R, η/L).

What happens if we vary the definitions of the two topologies λ and µ by
mixing them so that we consider the two topologies

γ1 := λ/Im and γ2 := µ/In ?
Since (R, λ) and (R, µ) are not second countable we cannot apply Theorem

1 to realize that the two families γ1 and γ2 actually are topologies on R. But
since it is well-known that R can be written as a disjoint union of an η-meager
set and a null set, we have γ1 = γ2 = γ with γ := η/Ig where the σ-ideal Ig

is the family of all subsets of R \ Q. By Theorem 1, γ is a topology on R. But
also without applying Theorem 1, γ is a topology on R evidently. And it is a
very nice one because the subspace R \ Q is obviously discrete. Since Q is still
dense in (R, γ) the space (R, γ) is an example of a separable Hausdorff space which
has a non-separable subspace. The prototype of a space with this property is the
famous Niemytzki space. (No. 82 in [9].) But the construction of the Niemytzki
space is much more complicated than the construction of (R, γ). Moreover, as
the Niemytzki space, the space (R, γ) is first countable but not second countable.
(Obviously,

{{x}∪ (]r, s[∩Q) | r, s ∈ Q∧ r < x < s
}

is a local γ-base at x ∈ R, and
(R, γ) is not second countable since the subspace R\Q is discrete and uncountable.)

As we will see later, although the large subspace R \Q is totally disconnected,
the small subspace Q works as a sort of paste which takes care that the whole space
(R, γ) is connected. (As a trivial consequence, the three spaces (R, ϑ), (R, λ), (R, µ)
are connected as well.)

Since (R, γ) is first countable the space (R, γ) is not homeomorphic to one of
the three spaces (R, ϑ), (R, λ), (R, µ). Finally we note that (R, γ) is of first category.
In fact, Q is γ-open and γ-dense whence R \ Q is nowhere γ-dense. Thus R is a
countable union of nowhere γ-dense sets since R = (R \Q) ∪⋃{{x} | x ∈ Q}.

3. General properties

Summarizing and generalizing our four topologies ϑ, λ, µ, γ we consider an
arbitrary σ-ideal I on R such that U :=

⋃ I is an η-dense set of irrational numbers.
(This is clearly true for I = Ic, In, Im, Ig with U = R \ Q in all four cases.)
Certainly, we can fix a countable η-dense subset D of U . Note that every countable
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subset A of U lies in I. (Choose Ia ∈ I with a ∈ Ia for every a ∈ A. Then
A ⊂ ⋃{Ia | a ∈ A} ∈ I.) In particular, D ∈ I. Further, I ⊃ Ic when U = R \ Q.
In the following we investigate main properties of the topology

τ := η/I =
{
U \A | U ∈ η ∧A ∈ I}

,

which is finer than η and which is finer than ϑ if Ic ⊂ I. (Of course, τ is strictly
coarser than the discrete topology δ.) It is trivial but useful to note that a set
X ⊂ R is τ -closed if and only if X = Y ∪ A where Y is η-closed and A ∈ I. In
particular, D is τ -closed whence the topology τ is strictly finer than the Euclidean
topology η.

Certainly, Q is a τ -dense subset of R whence (R, τ) is a separable Hausdorff
space. (More generally it is plain that if J is an arbitrary σ-ideal on a second
countable space (X, τ̃), then (X, τ̃/J ) is separable if and only if there exists a
countable τ̃ -dense subset of X disjoint from

⋃J .) But (R, τ) is not regular or
normal since, obviously, the two τ -closed sets {0} and D cannot be separated by
τ -open sets. (In view of τ 6= η it also follows from [7, Corollary 3] that (R, τ) is not
regular.) Another important property of the space (R, τ) is connectedness.

Theorem 5. A subset of R is τ -connected if and only if it is an interval.

Since the closure of a connected set is always connected, Theorem 5 implies that
for a < b the interval [a, b] is the τ -closure of the interval ]a, b[. As a consequence,
the space (R, τ) satisfies the separation axiom T2 1

2
, i.e. two points can always be

separated by open sets with disjoint closures. (But this is small wonder since τ is
finer than η.)

The following theorem demonstrates that the space (R, τ), although being
connected, is extremely far from being path connected or locally path connected.

Theorem 6. The space (R, τ) is totally pathwise disconnected.

In view of ]a, b[∩Q 6= ∅ for a < b, a proof of Theorem 5 is straightforward. For
a proof of Theorem 6 we need to know how the τ -compact sets look like.

Theorem 7. A set K ⊂ R is τ -compact if and only if K ∩ U is finite and K
is η-compact.

Since A ⊂ R is τ -closed if and only if A is η-closed provided that A∩U is finite,
on the one hand Theorem 7 yields to an internal characterization of the τ -compact
sets: A set K ⊂ R is τ -compact if and only if K ∩U is finite and K is bounded and
τ -closed. On the other hand, since τ is finer than η, Theorem 7 is an immediate
consequence of

Theorem 8. If M ⊂ R such that M ∩ U is infinite, then M as a subspace of
(R, τ) is not countably compact and hence neither compact nor sequentially compact.

Proof. Choose a sequence of distinct numbers x1, x2, x3, . . . in M ∩ U . Then
the τ -open sets R \ {xm | m ≥ n}(n = 1, 2, 3, . . . ) form a countable cover of M
without a finite subcover.
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Remark. By Theorem 8, for a < b the η-compact interval [a, b] is never
τ -compact. There is a deeper reason why. Actually, compactness is a maximal
property of the class of all Hausdorff spaces. Therefore the Hausdorff space ([a, b], τ)
cannot be compact since the Hausdorff space ([a, b], η) is compact and τ is strictly
finer than η.

Now we are going to prove Theorem 6. If τ1 and τ2 are two topologies on R
and A,B ⊂ R, then we call a function f : A → B τ1-τ2-continuous when f is a
continuous mapping from the space A with the relative topology of τ1 to the space
B with the relative topology of τ2.

Theorem 6 says that every η-τ -continuous function from [0, 1] to R is constant.
Let f : [0, 1] → R be η-τ -continuous. Then, a fortiori, f is η-η-continuous, i.e. con-
tinuous in the common sense. Suppose that f is not constant. Then the image of
[0, 1] under f certainly is an interval [u, v] with u < v. Now consider the τ -closed
set A = [u, v] ∩ D. Due to the η-τ -continuity of f the set f−1(A) is an η-closed
and hence an η-compact subset of [0, 1]. But then, contrary to Theorem 7, the set
A = f

(
f−1(A)

)
is τ -compact.

In view of the previous proof it is clear that for an arbitrary interval [a, b] every
η-τ -continuous function from [a, b] to R is constant. The following Theorem, which
will be established in the next chapter, says that every τ -η-continuous function
from [a, b] to R is bounded.

Theorem 9. For a ≤ b the space [a, b] with the relative topology of τ is
pseudocompact.

Concerning other compactness properties, it is clear that (R, τ) is not paracom-
pact since the separation axiom T3 is violated. Further, (R, τ) is not σ-compact,
i.e. R is not a countable union of τ -compact subsets, since (R, η) is of second cate-
gory and a τ -compact set K is always nowhere η-dense. (Indeed, R \K is η-open
and η-dense since K is η-compact and K ∩ U is finite and U is η-dense.) There is
a simpler reason why (R, τ) is not σ-compact when the topology τ is one of our
topologies ϑ, λ, µ, γ, because in this case, referring to Theorem 7, any τ -compact
set is countable.

The question whether (R, τ) is a Lindelöf space (every open cover has a count-
able subcover) depends on the size of the sets in I.

Theorem 10. The space (R, τ) is Lindelöf if and only if every set in I is
countable. In particular, (R, ϑ) is Lindelöf, whereas (R, λ), (R, µ), (R, γ) are not
Lindelöf.

Proof. Suppose firstly that every set in I is countable, which means that I
equals the family of all countable subsets of U . Let {Eλ \Aλ | λ ∈ Λ} be a τ -open
cover of R where all sets Eλ are η-open and all sets Aλ are countable subsets of
U . Then {Eλ | λ ∈ Λ} is an η-open cover of R. Since the space (R, η) is Lindelöf,
we can choose a countable index set Λ1 ⊂ Λ such that R =

⋃{Eλ | λ ∈ Λ1}. Now
consider the countable set A =

⋃{Aλ | λ ∈ Λ1} and choose for every a ∈ A an
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index λ(a) ∈ Λ so that a lies in Eλ(a) \ Aλ(a). Then with Λ2 = {λ(a) | a ∈ A} the
countable family {Eλ \Aλ | λ ∈ Λ1 ∪ Λ2} covers R.

Suppose secondly that Y is an uncountable set in I. Then choose a set X ⊂ Y
with cardinality equal to the first uncountable cardinal ℵ1. Certainly, X ∈ I.
Let ≺ be a strict well-ordering on X so that {x ∈ X | x ≺ y} is countable for
every y ∈ X. (In particular, X has no maximum and may be identified with the
collection of all countable ordinals.) Naturally, every nonempty countable subset
of X has a ≺-supremum in X. Now let Vz := R \ {x ∈ X | z ≺ x} for z ∈ X.
Then {Vz | z ∈ X} is a τ -open cover of R which is isotonic, Vy ⊂ Vz when y ≺ z.
This cover has not a countable subcover because, if A is a countable subset of X,
then

⋃{Vz | z ∈ A} = Va where a ∈ X is the ≺-supremum of A, and Va = R is
impossible since R \ Va = {x ∈ X | a ≺ x} is infinite.

Concerning local properties, from Theorem 7 and Theorem 5 we immediately
derive

Theorem 11. The space (R, τ) is not locally compact and not locally connect-
ed.

4. The metric properties

We continue our investigation of the space (R, τ) where τ = η/I for an arbi-
trary σ-ideal I on R \Q such that U :=

⋃ I is η-dense.
In order to establish the property (MAP) in the first chapter we characterize

the countable τ -dense subsets of R.

Theorem 12. For every countable set D ⊂ R the following statements are
equivalent.

(1) D is τ -dense in R.
(2) D \ U is τ -dense in R.
(3) D \ U is η-dense in R.

Proof. Trivially, (2) implies (1) since D \ U ⊂ D. Further, (2) and (3) are
equivalent since the relative topologies of τ and η on R \ U are identical. In order
to show that (1) implies (3) suppose that D is τ -dense. Put A = D ∩ U . Then
A ∈ I since A is a countable subset of U . Then for every η-open set E 6= ∅
the τ -open set E \ A is nonempty (since E \ A ⊃ E ∩ Q 6= ∅) and hence the set
E ∩ (D \ U) = (E \A) ∩D is nonempty. Therefore, D \ U is η-dense.

Remark. Note that Theorem 12 is not necessarily true when D is not assumed
to be countable. For instance, if τ ∈ {ϑ, λ, µ}, then D = R \Q is certainly τ -dense
but the set D \ U is not η-dense because it is empty. This example shows also that
a τ -dense set need not contain a countable τ -dense subset.

Since the relative topologies of τ and η on R\U coincide, a sequence of numbers
in R \ U is τ -convergent if and only if it is η-convergent. Moreover, we obviously
have
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Theorem 13. A sequence (xn)n∈N of real numbers is τ -convergent if and only
if (xn)n∈N is η-convergent and either (xn)n∈N is eventually constant or xn 6∈ U for
almost all n ∈ N.

Further, in view of Theorem 12, the metric approximation property (MAP) is
always true in the non-metrizable, separable space (R, τ).

Theorem 14. If D is a countable τ -dense subset of R, then every x ∈ R is
the limit of a τ -convergent sequence of numbers in D.

Again, the counterexample τ = ϑ demonstrates that Theorem 14 is not nec-
essarily true for the space (R, τ) when the assumption of the countability of D is
dropped.

In order to verify the metric continuity property (MCP) we need the following
lemma.

Lemma 1. Let (X, d) be a metric space and S be a dense subset of X. Then a
function f from X into any regular space Y must be continuous if for every sequence
(an) in S which converges to b ∈ X the sequence

(
f(an)

)
converges to f(b).

Proof. Suppose indirectly that f is not continuous at x ∈ X and choose a
convergent sequence (xn) in X with limit x such that f(xn) does not converge to
f(x). Then there is an open neighborhood U of f(x) in the space Y such that
f(xn) 6∈ U for all n ∈ M where M is an infinite subset of N. Since Y is regular,
we can find disjoint open sets U ′, V ⊂ Y such that f(xn) ∈ V for every n ∈ M and
f(x) ∈ U ′ ⊂ U . Now choose for every n ∈ M a sequence (sn,m)m∈N within S which
converges to xn, whence

(
f(sn,m)

)
m∈N converges to f(xn). Thus for every n ∈ M

we can find an index m(n) such that for s̃n := sn,m(n) we both have d(s̃n, xn) < 1
n

and f(s̃n) ∈ V . Since lim
n→∞

xn = x, certainly the sequence (s̃n)n∈M tends to x and

therefore the sequence
(
f(s̃n)

)
n∈M

tends to f(x). But then f(s̃n) ∈ U ′ for almost
all n ∈ M repugnant with f(s̃n) ∈ V for every n ∈ M and V ∩ U ′ = ∅.

Obviously, the following theorem immediately implies Theorem 9.

Theorem 15. Let (Y, σ) be a regular space and I ⊂ R be an interval and
f : I → Y . Then f is τ -σ-continuous if and only if f is η-σ-continuous.

Proof. Trivially, f is τ -σ-continuous if f is η-σ-continuous. Suppose conversely
that f is τ -σ-continuous. In particular, f is sequentially τ -σ-continuous. Thus we
conclude that f is η-σ-continuous by using Theorem 13 and by applying Lemma 1
with (X, d) being the Euclidean metric space I and S = I \ U .

Remark. Theorem 15 is also a consequence of [7, Corollary 2] and of [3,
Corollary 6.12].

Finally, by applying Theorem 13 and Lemma 1 and the trivial implication in
Theorem 15, it is plain to establish the metric continuity property (MCP) for the
space (R, τ).



134 G. Kuba

Theorem 16. Let (Y, σ) be a regular space and I ⊂ R be an interval and
f : I → Y . Then f is τ -σ-continuous if the sequence

(
f(xn)

)
σ-converges to f(x)

whenever (xn) is a τ -convergent sequence of real numbers in I with limit x ∈ I.

Remark. Although all spaces (R, τ) satisfy the two metric properties (MAP)
and (MCP), if I 6= P(U) then a space (R, τ) never satisfies the metric property
that every limit point of any set A is the limit of a sequence of points in A. (For
a counterexample choose any not τ -closed set A ⊂ U . Such a choice is possible in
view of Theorem 20 below.)

Recall that a space X is ℵ1-compact if and only if every uncountable set has
a limit point. Referring to Theorem 10, the following theorem shows that for all
spaces (R, τ) the properties of being ℵ1-compact and of being Lindelöf are equiva-
lent.

Theorem 17. The space (R, τ) is ℵ1-compact if and only if every set in I is
countable.

Proof. If A is an uncountable set in I, then A cannot have a τ -limit point
x ∈ R since {x} ∪ (R \A) is a τ -neighborhood of x disjoint from A \ {x}. Suppose
conversely that every set in I is countable. Hence every η-condensation point of
any set S ⊂ R is a τ -limit point of S. Therefore, (R, τ) must be ℵ1-compact because
every uncountable set of real numbers contains uncountably many η-condensation
points of itself.

5. Another concrete topology

What happens if we switch the two sets Q and R \ Q in the definition of the
topology ϑ and consider the topology

ρ :=
{
U \A | U ⊂ R ∧ Uη-open∧A ⊂ Q}

so that ρ = η/Iq where the σ-ideal Iq is the power set of Q?

In a certain sense the topology ρ stands between η and ϑ because the space
(R, ρ) is obviously homeomorphic to (R, ρ′) with ρ′ = η/I ′q where I ′q = P({π + r |
r ∈ Q}). In particular, η ⊂ ρ′ ⊂ ϑ and the space (R, ρ′) is only a very special
example of the general space (R, τ) already discussed. Moreover, the space (R, ρ)
is less exotic than (R, ϑ) because (R, ρ) is not only first countable but also second
countable since the countable family of all sets {q} ∪ (]r, s[\Q) with q, r, s ∈ Q and
r < q < s is obviously a base.

Whereas a τ -compact set must be countable in case that the topology τ is one
of our topologies ϑ, λ, µ, γ, referring to Theorem 7, there certainly exist ρ-compact
subsets of R with cardinality c.

The space (R, ρ) is only a marginal expansion of a very prominent space,
namely the Euclidean space R \Q (No. 31 in [9]) since the relative topologies of ρ
and η coincide on R \Q. The η-dense set Q becomes discrete in (R, ρ). We leave it
to the reader to check all properties of the topology ρ given by our table.
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6. Infinitely many topologies

Let Σ be the family of all σ-ideals I on R where
⋃ I is an η-dense set of

irrational numbers. Of course the family Σ is infinite. But Σ contains large
subfamilies Σ′ where the topologies η/I(I ∈ Σ′) coincide. For instance, put
IK = {M \ K | M ⊂ R \ Q}. If we let K run through the nonempty subsets
of {k + π | k ∈ Z}, we obtain c distinct σ-ideals IK in Σ such that all topologies
η/IK equal our topology γ.

Nevertheless, there are very many topologies on R induced by σ-ideals in Σ.

Theorem 18. There exists a subfamily Σ1 of Σ with cardinality 22c

such
that

⋃ I = R \ Q for every I ∈ Σ1 and two spaces (R, η/I1), (R, η/I2) are never
homeomorphic for distinct I1, I2 ∈ Σ1.

Remark. The family Σ1 must contain a subfamily Σ2 with cardinality 22c

such
that for every I ∈ Σ2 the space (R, η/I) is not first countable because there cannot
be more than 2c topologies on R which make R first countable. In fact, a topology
is completely determined by any base. If R is first countable, then there must be a
base with cardinality not greater than c. All bases are subfamilies of P(R). There
are exactly (2c)c = 2c such subfamilies with cardinality ≤ c.

In order to get rid of homeomorphic topologies we will use the following lemma.

Lemma 2. Let Tσ be a family of topologies of the form η/I with I ∈ Σ and let
κ be the cardinality of Tσ. If κ is greater than c, then there exists a subfamily T
of Tσ with cardinality κ such that (R, τ1) and (R, τ2) are never homeomorphic for
distinct topologies τ1 and τ2 in T .

Proof. Write τ1 ∼ τ2 for τ1, τ2 ∈ Tσ when the two spaces (R, τ1) and (R, τ2)
are homeomorphic. Clearly, ∼ defines an equivalence relation on the family Tσ.
By choosing one representative in every equivalence class we get a family T ⊂ Tσ

where (R, τ1) and (R, τ2) are never homeomorphic for distinct topologies τ1 and τ2

in T . Naturally, the cardinality of T must equal κ provided that the cardinality of
every equivalence class is not greater than c. This is actually true in view of the
following theorem.

Theorem 19. Let τi = η/Ii for I1, I2 ∈ Σ. Then every homeomorphism
from the space (R, τ1) onto the space (R, τ2) is a strictly monotonic, η-η-continuous
function from R onto R.

Proof. Let f : R → R be bijective and suppose that f−1 is τ2-τ1-continuous.
Then by using Theorem 5 it is straightforward to realize that the image of any
bounded η-open interval under f−1 must be a bounded η-open interval. Conse-
quently, the bijection f is η-η-continuous and therefore f must be strictly mono-
tonic. (Alternatively, if f is τ1-τ2-continuous, then f is τ1-η-continuous, whence f
is η-η-continuous by Theorem 15.)
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Remark. We do not really need Theorem 19 in order to verify that the car-
dinality of any equivalence class cannot be greater than c because if τ1, τ2 are two
Hausdorff topologies on R and A ⊂ R is countable and τ1-dense, then each τ1-τ2-
continuous function f : R → R is completely determined by its values on A and
naturally there are precisely c functions from A into R. But Theorem 19 is nice
and we need it in the next chapter anyway.

In order to achieve the enormous cardinality 22c

in Theorem 18 we need a
statement on large families of σ-ideals.

Lemma 3. There exists a family = of σ-ideals I on U := R \Q such that the
cardinality of = is 22c

, and
⋃ I = U for every I ∈ =, and for distinct I1, I2 in =

there is always a set X ⊂ U with X ∈ I1 and U \X ∈ I2.

Proof. By applying [2, Theorem 7.3] with κ = ℵ1 and α = c, there is a family
Φ of 22c ℵ1-complete filters on U such that for distinct filters F1,F2 in Φ there is
always a set X ⊂ U with X ∈ F1 and U \ X ∈ F2. Thus Φ′ =

{{U \ F | F ∈
F} | F ∈ Φ

}
is a family of σ-ideals on U that is equipollent to Φ and has the

same separation property. Now, if I1, I2 ∈ Φ′ are distinct with identical unions⋃ I1 =
⋃ I2 = V , then V = U because with X ∈ I1 and U \ X ∈ I2 we have

V ⊃ X and V ⊃ U \X. Consequently, for every proper subset V of U there is at
most one σ-ideal I in Φ′ with

⋃ I = V . Since there are only 2c subsets of U , the
family Φ′′ := {I ∈ Φ′ | ⋃ I 6= U} has cardinality at most 2c and hence the family
= := Φ′ \ Φ′′ has all properties claimed in Lemma 3.

Now we are going to prove Theorem 18. Let = be as in Lemma 3. We claim that
the two topologies η/I and η/J are always distinct for distinct σ-ideals I,J ∈ =.
Then in view of Lemma 2 we are finished. Suppose indirectly that τ = η/I = η/J
for two distinct I,J ∈ =. By Lemma 3, we can fix a set X ⊂ U with X in I and
X ′ = U \X in J . Then for an arbitrary set V ⊂ U the set V ∩X lies in I and the
set V ∩X ′ lies in J . Therefore, V = (V ∩X) ∪ (V ∩X ′) must be τ -closed since
V ∩X and V ∩X ′ are both τ -closed. Thus every subset of U is τ -closed. But then,
in view of the following theorem, the ideals I and J are both equal to the power
set of U whence they are not distinct.

Theorem 20. Let (X, π) be a Polish space, i.e. a completely metrizable
separable space. Let I be a σ-ideal on X and U =

⋃ I and define a topology τ
on X by τ = π/I. If every subset of U is τ -closed, then I = P(U).

Proof. Since automatically I = P(U) if X is countable, assume that X is
uncountable. Let B ⊂ X be a Bernstein set, i.e. neither B nor X \ B contains
any π-perfect set 6= ∅. In particular, B = B ∩ U and B′ = U \ B cannot contain
uncountable π-closed sets. By assumption, B is τ -closed. Thus we have B = I ∪ C
with I ∈ I and π-closed C ⊂ X. Thus C must be a countable subset of U since
C ⊂ B. But then C must lie in I since

⋃ I = U . Thus, as the union of two sets
in I the set B must lie in I. Similarly, the τ -closed set B′ must lie in I. Hence
B ∪ B′ = U ∈ I and thus I = P(U).
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7. A continuum of concrete topologies

Since the 22c

topologies in Theorem 18 are very far from being concrete, we
conclude the article by constructing infinitely many concrete examples of σ-ideals
Ji such that for the topologies τi = η/Ji the separable and connected spaces (R, τi)
are mutually non-homeomorphic. In doing so we also take care that in every space
(R, τi) no point has a countable local base.

Let X1 = [0, 1], X2 = [0, 1] ∪ [2, 3], X3 = [0, 1] ∪ [2, 3] ∪ [4, 5] etc. In general,
Xk :=

⋃
0≤m<k

[2m, 2m + 1] (k = 1, 2, 3, . . . ).

Now take the two σ-ideals Ic, In which induce the topologies ϑ, λ and define
σ-ideals Jk for all k = 1, 2, 3, . . . via

Jk := {A ∪B | A ∈ Ic ∧B ∈ In ∧B ⊂ Xk}.
Then, with τk = η/Jk it is characteristic of the space (R, τk) to have a sequence
x1 < y1 < x2 < y2 < · · · < xk < yk such that the relative topologies of τk and ϑ
are identical on ]−∞, x1[∪]y1, x2[∪ · · · ∪]yk−1, xk[∪]yk,∞[ while τk and λ coincide
on ]x1, y1[∪ · · · ∪]xk, yk[. Thus, in view of Theorem 2 and Theorem 19, for differ-
ent indices k, k′ the two spaces (R, τk) and (R, τk′) cannot be homeomorphic. By
Theorem 3, no point in any space (R, τk) has a countable local base.

With the help of a third topology beside ϑ and λ, say µ, we can easily adapt
this construction in order to get c concrete σ-ideal topologies on R where no point
has a countable local base. Naturally, there are c sequences s = (s0, s1, s2, . . . ) of
the digits 0 and 1. For each sequence s define a topology τ(s) on R such that

(i) The topologies τ(s) and ϑ coincide on ]−∞, 0[∪]1, 2[∪]3, 4[∪]5, 6[∪]7, 8[∪ · · · .

(ii) For every n = 0, 1, 2, . . . on the interval ]2n, 2n + 1[ the relative topologies
of τ(s) and λ coincide when sn = 0 while τ(s) and µ coincide when sn = 1.

Certainly, in view of Theorem 4 and Theorem 19, for two distinct sequences
s, s′ the spaces (R, τ(s)) and (R, τ(s′)) cannot be homeomorphic.
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