COMMON FIXED POINTS FOR GENERALIZED NONLINEAR CONTRACTIVE MAPPINGS IN METRIC SPACES

Sumit Chandok

Abstract. The purpose of this paper is to present a common fixed point theorem for generalized nonlinear contractive mappings in complete metric spaces by generalizing and extending some known results. As a consequence, a common fixed point theorem for a Banach operator pair is obtained.

1. Introduction and preliminaries

It is well known that Banach's fixed point theorem for contraction mappings is one of the pivotal result of analysis. Let (X, d) be a metric space. A mapping $T: X \to X$ is said to be a *contraction* if there exists $0 \le k < 1$ such that for all $x, y \in X$,

$$d(Tx, Ty) \le kd(x, y). \tag{1.1}$$

If the metric space (X, d) is complete, then the mapping satisfying (1.1) has a unique fixed point.

Let (X, d) be a metric space. A map $T : X \to X$ is called a *Chatterjee's* contraction (see [7, 9]) if there exists $0 \le k < \frac{1}{2}$ such that for each $x, y \in X$,

$$d(Tx, Ty) \le k[d(x, Ty) + d(y, Tx)].$$
(1.2)

A map $T: X \to X$ is called a *weakly contractive mapping* (see [1, 9, 13]) if for each $x, y \in X$,

$$l(Tx, Ty) \le d(x, y) - \psi(d(x, y)) \tag{1.3}$$

where $\psi : [0, \infty) \to [0, \infty)$ is continuous and nondecreasing, $\psi(x) = 0$ if and only if x = 0. If we take $\psi(x) = kx$, 0 < k < 1, then a weakly contractive mapping is a contraction.

A map $T: X \to X$ is called an *f*-weakly contractive mapping (see [10]) if for each $x, y \in X$,

$$d(Tx, Ty) \le d(fx, fy) - \psi(d(fx, fy)) \tag{1.4}$$

²⁰¹⁰ AMS Subject Classification: 47H10, 54H25

Keywords and phrases: Common fixed point; f-weakly contractive maps; generalized f-weakly contractive maps; weakly compatible maps; Banach operator pair.

²⁹

S. Chandok

where $f: X \to X$ is a self-mapping, $\psi: [0, \infty) \to [0, \infty)$ is continuous and nondecreasing, $\psi(x) = 0$ if and only if x = 0. If we take $\psi(x) = (1 - k)x$, 0 < k < 1, then an *f*-weakly contractive mapping is called an *f*-contraction. Further, if f = identity mapping and $\psi(x) = (1 - k)x$, 0 < k < 1, then a *f*-weakly contractive mapping is a contraction.

A map $T: X \to X$ is called a *generalized weakly contractive mapping* (see [9]) if for each $x, y \in X$,

$$d(Tx, Ty) \le \frac{1}{2} [d(x, Ty) + d(y, Tx)] - \psi(d(x, Ty), d(y, Tx))$$
(1.5)

where $\psi : [0, \infty)^2 \to [0, \infty)$ is a continuous mapping such that $\psi(x, y) = 0$ if and only if x = y = 0. If we take $\psi(x, y) = (\frac{1}{2} - k)(x+y)$, $0 < k < \frac{1}{2}$, then inequality (1.5) reduces to (1.2). Choudhury [9] has showed that generalized weakly contractive mapping are generalizations of contractive mappings given by Chatterjee (1.2) and they constitute a strictly larger class of mappings than Chatterjee's contraction.

A map $T: X \to X$ is called a *generalized f-weakly contractive mapping* (see [4]) if for each $x, y \in X$,

$$d(Tx, Ty) \le \frac{1}{2} [d(fx, Ty) + d(fy, Tx)] - \psi(d(fx, Ty), d(fy, Tx))$$
(1.6)

where $f: X \to X$ is a self-mapping, $\psi: [0, \infty)^2 \to [0, \infty)$ is a continuous mapping such that $\psi(x, y) = 0$ if and only if x = y = 0. If f is an identity mapping, then a generalized f-weakly contractive mapping is a generalized weakly contractive mapping.

Alber and Guerre-Delabriere [1] introduced the concept of weakly contractive mappings and proved the existence of fixed points for single-valued weakly contractive mappings in Hilbert spaces. Thereafter, in 2001, Rhoades [13] proved the fixed point theorem which is one of the generalizations of Banach's Contraction Mapping Principle, because the weakly contractions contain contractions as a special case and he also showed that some results of [1] are true for any Banach space. In fact, weakly contractive mappings are closely related to maps of Boyd and Wong [3] and of Reich types [12].

Let M be a nonempty subset of a metric space (X, d); a point $x \in M$ is a common fixed (coincidence) point of f and T if x = fx = Tx (fx = Tx). The set of fixed points (respectively, coincidence points) of f and T is denoted by F(f,T) (respectively, C(f,T)). The mappings $T, f : M \to M$ are called commuting if Tfx = fTx for all $x \in M$; compatible if $\lim d(Tfx_n, fTx_n) = 0$ whenever $\{x_n\}$ is a sequence such that $\lim Tx_n = \lim fx_n = t$ for some t in M; weakly compatible if they commute at their coincidence points, i.e., if fTx = Tfx whenever fx = Tx.

The ordered pair (T, I) of two self-maps of a metric space (X, d) is called a *Banach operator pair* [8], if the set F(I) is *T*-invariant, i.e. $T(F(I)) \subseteq F(I)$. Obviously, a commuting pair (T, I) is a Banach operator pair but not conversely. If (T, I) is a Banach operator pair then (I, T) need not be a Banach operator pair. If the self-maps *T* and *I* of *X* satisfy $d(ITx, Tx) \leq kd(Ix, x)$, for all $x \in X$ and $k \geq 0$, then (T, I) is a Banach operator pair. This class of non-commuting mappings is different from the known classes of non-commuting mappings viz. R-weakly commuting, R-subweakly commuting, compatible, weakly compatible and C_q -commuting etc. existing in the literature (see e.g. [5, 6, 8, 10] and references cited therein).

EXAMPLE 1.1 Let $X = \mathbb{R}$ with the usual metric d(x, y) = |x - y| and $K = [1, \infty)$. Let $T(x) = x^3$ and I(x) = 2x - 1, for all $x \in K$. Then $F(I) = \{1\}$. Here (T, I) is a Banach operator pair but T and I are not commuting.

EXAMPLE 1.2 (see [10]) Consider $X = R^2$ with the usual metric $d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|, (x_1, y_1), (x_2, y_2) \in R^2$. Define *T* and *I* on *X* as $T(x, y) = (x^3 + x - 1, \sqrt[3]{x^2 + y^3 - 1})$ and $I(x, y) = (x^3 + x - 1, \sqrt[3]{x^2 + y^3 - 1})$. $F(T) = (1, 0), F(I) = \{(1, y) : y \in R\}$ and $C(I, T) = \{(x, y) : y = \sqrt[3]{1 - x^2}, x \in R\}$. $T(F(I)) = \{T(1, y) : y \in R\} = \{(1, \frac{y}{3}) : y \in R\} \subseteq \{(1, y) : y \in R\} = F(I)$. Thus (T, I) is a Banach operator pair, which is not weakly compatible as *T* and *I* do not commute on the set C(I, T) and hence it is not compatible.

In this paper, we prove a common fixed point theorem for weakly compatible generalized f-weakly contractive mappings in complete metric spaces by generalizing and extending some known results. As a consequence, a common fixed point theorem for a Banach operator pair is obtained.

2. Main results

THEOREM 2.1. Let M be a subset of a metric space (X, d) and f and T be self-mappings of M such that $\operatorname{cl} T(M) \subseteq f(M)$. If $\operatorname{cl} T(M)$ is complete and T is a generalized f-weakly contractive mapping, then T and f have a unique point of coincidence in M. If, in addition (f,T) is weakly compatible, then $F(T) \cap F(f)$ is a singleton.

Proof. Let $x_0 \in M$. Since $T(M) \subseteq f(M)$, we can choose $x_1 \in M$ so that $fx_1 = Tx_0$. Since $Tx_1 \in f(M)$, there exists $x_2 \in M$ such that $fx_2 = Tx_1$. By induction, we construct a sequence $\{x_n\}$ in M such that $fx_{n+1} = Tx_n$, for every $n \geq 0$. Consider

$$d(Tx_{n+1}, Tx_n) \leq \frac{1}{2} [d(fx_{n+1}, Tx_n) + d(fx_n, Tx_{n+1})] - \psi(d(fx_{n+1}, Tx_n), d(fx_n, Tx_{n+1})) = \frac{1}{2} d(Tx_{n-1}, Tx_{n+1}) - \psi(0, d(Tx_{n-1}, Tx_{n+1})) \leq \frac{1}{2} d(Tx_{n-1}, Tx_{n+1}) \leq \frac{1}{2} [d(Tx_{n-1}, Tx_n) + d(Tx_n, Tx_{n+1})]$$
(*)

Hence for all n = 1, 2..., we have $d(Tx_{n+1}, Tx_n) \leq d(Tx_n, Tx_{n-1})$. Thus $\{d(Tx_{n+1}, Tx_n)\}$ is a monotone decreasing sequence of non-negative real numbers and hence is convergent.

S. Chandok

Let $d(Tx_{n+1}, Tx_n) \to r$. From inequality (*), we have

$$d(Tx_{n+1}, Tx_n) \frac{1}{2} d(Tx_{n-1}, Tx_{n+1}) \le \frac{1}{2} [d(Tx_{n-1}, Tx_n) + d(Tx_n, Tx_{n+1})]$$

Taking $n \to \infty$, we have $r \leq \lim \frac{1}{2}d(Tx_{n-1}, Tx_{n+1}) \leq \frac{1}{2}r + \frac{1}{2}r$. So $\lim d(Tx_{n-1}, Tx_{n+1}) = 2r$. Using the continuity of ψ and inequality (*), we have $r \leq r - \psi(0, 2r)$, and consequently, $\psi(0, 2r) \leq 0$. Thus r = 0. Hence $d(Tx_{n+1}, Tx_n) \to 0$.

Now, we show that $\{Tx_n\}$ is a Cauchy sequence. If otherwise, then there exists $\epsilon > 0$ for which we can find subsequences $\{Tx_{m(k)}\}$ and $\{Tx_{n(k)}\}$ of $\{Tx_n\}$ with n(k) > m(k) > k such that for every k, $d(Tx_{m(k)}, Tx_{n(k)}) \ge \epsilon$, $d(Tx_{m(k)}, Tx_{n(k)-1}) < \epsilon$. So, we have

$$\epsilon \le d(Tx_{m(k)}, Tx_{n(k)}) \le d(Tx_{m(k)}, Tx_{n(k)-1}) + d(Tx_{n(k)-1}, Tx_{n(k)}) < \epsilon + d(Tx_{n(k)-1}, Tx_{n(k)}).$$

Letting $n \to \infty$ and using $d(Tx_{n+1}, Tx_n) \to 0$, we have

$$\lim d(Tx_{m(k)}, Tx_{n(k)}) = \epsilon = \lim d(Tx_{m(k)}, Tx_{n(k)-1}).$$
(2.1)

Again,

$$d(Tx_{m(k)}, Tx_{n(k)-1}) \le d(Tx_{m(k)}, Tx_{m(k)-1}) + d(Tx_{m(k)-1}, Tx_{n(k)}) + d(Tx_{n(k)}, Tx_{n(k)-1}),$$

and

$$\begin{split} d(Tx_{m(k)-1},Tx_{n(k)}) &\leq d(Tx_{m(k)-1},Tx_{m(k)}) + d(Tx_{m(k)},Tx_{n(k)}).\\ \text{Taking } n \to \infty \text{ in the above two inequalities and using (2.1) we get}\\ \lim d(Tx_{m(k)-1},Tx_{n(k)}) &= \epsilon. \end{split}$$

Also, we have

$$\begin{aligned} \epsilon &\leq d(Tx_{m(k)}, Tx_{n(k)}) \\ &\leq \frac{1}{2} [d(fx_{m(k)}, Tx_{n(k)}) + d(fx_{n(k)}, Tx_{m(k)})] \\ &\quad - \psi(d(fx_{m(k)}, Tx_{n(k)}), d(fx_{n(k)}, Tx_{m(k)}))) \\ &= \frac{1}{2} [d(Tx_{m(k)-1}, Tx_{n(k)}) + d(Tx_{n(k)-1}, Tx_{m(k)})] \\ &\quad - \psi(d(Tx_{m(k)-1}, Tx_{n(k)}), d(Tx_{n(k)-1}, Tx_{m(k)})). \end{aligned}$$

Taking $n \to \infty$, we have $\epsilon \leq \frac{1}{2}[\epsilon + \epsilon] - \psi(\epsilon, \epsilon)$ and consequently $\psi(\epsilon, \epsilon) \leq 0$, which is a contradiction since $\epsilon > 0$. Hence $\{Tx_n\}$ is a Cauchy sequence. By the completeness of $\operatorname{cl} T(M)$ there is some $u \in \operatorname{cl} T(M)$ such that $u = \lim Tx_n$. As $\operatorname{cl} T(M) \subseteq f(M)$, there is some $z \in M$ such that fz = u. Consider

$$\begin{aligned} d(Tz, fz) &\leq d(Tz, Tx_{n+1}) + d(Tx_{n+1}, fz) \\ &\leq \frac{1}{2} [d(fz, Tx_{n+1}) + d(fx_{n+1}, Tz)] \\ &\quad - \psi(d(fz, Tx_{n+1}), d(fx_{n+1}, Tz)) + d(Tx_{n+1}, fz) \\ &= \frac{1}{2} [d(u, Tx_{n+1}) + d(Tx_n, Tz)] \\ &\quad - \psi(d(u, Tx_{n+1}), d(Tx_n, Tz)) + d(Tx_{n+1}, u) \end{aligned}$$

32

Letting $n \to \infty$, we have

$$d(Tz, u) \le \frac{1}{2}d(u, Tz) - \psi(0, d(u, Tz))$$

This implies that d(Tz, fz) = 0. Hence Tz = fz = u is a point of coincidence of T and f.

Now suppose that T and f are weakly compatible. Then T(u) = T(f(z)) = f(T(z)) = f(u). Consider

$$\begin{split} d(T(z),T(u)) &\leq \frac{1}{2} [d(fz,Tu) + d(fu,Tz)] - \psi(d(fz,Tu),d(fu,Tz)) \\ &= \frac{1}{2} [d(Tz,Tu) + d(Tu,Tz)] - \psi(d(Tz,Tu),d(Tu,Tz)) \\ &= d(Tu,Tz) - \psi(d(Tz,Tu),d(Tu,Tz)). \end{split}$$

This implies that d(Tz, Tu) = 0, by the property of ψ . Therefore, T(u) = f(u) = u. Hence u is a common fixed point of f and T. The uniqueness follows from (1.6).

If f is an identity mapping of X, then we have:

COROLLARY 2.2. Let M be a subset of a metric space (X, d) and T be a self-mapping of M such that $\operatorname{cl} T(M) \subseteq M$. If $\operatorname{cl} T(M)$ is complete and T is a generalized weakly contractive mapping, then T has a unique fixed point.

COROLLARY 2.3. [9] Let T be a self-mapping of X, where (X, d) is a complete metric space. If T is a generalized weakly contractive mapping, then T has a unique fixed point.

If $\psi(x, y) = (\frac{1}{2} - k)(x + y), 0 < k < \frac{1}{2}$, we have

COROLLARY 2.4. [7] If $T: X \to X$, where (X, d) is a complete metric space, satisfies

$$d(Tx, Ty) \le k[d(x, Ty) + d(y, Tx)],$$
(2.2)

where $0 \le k < \frac{1}{2}$ and $x, y \in X$, then T has a unique fixed point.

EXAMPLE 2.5. Let $X = \{p, q, r\}$ and d be a metric defined on X. Let T and f be self-mappings of X such that Tp = fq, Tq = fq, Tr = fp, d(fp, fq) = 1, d(fq, fr) = 2, d(fr, fp) = 1.5 and $\psi(a, b) = \frac{1}{2}\min\{a, b\}$. Then T is a generalized f-weakly contraction and q is a coincidence point of T and f.

If f is an identity mapping of X, this example is given in [9]

REMARK 2.6. Theorem 2.1 extends and generalizes the corresponding results of [2, 5, 7, 9, 11].

As an application of Corollary 2.2, we obtain the following general result for a Banach operator pair.

THEOREM 2.7. Let M be a subset of a metric space (X, d) and f and T are self-mappings of M such that $\operatorname{cl} T(F(f)) \subseteq F(f)$. If $\operatorname{cl} T(M)$ is complete, F(f) is nonempty and T is a generalized f-weakly contractive mapping for all $x, y \in F(f)$, then $F(T) \cap F(f)$ is a singleton.

S. Chandok

Proof. $\operatorname{cl} T(F(f))$ being a subset of $\operatorname{cl} T(M)$ is complete and $\operatorname{cl} T(F(f)) \subseteq F(f)$. So for all $x, y \in F(f)$, we have

$$\begin{aligned} d(Tx,Ty) &\leq \frac{1}{2} [d(fx,Ty) + d(fy,Tx)] - \psi(d(fx,Ty),d(fy,Tx))) \\ &= \frac{1}{2} [d(x,Ty) + d(y,Tx)] - \psi(d(x,Ty),d(y,Tx)). \end{aligned}$$

Thus by Corollary 2.2, T has a unique fixed point z in F(f) and consequently, $F(T) \cap F(f)$ is a singleton.

COROLLARY 2.8. Let M be a subset of a metric space (X, d) and f and T are self-mappings of M. If cl T(M) is complete, (T, f) is a Banach operator pair, F(f)is nonempty and closed and T is a generalized f-weakly contractive mapping, then $F(T) \cap F(f)$ is a singleton.

ACKNOWLEDGEMENT. The author is thankful to the learned referee for careful reading and valuable suggestions.

REFERENCES

- Ya.I. Alber, S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, New results in Operator Theory, Advances Appl., Vol 8 (I. Gohberg and Yu. Lyubich, eds.), Birkhauser, Basel, 1997, 7–22.
- M.A. Al-Thagafi, N. Shahzad, Noncommuting self-maps and invariant approximations, Nonlinear Anal. 64 (2006), 2778–2786.
- [3] D.W. Boyd, T.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458–464.
- [4] S. Chandok, Some common fixed point theorems for generalized f-weakly contractive mappings, J. Appl. Math. Inform. 29 (2011), 257–265.
- [5] S. Chandok, T.D. Narang, Some common fixed point theorems for Banach operator pairs with applications in best approximation, Nonlinear Anal. 73 (2010), 105–109.
- [6] S. Chandok, T.D. Narang, Common fixed points and invariant approximation for Banach operator pairs with Ciric type nonexpansive mappings, Hacettepe J. Math. Stat. 40 (2011), 871–883.
- [7] S.K. Chatterjee, Fixed point theorem, C.R. Acad. Bulgare Sci. 25 (1972), 727-730.
- [8] J. Chen, Z. Li, Common fixed points for Banach operator pairs in best approximations, J. Math. Anal. Appl. 336 (2007), 1466–1475.
- B.S. Choudhury, Unique fixed point theorem for weakly C-contractive mappings, Kathmandu Univ. J. Sci. Eng. Tech. 5 (2009), 6–13.
- [10] L. Ćirić, N. Hussain, N. Cakić, Common fixed points for Ćirić type f-contraction with applications, Publ. Math. Debrecen 76 (2010), 1-19.
- [11] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly 83 (1976), 261–263.
- [12] S. Reich, Some fixed point problems, Atti Acad. Naz. Lincei Ren. Cl. Sci. Fis. Mat. Natur. 57 (1975), 194–198.
- [13] B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), 2683–2693.

(received 17.03.2011; in revised form 01.02.2012; available online 01.05.2012)

Department of Mathematics, Khalsa College of Engineering & Technology, Punjab Technical University, Ranjit Avenue, Amritsar-143001, India.

E-mail: chansok.s@gmail.com, chandhok.sumit@gmail.com