A NEW CHARACTERIZATION OF SPACES WITH LOCALLY COUNTABLE *sn*-NETWORKS

Luong Quoc Tuyen

Abstract. In this paper we prove that a space X is with a locally countable *sn*-network (resp., weak base) if and only if it is a compact-covering (resp., compact-covering quotient) compact and *ss*-image of a metric space, if and only if it is a sequentially-quotient (resp., quotient) π - and *ss*-image of a metric space, which gives a new characterization of spaces with locally countable *sn*-networks (or weak bases).

1. Introduction

In 2002, Y. Ikeda, C. Liu and Y. Tanaka introduced the notion of σ -strong networks as a generalization of "development" in developable spaces, and considered certain quotient images of metric spaces in terms of σ -strong networks. By means of σ -strong networks, some characterizations for the quotient and compact images of metric spaces are obtained (see in [4, 18, 19], for example).

In this paper, by means of σ -strong networks, we give a new characterization of spaces with locally countable *sn*-networks (or weak bases). Throughout this paper, all spaces are assumed to be T_1 and regular, all maps are continuous and onto, \mathbb{N} denotes the set of all natural numbers. Let \mathcal{P} and \mathcal{Q} be two families of subsets of X, and $f: X \longrightarrow Y$ be a map, we denote $\mathcal{P} \land \mathcal{Q} = \{P \cap Q : P \in \mathcal{P}, Q \in \mathcal{Q}\},$ $\bigcap \mathcal{P} = \bigcap \{P : P \in \mathcal{P}\}, \bigcup \mathcal{P} = \bigcup \{P : P \in \mathcal{P}\}, \operatorname{st}(x, \mathcal{P}) = \bigcup \{P \in \mathcal{P} : x \in P\}, \text{ and } f(\mathcal{P}) = \{f(P) : P \in \mathcal{P}\}.$ For a sequence $\{x_n\}$ converging to x and $P \subset X$, we say that $\{x_n\}$ is eventually in P if $\{x\} \bigcup \{x_n : n \geq m\} \subset P$ for some $m \in \mathbb{N}$, and $\{x_n\}$ is frequently in P if some subsequence of $\{x_n\}$ is eventually in P.

DEFINITION 1.1. Let X be a space and P be a subset of X.

- (1) P is a sequential neighborhood of x in X, if each sequence S converging to x is eventually in P.
- (2) P is a sequentially open subset of X, if P is a sequential neighborhood of x in X for all $x \in P$.

Keywords and phrases: Weak base; sn-network; σ -strong network; locally countable; compact-covering; compact map; π -map.

²⁰¹⁰ AMS Subject Classification: 54C10, 54D65, 54E40, 54E99

DEFINITION 1.2. Let \mathcal{P} be a collection of subsets of a space X and let K be a subset of X. Then,

- (1) For each $x \in X$, \mathcal{P} is a *network at* x [18], if $x \in P$ for every $P \in \mathcal{P}$, and if $x \in U$ with U is open in X, there exists $P \in \mathcal{P}$ such that $x \in P \subset U$.
- (2) \mathcal{P} is a *network* for X [18], if $\{P \in \mathcal{P} : x \in P\}$ is a network at x in X for all $x \in X$.
- (3) \mathcal{P} is a cs^* -network for X [19], if for each sequence S converging to a point $x \in U$ with U is open in X, S is frequently in $P \subset U$ for some $P \in \mathcal{P}$.
- (4) \mathcal{P} is a *cs-network* for X [19], if each sequence S converging to a point $x \in U$ with U is open in X, S is eventually in $P \subset U$ for some $P \in \mathcal{P}$.
- (5) \mathcal{P} is a *cfp-cover* of K in X [13], if \mathcal{P} is a cover of K in X such that it can be precisely refined by some finite cover of K consisting of compact subsets of K.
- (6) \mathcal{P} is a *cfp-cover* for X [13], if whenever K is a compact subset of X, there exists a finite subfamily $\mathcal{G} \subset \mathcal{P}$ such that \mathcal{G} is a *cfp*-cover of K.
- (7) \mathcal{P} is *locally countable*, if for each $x \in X$, there exists a neighborhood V of x such that V meets only countably many members of \mathcal{P} .
- (8) \mathcal{P} is *point-countable* (resp., *point-finite*), if each point $x \in X$ belongs to only countably (resp., finitely) many members of \mathcal{P} .
- (9) \mathcal{P} is star-countable [15], if each $P \in \mathcal{P}$ meets only countably many members of \mathcal{P} .

DEFINITION 1.3. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a family of subsets of a space X satisfying that, for every $x \in X$, \mathcal{P}_x is a network at x in X, and if $U, V \in \mathcal{P}_x$, then $W \subset U \cap V$ for some $W \in \mathcal{P}_x$.

- (1) \mathcal{P} is a weak base for X [1], if whenever $G \subset X$ satisfying for every $x \in G$, there exists $P \in \mathcal{P}_x$ with $P \subset G$, then G is open in X. Here, \mathcal{P}_x is a weak neighborhood base at x in X.
- (2) \mathcal{P} is an *sn-network* for X [10], if each member of \mathcal{P}_x is a sequential neighborhood of x for all $x \in X$. Here, \mathcal{P}_x is an *sn-network* at x in X.

DEFINITION 1.4. Let $f: X \longrightarrow Y$ be a map.

- (1) f is a sequence-covering map [16], if for every convergent sequence S in Y, there exists a convergent sequence L in X such that f(L) = S. Note that a sequence-covering map is a strong sequence-covering map in the sense of [9].
- (2) f is a compact-covering map [14], if for each compact subset K of Y, there exists a compact subset L of X such that f(L) = K.
- (3) f is a pseudo-sequence-covering map [8], if for each convergent sequence S in Y, there exists a compact subset K of X such that f(K) = S. Note that a pseudo-sequence-covering map is a sequence-covering map in the sense of [7].
- (4) f is a subsequence-covering map [12], if for each convergent sequence S in Y, there exists a compact subset K of X such that f(K) is a subsequence of S.

L. Q. Tuyen

- (5) f is a sequentially-quotient map [2], if for each convergent sequence S in Y, there exists a convergent sequence L in X such that f(L) is a subsequence of S.
- (6) f is a quotient map [3], if whenever $U \subset Y$, U is open in Y if and only if $f^{-1}(U)$ is open in X.
- (7) f is an *ss-map* [18], if for each $y \in Y$, there exists a neighborhood U of y such that $f^{-1}(U)$ is separable in X.
- (8) f is a compact map [19], if $f^{-1}(y)$ is compact in X for all $y \in Y$.
- (9) f is a π -map [1], if for every $y \in Y$ and for every neighborhood U of y in Y, $d(f^{-1}(y), X - f^{-1}(U)) > 0$, where X is a metric space with a metric d.

DEFINITION 1.5. Let X be a space. Then,

- (1) X is a g-first countable space [1] (resp., an sn-first countable space [3], if there is a countable weak neighborhood base (resp., sn-network) at x in X for all $x \in X$.
- (2) X is an \aleph_0 -space [14], if it has a countable cs-network.
- (3) X is a sequential space [19], if every sequential open subset of X is open in X.
- (4) X is a *Fréchet* space, if for each $x \in \overline{A}$, there exists a sequence in A converging to x in X.

DEFINITION 1.6. [8] Let $\{\mathcal{P}_n : n \in \mathbb{N}\}$ be a sequence of covers of a space X such that \mathcal{P}_{n+1} refines \mathcal{P}_n for every $n \in \mathbb{N}$. $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ is a σ -strong network for X, if $\{\operatorname{st}(x, \mathcal{P}_n) : n \in \mathbb{N}\}$ is a network at x for all $x \in X$.

NOTATION 1.7. Let $\bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a σ -strong network for a space X. For each $n \in \mathbb{N}$, put $\mathcal{P}_n = \{P_\alpha : \alpha \in \Lambda_n\}$ and endow Λ_n with the discrete topology. Then,

$$M = \left\{ \alpha = (\alpha_n) \in \prod_{n \in \mathbb{N}} \Lambda_n : \{P_{\alpha_n}\} \text{ forms a network at some point } x_\alpha \in X \right\}$$

is a metric space and the point x_{α} is unique in X for every $\alpha \in M$. Define $f: M \longrightarrow X$ by $f(\alpha) = x_{\alpha}$. Let us call (f, M, X, \mathcal{P}_n) a *Ponomarev's system*, following [13].

For some undefined or related concepts, we refer the reader to [8, 11, 19].

2. Main results

THEOREM 2.1. The following are equivalent for a space X.

- (1) X is an sn-first countable space with a locally countable cs^* -network;
- (2) X has a locally countable sn-network;
- (3) X has a σ -strong network $\mathcal{U} = \bigcup \{\mathcal{U}_n : n \in \mathbb{N}\}$ satisfying the following: (a) Each \mathcal{U}_n is a point-finite cfp-cover;

A new characterization of spaces with locally countable sn-networks

(b) \mathcal{U} is locally countable.

- (4) X is a compact-covering compact and ss-image of a metric space;
- (5) X is a pseudo-sequence-covering compact and ss-image of a metric space;
- (6) X is a subsequence-covering compact and ss-image of a metric space;
- (7) X is a sequentially-quotient π and ss-image of a metric space.

Proof. $(1) \Longrightarrow (2)$. Similar to the proof of $(2) \Longrightarrow (1)$ in Theorem 2.12 [3].

(2) \implies (3). Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\} = \{P_\alpha : \alpha \in \Lambda\}$ be a locally countable *sn*-network for X, where each \mathcal{P}_x is an *sn*-network at x. Since X is a regular space, we can assume that each element of \mathcal{P} is closed. Then, for each $x \in X$, there exists an open neighborhood V_x of x such that V_x meets only countably many members of \mathcal{P} . Let

$$\mathcal{Q} = \{ P \in \mathcal{P} : P \subset V_x \text{ for some } x \in X \}$$

Then, \mathcal{Q} is a locally countable and star-countable network for X. By Lemma 2.1 in [15], $\mathcal{Q} = \bigcup_{\alpha \in \Lambda} \mathcal{Q}_{\alpha}$, where each \mathcal{Q}_{α} is a countable subfamily of \mathcal{Q} and $(\bigcup \mathcal{Q}_{\alpha}) \cap (\bigcup \mathcal{Q}_{\beta}) = \emptyset$ for all $\alpha \neq \beta$. For each $\alpha \in \Lambda$, let $\mathcal{Q}_{\alpha} = \{P_{\alpha,n} : n \in \mathbb{N}\}$, and for each $i \in \mathbb{N}$, denote $\mathcal{H}_i = \{P_{\alpha,i} : \alpha \in \Lambda\}$. Then, $\mathcal{Q} = \bigcup \{\mathcal{Q}_i : i \in \mathbb{N}\}$. Now, for each $i \in \mathbb{N}$, let

$$A_i = \{ x \in X : \mathcal{H}_i \cap \mathcal{P}_x = \emptyset \}, \quad \mathcal{G}_i = \mathcal{H}_i \cup \{A_i\}$$

Then, we have

- (a) $\bigcup \{ \mathcal{G}_n : n \in \mathbb{N} \}$ is locally countable.
- (b) Each \mathcal{G}_i is point-finite.

(c) Each \mathcal{G}_i is a cfp-cover for X. Let K be a non-empty compact subset of X. We shall show that there exists a finite subset of \mathcal{G}_i which forms a cfp-cover of K. In fact, since X has a locally countable sn-network, K is metrizable. Note that each $\bigcup \mathcal{Q}_{\alpha}$ is sequentially open in X and $(\bigcup \mathcal{Q}_{\alpha}) \cap (\mathcal{Q}_{\beta}) = \emptyset$ for all $\alpha \neq \beta$, so the family $\{\alpha \in \Lambda : K \cap (\bigcup \mathcal{Q}_{\alpha}) \neq \emptyset\}$ is finite. Thus, K meets only finitely many members of \mathcal{G}_i . Let $\Gamma_i = \{\alpha : P_\alpha \in \mathcal{H}_i, P_\alpha \cap K \neq \emptyset\}$. For each $\alpha \in \Gamma_i$, put $K_\alpha = P_\alpha \cap K$, then $K_i = \overline{K} - \bigcup_{\alpha \in \Gamma_i} K_\alpha$. It is obvious that all K_α and K_i are closed subset of K, and $K = K_i \cup (\bigcup_{\alpha \in \Gamma_i} K_\alpha)$. Now, we only need to show $K_i \subset A_i$ for all $i \in \mathbb{N}$. Let $x \in K_i$, then there exists a sequence $\{x_n\}$ of $K - \bigcup_{\alpha \in \Gamma_i} K_\alpha$ converging to x. If $P \in \mathcal{P}_x \cap \mathcal{H}_i$, then P is a sequential neighborhood of x and $P = P_\alpha$ for some $\alpha \in \Gamma_i$. Thus, $x_n \in P$ whenever $n \ge m$ for some $m \in \mathbb{N}$. Hence, $x_n \in K_\alpha$ for some $\alpha \in \Gamma_i$, a contradiction. So, $\mathcal{P}_x \cap \mathcal{H}_i = \emptyset$, and $x \in A_i$. This implies that $K_i \subset A_i$ and $\{A_i\} \bigcup \{P_\alpha : \alpha \in \Gamma_i\}$ is a cfp-cover of K.

(d) Each $\{\operatorname{st}(x,\mathcal{G}_n): n \in \mathbb{N}\}\$ is a network at x. Let $x \in U$ with U is open in X. Then, $x \in P \subset U \cap V_x$ for some $P \in \mathcal{P}_x$, so $P \in \mathcal{Q}$. Thus, there exists a unique $\alpha \in \Lambda$ such that $P \in \mathcal{Q}_\alpha$. Hence, $P = P_{\alpha,i} \in \mathcal{H}_i$ for some $i \in \mathbb{N}$. Since $P \in \mathcal{H}_i \cap \mathcal{P}_x$, $x \notin A_i$. Note that $P \cap P_{\alpha,j} = \emptyset$ for all $j \neq i$. Then, $\operatorname{st}(x,\mathcal{G}_i) = P \subset U$. Therefore, $\{\operatorname{st}(x,\mathcal{G}_n): n \in \mathbb{N}\}\$ is a network at x for all $x \in X$.

Next, for each $n \in \mathbb{N}$, put $\mathcal{U}_n = \bigwedge \{ \mathcal{G}_i : i \leq n \}$. Then, $\bigcup \{ \mathcal{U}_n : n \in \mathbb{N} \}$ is a σ -strong network and each \mathcal{U}_n is a point-finite cfp-cover for X. Now, we shall show

L. Q. Tuyen

that $\bigcup \{\mathcal{U}_n : n \in \mathbb{N}\}$ is locally countable. In fact, since \mathcal{P} is locally countable, $\mathcal{V} = (\{A_i : i \in \mathbb{N}\}) \bigcup \mathcal{P}$ is locally countable. Thus, $\{\bigcap \mathcal{F} : \mathcal{F} \text{ is a finite subfamily of } \mathcal{V}\}$ is locally countable. Furthermore, since $\bigcup \{\mathcal{G}_i : i \in \mathbb{N}\} \subset \mathcal{V}$, we have

$$\bigcup \{\mathcal{U}_n : n \in \mathbb{N}\} \subset \Big\{ \bigcap \mathcal{F} : \mathcal{F} \text{ is a finite subfamily of } \mathcal{V} \Big\}.$$

This implies that $\bigcup \{ \mathcal{U}_n : n \in \mathbb{N} \}$ is locally countable. Therefore, (3) holds.

(3) \Longrightarrow (4). Let $\mathcal{U} = \bigcup \{\mathcal{U}_n : n \in \mathbb{N}\}$ be a σ -strong network satisfying (3). Consider the Ponomarev's system (f, M, X, \mathcal{U}_n) . Because each \mathcal{U}_n is a point-finite and locally countable cfp-cover, it follows from Lemma 2.2 [19] that f is a compactcovering and compact map. We only need to show f is an ss-map. Let $x \in X$, since \mathcal{U} is locally countable, there exists a neighborhood V of x such that V meets only countably many members of \mathcal{U} . For each $i \in \mathbb{N}$, let $\Delta_i = \{\alpha \in \Lambda_i : P_\alpha \cap V \neq \emptyset\}$. Then, each Δ_i is countable. On the other hand, since $f^{-1}(V) \subset \prod_{i \in \mathbb{N}} \Delta_i, f^{-1}(V)$ is separable in M. Therefore, (4) holds.

 $(4) \Longrightarrow (5) \Longrightarrow (6)$. It is obvious.

(6) \Longrightarrow (1). Let $f: M \longrightarrow X$ be a sequentially-quotient π and ss-map. It follows from Corollary 2.6 [4] that X has a σ -strong network $\mathcal{G} = \bigcup \{\mathcal{G}_n : n \in \mathbb{N}\}$, where each \mathcal{G}_n is a cs^* -cover. For each $x \in X$, let $\mathcal{G}_x = \{\operatorname{st}(x, \mathcal{G}_n) : n \in \mathbb{N}\}$. Since each \mathcal{P}_n is a cs^* -cover, it implies that $\bigcup \{\mathcal{G}_x : x \in X\}$ is an sn-network for X. Hence, X is an sn-first countable space. Now, let \mathcal{B} be a point-countable base for M, since f is a sequentially-quotient and ss-map, $f(\mathcal{B})$ is a locally countable cs^* -network for X. Therefore, (1) holds.

COROLLARY 2.2. The following are equivalent for a space X.

- (1) X has a locally countable weak base;
- (2) X is a sequential space with a σ -strong network $\mathcal{U} = \bigcup \{\mathcal{U}_n : n \in \mathbb{N}\}$ satisfying the following:
 - (a) Each \mathcal{U}_n is a point-finite cfp-cover;
 - (b) \mathcal{U} is locally countable.
- (3) X is a compact-covering quotient compact and ss-image of a metric space;
- (4) X is a pseudo-sequence-covering quotient compact and ss-image of a metric space;
- (5) X is a subsequence-covering quotient compact and ss-image of a metric space;
- (6) X is a quotient π and ss-image of a metric space.

EXAMPLE 2.3. Let C_n be a convergent sequence containing its limit point p_n for each $n \in \mathbb{N}$, where $C_m \cap C_n = \emptyset$ if $m \neq n$. Let $\mathbb{Q} = \{q_n : n \in \mathbb{N}\}$ be the set of all rational numbers of the real line \mathbb{R} . Put $M = (\bigoplus \{C_n : n \in \mathbb{N}\}) \oplus \mathbb{R}$ and let Xbe the quotient space obtained from M by identifying each p_n in C_n with q_n in \mathbb{R} . Then, by the proof of Example 3.1 [6], X has a countable weak base and X is not a sequence-covering quotient and π -image of a metric space. Hence,

(1) A space with a locally countable *sn*-network \Rightarrow a sequence-covering and π -image of a metric space.

(2) A space with a locally countable weak base \Rightarrow a sequence-covering quotient and π -image of a metric space.

EXAMPLE 2.4. Using Example 3.1 [5], it is easy to see that X is Hausdorff, non-regular and X has a countable base, but it is not a sequentially-quotient and π -image of a metric space. This shows that regular properties of X can not be omitted in Theorem 2.1 and Corollary 2.2.

EXAMPLE 2.5. S_{ω} is a Fréchet and \aleph_0 -space, but it is not first countable. Thus, S_{ω} has a locally countable *cs*-network. Since S_{ω} is not first countable, it has not locally countable *sn*-network. Hence, a space with a locally countable *cs*-network \Rightarrow a sequentially-quotient and π -image of a metric space.

ACKNOWLEDGEMENT. The author would like to express his thanks to the referee for his/her helpful comments and valuable suggestions.

REFERENCES

- [1] A.V. Arhangel'skii, Mappings and spaces, Russian Math. Surveys 21 (1966), 115–162.
- [2] J.R. Boone, F. Siwiec, Sequentially quotient mappings, Czech. Math. J. 26 (1976), 174–182.
- [3] X. Ge, Spaces with a locally countable sn-network, Lobachevskii J. Math. 26 (2007), 33-49.
- [4] Y. Ge, π -images of a metric spaces, APN Acta Math. 22 (2006), 209–215.
- [5] Y. Ge, J.S. Gu, On π -images of separable metric spaces, Math. Sci. 10 (2004), 65–71.
- [6] Y. Ge, S. Lin, g-metrizable spaces and the images of semi-metric spaces, Czech. Math. J. 57(132) (2007), 1141–1149.
- [7] G. Gruenhage, E. Michael, Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math. 113(2) (1984), 303–332.
- [8] Y. Ikeda, C. Liu, Y. Tanaka, Quotient compact images of metric spaces, and related matters, Topology Appl. 122 (2002), 237–252.
- [9] Z. Li, A note on ℵ-spaces and g-metrizable spaces, Czech. Math. J. 55 (2005), 803–808.
- [10] S. Lin, On sequence-covering s-mappings, Adv. Math. 25 (1996), 548–551. (China)
- [11] S. Lin, Point-Countable Covers and Sequence-Covering Mappings, Chinese Science Press, Beijing, 2002.
- [12] S. Lin, C. Liu, M. Dai, Images of locally separable metric spaces, Acta Math. Sinica, New Series 13 (1997), 1–8.
- [13] S. Lin, P. Yan, Notes on cfp-covers, Comment. Math. Univ. Carolinae 44 (2003), 295–306.
- [14] E. Michael, ℵ₀-spaces, J. Math. Mech. 15 (1966), 983–1002.
- [15] M. Sakai, On spaces with a star-countable k-networks, Houston J. Math. 23(1) (1997), 45–56.
- [16] F. Siwiec, Sequence-covering and countably bi-quotient mappings, General Topology Appl. 1 (1971), 143–153.
- [17] Y. Tanaka, Symmetric spaces, g-developable spaces and g-metrizable spaces, Math. Japon. 36 (1991), 71–84.
- [18] Y. Tanaka, Theory of k-networks II, Q. and A. General Topology 19 (2001), 27–46.
- [19] Y. Tanaka, Y. Ge, Around quotient compact images of metric spaces, and symmetric spaces, Houston J. Math. 32 (2006), 99–117.
- [20] S. Xia, Characterizations of certain g-first countable spaces, Adv. Math. (China) 29 (2000), 61–64.

(received 09.03.2011; in revised form 31.08.2011; available online 01.11.2011)

Department of Mathematics, Da Nang University, Viet nam *E-mail*: luongtuyench12@yahoo.com