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ON ALMOST COUNTABLY COMPACT SPACES

Yankui Song and Hongying Zhao

Abstract. A space X is almost countably compact if for every countable open cover U of

X, there exists a finite subset V of U such that
⋃
{V : V ∈ V} = X. In this paper, we investigate

the relationship between almost countably compact spaces and countably compact spaces, and
also study topological properties of almost countably compact spaces.

1. Introduction

By a space, we mean a topological space. Let us recall that a space X is
countably compact if every countable open cover of X has a finite subcover. For
T1-spaces, countable compactness is equivalent to the condition saying that every
infinite set has an accumulation point. As a generalization of countable compact-
ness, Bonanzinga, Matveev and Pareek [2] defined a space X as almost countably
compact if for every countable open cover U of X, there exists a finite subset V of
U such that

⋃{V : V ∈ V} = X. Clearly, every countably compact space is almost
countably compact, but the converse does not hold (see Examples 2.3 and 2.4).

The purpose of this paper is to investigate the relationship between almost
countably compact spaces and countably compact spaces, and also study topological
properties of almost countably compact spaces.

Recall that the extent e(X) of a space X is the smallest cardinal number κ such
that the cardinality of every discrete closed subset of X is not greater than κ. The
cardinality of a set A is denoted by |A|. Let ω be the first infinite cardinal, ω1 the
first uncountable cardinal and c the cardinality of the set of all real numbers. As
usual, a cardinal is the initial ordinal and an ordinal is the set of smaller ordinals.
For a cardinal κ, cf(κ) denotes the cofinality of κ. Every cardinal is often viewed
as a space with the usual order topology. Other terms and symbols that we do not
define follow [3].
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2. On almost countably compact spaces

In this section, we give some examples showing the relationship between almost
countably compact spaces and countably compact spaces. First, we give a positive
result. Recall from [1] that a subspace Y of a space X is relatively countably
compact in X if every infinite subset of Y has a limit point in X. Equivalently, Y
is relatively countably compact in X if and only if every countable open cover U of
X there exists a finite subfamily V such that Y ⊆ ∪V.

Proposition 2.1. Let X be a space and D be a dense subset of X. If D is
relatively countably compact in X, then X is almost countably compact.

Proof. Let D be a dense subspace of X and D be relatively compact in X,
and let U be any countable open cover of X. Then there exists a finite subset V
of U such that D ⊆ ⋃{V : V ∈ V}. Since D is relatively countably compact in X,
hence X = {V : V ∈ V}, since D is dense in X, which completes the proof.

We get the following corollary by Proposition 2.1.

Corollary 2.2. If X has a dense countably compact subspace, then X is
almost countably compact.

Example 2.3. There exists a Tychonoff almost countably compact space
which is not countably compact.

Proof. Let X = ((ω1+1)×(ω+1))\{〈ω1, ω〉} be the Tychonoff plank. Then X
is almost countably compact by Corollary 2.2, since ω1×(ω+1) is a dense countably
compact subset of X. But X is not countably compact, since {〈ω1, n〉 : n ∈ ω} is
an infinite discrete closed subset of X, which completes the proof.

Example 2.4. The Isbell-Mrówka space X is almost countably compact, but
it is not countably compact.

Proof. Let X = ω ∪ R be the Isbell-Mrówka space [4], where R is a maximal
almost disjoint family of infinite subsets of ω such that |R| = c. Then X is not
countably compact, since R is a discrete closed in X, and X is almost countably
compact, since ω is dense in X and every infinite subset of ω has a limit point in
X, which completes the proof.

In the following, we give a well-known construction which produces almost
countably compact spaces by using Tychonoff space. Let X be a Tychonoff space
and τ a cardinal. The symbol β(X) means the Čech-Stone compactification of the
space X. Consider the Noble plank NτX of X (see [3])

NτX = (βX × (τ + 1)) \ ((βX \X)× {τ}).
Since βX×τ is a dense countably compact subset of NτX, then we has the following
result by Corollary 2.2.

Proposition 2.5. If X is a Tychonoff space and cf(τ) > ω, then NτX is
almost countably compact.
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By the above construction, we easily get the following proposition.

Proposition 2.6. Every Tychonoff space X can be embedded in a Tychonoff
almost countably compact space Y as a closed subspace.

Proof. Let X be a Tychonoff space. If we put Y = Nω1X, then X = X×{ω1}
is a closed subset of Y , which is homeomorphic to X. Since βX × ω1 is a dense
countably compact subset of Y , then Y is almost countably compact by Corollary
2.2, which completes the proof.

It is well-known that the extent of a countably compact space is finite, but the
following example shows that the extent of a Tychonoff almost countably compact
spaces can be arbitrarily big.

Proposition 2.7. For every regular uncountable cardinal κ, there exists a
Tychonoff almost countably compact space X such that e(X) ≥ κ.

Proof. Let D be with a discrete space of cardinality κ. If we put X = Nω1D,
then X is Tychonoff almost countably compact by Corollary 2.2, since βD × ω1 is
a dense countably compact subset of X. Since D×{ω1} is a discrete closed subset
of X with |D × {ω1}| = κ, then e(X) ≥ κ, which completes the proof.

It is well known that a space X is compact if and only if X is a countably
compact space with the Lindelöf property. About the class of almost compact
spaces, we have the following result.

Proposition 2.8. Every regular almost countably compact and Lindelöf space
is compact.

Proof. Let X be a regular almost countably compact and Lindelöf space and U
be any open cover of X. For each x ∈ X, there exists an Ux ∈ U such that x ∈ Ux,
and there exists an open neighbourhood Vx of x such that x ∈ Vx ⊆ Vx ⊆ Ux.
Let V = {Vx : x ∈ X}. Then V is an open cover of X. Hence V has a countable
subcover, since X is Lindeöf, saying {Vxn : n ∈ ω}. Thus {Vxn : n ∈ ω} has a finite
subset {Vxnj

: j = 1, 2, . . . , m} such that X =
⋃{Vxnj

: j = 1, 2, . . . , m}, since X is
almost countably compact. Clearly, {Uxnj

: j = 1, 2, . . . ,m} is a finite subcover of
U , which completes the proof.

The following example shows that the condition of regularity in Proposition
2.8 is necessary.

Example 2.9. There exists a Hausdorff almost countably compact and Lin-
delöf space which is not compact.

Proof. Let

A = {an : n ∈ ω} and B = {bm : m ∈ ω}
Y = {〈an, bm〉 : n ∈ ω,m ∈ ω},

and let
X = Y ∪A ∪ {a} where a /∈ Y ∪A.
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We topologize X as follows: every point of Y is isolated; a basic neighborhood of
a point an ∈ A for each n ∈ ω takes the from

Uan(m) = {an} ∪ {〈an, bi〉 : i > m} for m ∈ ω

and a basic neighborhood of a takes the from

Ua(F ) = {a} ∪
⋃
{〈an, bm〉 : an ∈ A \ F, m ∈ ω} for a finite subset F of A .

Clearly, X is a Hausdorff space by the construction of the topology of X. However,
X is not regular, since the point a cannot be separated from the closed subset A
by disjoint open subsets of X. Since |X| = ω, then X is Lindelöf, and since A is a
discrete closed subset of X with |A| = ω, then X is not compact.

We shall show that X is almost countably compact. Let U be a countable open
cover of X. Then there exists an Ua ∈ U such that a ∈ Ua. Hence there exists a
finite subset F of A such that Ua(F ) ⊆ Ua by the construction of the topology of
X. Thus

{a} ∪ (A \ F ) ∪ {〈an, bm〉 : an ∈ A \ F, m ∈ ω} ⊂ Ua;

On the other hand, for each an ∈ F , {an}∪{〈an, bm〉 : m ∈ ω} is a compact subset
of X, and there exists a finite subset Van ⊆ U such that

{an} ∪ {〈an, bm〉 : m ∈ ω} ⊂ ∪{V : V ∈ Van}.
If we put

V = {Ua} ∪
⋃
{Van : an ∈ F},

then V is a finite subset of U such that

X =
⋃
{V : V ∈ V},

which completes the proof.
In Example 2.3, the closed subset {〈ω1, n〉 : n ∈ ω} of a Tychonoff almost

countably compact space X is not almost countably compact, which shows that a
closed subset of an almost countably compact space need not be almost countably
compact. In the following, we give a positive result, which can be easily proved.

Proposition 2.10. If X is an almost countably compact space, then every
open and closed subset of X is almost countably compact.

Proposition 2.11. The sum
⊕

s∈S Xs, where Xs 6= ∅ for s ∈ S, is almost
countably compact if and only if all spaces Xs are almost countably compact and
the set S is finite.

Since a continuous image of a countably compact space is countably compact,
similarly, we have the following result.

Proposition 2.12. A continuous image of an almost countably compact space
is almost countably compact.
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Proof. Suppose that X is an almost countably compact space and f : X → Y
a continuous map. Let U = {Un : n ∈ ω} be a countable open cover of Y . Then
V = {f−1(U) : U ∈ U} is a countable open cover of X. Since X is almost countably
compact, there exists a finite subset {ni : i = 1, 2, . . . ,m} such that

⋃
{f−1(Uni) : i = 1, 2, . . . , m} = X.

Hence

Y = f(X) = f(
⋃
{f−1(Uni

) : i = 1, 2, . . . , m}) =
⋃
{f(f−1(Uni

)) : i = 1, 2, . . . , m}
=

⋃
{f(f−1(Uni

)) : i = 1, 2, . . . , m} =
⋃
{Uni

: i = 1, 2, . . . , m}.
This shows that Y is almost countably compact.

Next, we turn to consider preimages. To show that the preimage of an almost
countably compact space under a closed 2-to-1 continuous map need not be almost
countably compact. We use the Alexandorff duplicate A(X) of a space X. The
underlying set of A(X) is X × {0, 1}; each point of X × {1} is isolated and a basic
neighborhood of a point 〈x, 0〉 ∈ X × {0} is of the from (U × {0}) ∪ ((U × {1}) \
{〈x, 1〉}), where U is a neighborhood of x in X. It is well-known that X is countably
compact if and only if A(X) is countably compact. But the statement is not true
for almost countably compact spaces.

Example 2.13. There exists a closed 2-to-1 continuous map f : X → Y
such that Y is an almost countably compact space, but X is not almost countably
compact.

Proof. Let Y be the space X in the proof of Example 2.3. Then Y is almost
countably compact and has an infinite discrete closed subset F = {〈ω1, n〉 : n ∈ ω}.
Let X be the Alexandroff duplicate A(Y ) of Y . Then X is not almost countably
compact, since F × {1} is an infinite discrete, open and closed set in X. Let
f : X → Y be the natural map. Then f is a closed 2-to-1 continuous map, which
completes the proof.

Remark 1. The proof of Example 2.13 also shows that the Alexandorff dupli-
cate A(X) need not be almost countably compact for an almost countably compact
space X.

We give a positive result. Recall from [5] that a mapping f from a space X to
a space Y is called almost open if f−1(U) ⊆ f−1(U) for each open subset U of Y .

Proposition 2.14. Let Y be an almost countably compact space and f : X →
Y be an almost open and perfect mapping. Then X is almost countably compact.

Proof Let U be a countable open cover of X and let

V = {V : there exists a finite subfamily F of U such that V =
⋃
F}.

Then V is countable, since U is countable. Hence we can enumerate V as {Vn : n ∈
ω}. For each n ∈ ω, let

Wn = Y \ f(X \ Vn),
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then Wn is an open subset of Y , since f is closed. Let W = {Wn : n ∈ ω}, then W
is a countable open cover of Y . In fact, for every y ∈ Y , there exists a Vn ∈ V such
that f−1(y) ⊆ Vn. Since f−1(y) is compact, then Wn = Y \ f(X \ Vn) is an open
neighborhood of y. Since Y is almost countably compact, then there exists a finite
subfamily {Wni : i = 1, 2, . . . , m} of W such that

Y =
⋃

i≤m

Wni
.

Since f is almost open, then

X = f−1(Y ) = f−1(
⋃

i≤m

Wni
) ⊆

⋃

i≤m

f−1(Wni
)

⊆
⋃

i≤m

f−1(Wni
) ⊆

⋃

i≤m

Vni
,

and since every element of V is the union of a finite subfamily of U . This shows
that X is almost countably compact, which completes the proof.

We get the following corollary by Proposition 2.14.

Corollary 2.15. The product of an almost countably compact space and a
compact space is almost countably compact.

It is well-known that the product of two countably compact spaces is countably
compact. In the following, we show that the product of two countably compact
spaces is almost countably compact by using the example. Here, we give the proof
roughly for the sake of completeness (see [3, Example 3.10.19]).

Example 2.16. There exist two countably compact spaces X and Y such that
X × Y is not almost countably compact.

Proof. Let N be with the discrete topology. We can define

X =
⋃

α<ω1

Eα and Y = βN \X,

where Eα are the subsets of βN which are defined inductively so as to satisfy the
following conditions (1), (2) and (3):

(1) E0 = N ;

(2) |Eα| ≤ c for each α < ω1;

(3) every infinite subset of Eα has an accumulation point in Eα+1.

Those sets Eα and are well-defined since every infinite closed set in βN has the
cardinality 2c (see [3]). Then X and Y are countably compact. But X × Y is
not almost countably compact, because the diagonal {〈n, n〉 : n ∈ ω} is a discrete
open and closed subset of X × Y with the cardinality ω and almost countably
compactness is preserved by open and closed subsets.
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Remark 2. Since every countably compact space is almost countably compact,
thus Example 2.16 shows that the product of two almost countably compact spaces
need be not almost countably compact.
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compact spaces and Lindelöf spaces, Rend. Circ. Mat. Palermo (2) 51 (1) (2002), 163–174.

[3] R. Engelking, General Topology, Revised and completed edition, Heldermann Verlag, Berlin,
1989.

[4] S. Mrówka, On complete regular spaces, Fund. Math. 41 (1954), 105–106.

[5] A. Wilansky, Topics in Functional Analysis, Springer, Berlin, 1967.

(received 03.12.2010; available online 20.03.2011)

Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing
210046, P. R China

E-mail : songyankui@njnu.edu.cn


