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PROPERTY (gz) FOR BOUNDED LINEAR OPERATORS

H. Zariouh

Abstract. A bounded linear operator T acting on a Banach space possesses property (gaw) if
σ(T )\Ea(T ) = σBW (T ), where σBW (T ) is the B-Weyl spectrum of T , σ(T ) is the usual spectrum
of T and Ea(T ) is the set of all eigenvalues of T which are isolated in the approximate point
spectrum of T . In this paper we introduce and study the new spectral properties (z), (gz), (az) and
(gaz) as a continuation of [M. Berkani, H. Zariouh, New extended Weyl type theorems, Mat. Vesnik
62 (2010), 145–154], which are related to Weyl type theorems. Among other results, we prove that
T possesses property (gz) if and only if T possesses property (gaw) and σBW (T ) = σ

SBF−+
(T );

where σ
SBF−+

(T ) is the essential semi-B-Fredholm spectrum of T .

1. Introduction

Throughout this paper, let L(X) denote the Banach algebra of all bounded
linear operators acting on a complex infinite-dimensional Banach space X. For
T ∈ L(X), let N(T ), R(T ), σ(T ) and σa(T ) denote respectively the null space, the
range, the spectrum and the approximate point spectrum of T . Let α(T ) and β(T )
be the nullity and the deficiency of T defined by α(T ) = dim N(T ) and β(T ) =
codim R(T ). Recall that an operator T ∈ L(X) is called an upper semi-Fredholm
if α(T ) < ∞ and R(T ) is closed, while T ∈ L(X) is called a lower semi-Fredholm
if β(T ) < ∞. Let SF+(X) denote the class of all upper semi-Fredholm operators.
If T ∈ L(X) is an upper or lower semi-Fredholm operator, then T is called a semi-
Fredholm operator, and the index of T is defined by ind(T ) = α(T ) − β(T ). If
both α(T ) and β(T ) are finite, then T is called a Fredholm operator. An operator
T ∈ L(X) is called a Weyl operator if it is a Fredholm operator of index 0. Define
SF−+ (X) = {T ∈ SF+(X) : ind(T ) ≤ 0}. The classes of operators defined above
generate the following spectra : the Weyl spectrum σW (T ) of T ∈ L(X) is defined
by σW (T ) = {λ ∈ C : T − λI is not a Weyl operator}, while the Weyl essential
approximate spectrum σSF−+

(T ) of T is defined by σSF−+
(T ) = {λ ∈ C : T − λI 6∈

SF−+ (X)}.
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For T ∈ L(X), let ∆(T ) = σ(T ) \ σW (T ) and ∆a(T ) = σa(T ) \ σSF−+
(T ).

Following Coburn [12], we say that Weyl’s theorem holds for T ∈ L(X) if ∆(T ) =
E0(T ), where E0(T ) = {λ ∈ isoσ(T ) : 0 < α(T − λI) < ∞}. Here and elsewhere
in this paper, for A ⊂ C, iso A is the set of all isolated points of A. According
to Rakočević [17], an operator T ∈ L(X) is said to satisfy a-Weyl’s theorem if
∆a(T ) = E0

a(T ), where E0
a(T ) = {λ ∈ isoσa(T ) : 0 < α(T − λI) < ∞}. It is known

[17] that an operator satisfying a-Weyl’s theorem satisfies Weyl’s theorem, but the
converse does not hold in general.

Recall that the ascent a(T ), of an operator T , is defined by a(T ) = inf{n ∈
N : N(Tn) = N(Tn+1)} and the descent δ(T ) of T , is defined by δ(T ) = inf{n ∈
N : R(Tn) = R(Tn+1)}, with inf ∅ = ∞. An operator T ∈ L(X) is called Drazin
invertible if it has a finite ascent and descent. The Drazin spectrum σD(T ) of an
operator T is defined by σD(T ) = {λ ∈ C : T − λI is not Drazin invertible}.

Define also the set LD(X) by LD(X) = {T ∈ L(X) : a(T ) < ∞ and
R(T a(T )+1) is closed} and σLD(T ) = {λ ∈ C : T − λI 6∈ LD(X)}. Following
[7], an operator T ∈ L(X) is said to be left Drazin invertible if T ∈ LD(X). We
say that λ ∈ σa(T ) is a left pole of T if T − λI ∈ LD(X), and that λ ∈ σa(T ) is a
left pole of T of finite rank if λ is a left pole of T and α(T − λI) < ∞. Let Πa(T )
denote the set of all left poles of T and let Π0

a(T ) denote the set of all left poles
of T of finite rank, that is Π0

a(T ) = {λ ∈ Πa(T ) : α(T − λI) < ∞}. We say that
a-Browder’s theorem holds for T ∈ L(X) if ∆a(T ) = Π0

a(T ).
Let Π(T ) be the set of all poles of the resolvent of T and let Π0(T ) be the

set of all poles of the resolvent of T of finite rank, that is Π0(T ) = {λ ∈ Π(T ) :
α(T − λI) < ∞}. According to [14], a complex number λ is a pole of the resolvent
of T if and only if 0 < max (a(T − λI), δ(T − λI)) < ∞. Moreover, if this is true
then a(T −λI) = δ(T −λI). According also to [14], the space R((T −λI)a(T−λI)+1)
is closed for each λ ∈ Π(T ). Hence we have always Π(T ) ⊂ Πa(T ) and Π0(T ) ⊂
Π0

a(T ). We say that Browder’s theorem holds for T ∈ L(X) if ∆(T ) = Π0(T ).
For T ∈ L(X) and a nonnegative integer n define T[n] to be the restriction of T

to R(Tn) viewed as a map from R(Tn) into R(Tn) (in particular, T[0] = T ). If for
some integer n the range space R(Tn) is closed and T[n] is an upper (resp. a lower)
semi-Fredholm operator, then T is called an upper (resp. a lower) semi-B-Fredholm
operator. In this case the index of T is defined as the index of the semi-Fredholm
operator T[n], see [8]. Moreover, if T[n] is a Fredholm operator, then T is called a
B-Fredholm operator, see [5]. A semi-B-Fredholm operator is an upper or a lower
semi-B-Fredholm operator. An operator T is said to be a B-Weyl operator [4,
Definition 1.1] if it is a B-Fredholm operator of index zero. The B-Weyl spectrum
σBW (T ) of T is defined by σBW (T ) = {λ ∈ C : T − λI is not a B-Weyl operator}.
For T ∈ L(X), let ∆g(T ) = σ(T ) \ σBW (T ). Following [7], an operator T ∈ L(X)
is said to satisfy generalized Weyl’s theorem if ∆g(T ) = E(T ), where E(T ) =
{λ ∈ isoσ(T ) : α(T − λI) > 0} is the set of all isolated eigenvalues of T , and is
said to satisfy generalized Browder’s theorem if ∆g(T ) = Π(T ). It is proved in
[2, Theorem 2.1] that generalized Browder’s theorem is equivalent to Browder’s
theorem. In [7, Theorem 3.9], it is shown that an operator satisfying generalized
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Weyl’s theorem satisfies also Weyl’s theorem, but the converse does not hold in
general. Nonetheless and under the assumption E(T ) = Π(T ), it is proved in [6,
Theorem 2.9] that generalized Weyl’s theorem is equivalent to Weyl’s theorem.

Let SBF+(X) be the class of all upper semi-B-Fredholm operators, SBF−+ (X)
= {T ∈ SBF+(X) : ind(T ) ≤ 0}. The essential semi-B-Fredholm spectrum of T
is defined by σSBF−+

(T ) = {λ ∈ C : T − λI /∈ SBF−+ (X)}. For T ∈ L(X),
let ∆g

a(T ) = σa(T ) \ σSBF−+
(T ). Following also [7], we say that generalized a-

Weyl’s theorem holds for T ∈ L(X) if ∆g
a(T ) = Ea(T ), where Ea(T ) = {λ ∈

isoσa(T ) : 0 < α(T − λI)} is the set of all eigenvalues of T which are isolated in
σa(T ) and that T obeys generalized a-Browder’s theorem if ∆g

a(T ) = Πa(T ). It
is proved in [2, Theorem 2.2] that generalized a-Browder’s theorem is equivalent
to a-Browder’s theorem, and it is known from [7, Theorem 3.11] that an operator
satisfying generalized a-Weyl’s theorem satisfies a-Weyl’s theorem, but the converse
does not hold in general and under the assumption Ea(T ) = Πa(T ) it is proved
in [6, Theorem 2.10] that generalized a-Weyl’s theorem is equivalent to a-Weyl’s
theorem.

Following [16], an operator T ∈ L(X) is said to possess property (w) if ∆a(T ) =
E0(T ). It is proved in [16, Corollary 2.3] that property (w) implies Weyl’s theorem,
but the converse is not true in general. According to [1], an operator T ∈ L(X) is
said to possess property (gw) if ∆g

a(T ) = E(T ), which is an extension to the context
of B-Fredholm theory of property (w), and it is proved in [1, Theorem 2.3] that an
operator possessing property (gw) possesses property (w), but the converse is not
true in general. According to [10], an operator T ∈ L(X) is said to possess property
(b) if ∆a(T ) = Π0(T ), and is said to possess property (gb) if ∆g

a(T ) = Π(T ). It is
shown [10, Theorem 2.3] that property (gb) implies property (b), but the converse
does not hold in general. It is proved in [10, Theorem 2.13] that property (b) is
a weak version of property (w), and it is proved also in [10, Theorem 2.15] that
property (gb) is a weak version of property (gw).

According to [9], an operator T ∈ L(X) is said to possess property (ab) if
∆(T ) = Π0

a(T ), and is said to possess property (gab) if ∆g(T ) = Πa(T ). It is
proved in [9, Theorem 2.2] that property (gab) implies property (ab), but the
converse is not true in general. It is shown also [9] that property (gb) is a fortified
version of property (gab), which is a fortified version of generalized Browder’s
theorem. According also to [9], we say that T ∈ L(X) possesses property (aw)
if ∆(T ) = E0

a(T ), and that T possesses property (gaw) if ∆g(T ) = Ea(T ). In
[9, Theorem 3.3], it is proved that property (gaw) implies property (aw), but the
converse is not true in general, and it is proved in [9, Theorem 3.5] that an operator
possessing property (gaw) possesses property (gab), but the converse does not hold
in general.

As a continuation of our previous article jointly with M. Berkani [9], we define
and study in this paper the new spectral properties (z), (gz), (az) and (gaz) (see
Definition 2.1 and Definition 3.1), which are analogous respectively to a-Weyl’s
theorem, generalized a-Weyl’s theorem and a-Browder’s theorem. We prove in



Property (gz) for bounded linear operators 97

Theorem 2.2 that an operator T ∈ L(X) possessing property (gz) possesses property
(z) but the converse is not true in general as shown by Example 2.3, nonetheless
and under the assumption that Ea(T ) = Πa(T ) we prove in Theorem 2.6 that
the two properties are equivalent. We also prove in Theorem 2.4 that an operator
possessing property (gz) satisfies generalized a-Weyl’s theorem, and an operator
possessing property (z) satisfies a-Weyl’s theorem, but the converses do not hold
in general. We also show in Theorem 2.7 that an operator possessing property (gz)
possesses property (gaw) and in Theorem 2.8 we show that an operator possessing
property (z) possesses property (aw), but the converses of these theorems are not
true in general. Conditions for the equivalence of properties (gz) and (gaw), and
properties (z) and (aw), are given in Theorem 2.7 and Theorem 2.8, respectively.
Precisely, we prove that an operator T ∈ L(X) possesses property (gz) if and only
if T possesses property (gaw) and σBW (T ) = σSBF−+

(T ), and that T possesses
property (z) if and only if T possesses property (aw) and σW (T ) = σSF−+

(T ). We
prove in Corollary 3.5 that property (az) is equivalent to property (gaz) and in
Theorem 3.6 we show that an operator T ∈ L(X) possesses property (z) if and only
if T possesses property (az) and E0

a(T ) = Π0
a(T ).

In the last part, as a conclusion, we give a diagram summarizing the different
relations between Weyl type theorems and properties, extending a similar diagram
given in [9].

2. Properties (z) and (gz)

For T ∈ L(X), let ∆+(T ) = σ(T )\σSF−+
(T ) and let ∆g

+(T ) = σ(T )\σSBF−+
(T ).

Definition 2.1. A bounded linear operator T ∈ L(X) is said to possess
property (z) if ∆+(T ) = E0

a(T ) and is said to possess property (gz) if ∆g
+(T ) =

Ea(T ).

Theorem 2.2. Let T ∈ L(X). If T possesses property (gz), then T possesses
property (z).

Proof. Suppose that T possesses property (gz), then ∆g
+(T ) = Ea(T ). If

λ ∈ ∆+(T ), then λ ∈ ∆g
+(T ) = Ea(T ). Since T − λI is an upper semi-Fredholm,

then α(T − λI) < ∞. So λ ∈ E0
a(T ) and ∆+(T ) ⊂ E0

a(T ). To show the opposite
inclusion, let λ ∈ E0

a(T ) be arbitrary. Then λ is an eigenvalue of T isolated in
σa(T ). Since T possesses property (gz), it follows that λ ∈ ∆g

+(T ) and T − λI is
an upper semi-B-Fredholm operator. As α(T −λI) is finite, then from [10, Lemma
2.2], we conclude that T − λI is an upper semi-Fredholm with ind(T − λI) ≤ 0.
Hence λ ∈ ∆+(T ). Finally, we have ∆+(T ) = E0

a(T ), and T possesses property
(z).

The converse of Theorem 2.2 does not hold in general as shown by the following
example.

Example 2.3. Let Q be defined for each x = (ξi) ∈ `1 by

Q(ξ1, ξ2, ξ3, . . . , ξk, . . . ) = (0, α1ξ1, α2ξ2, . . . , αk−1ξk−1, . . . ),
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where (αi) is a sequence of complex numbers such that 0 < |αi| ≤ 1 and
∑∞

i=1 |αi| <
∞. We observe that R(Qn) 6= R(Qn), n = 1, 2, . . . Indeed, for a given n ∈ N let
x

(n)
k = (1, . . . , 1, 0, 0, . . . ) (with n+k times 1). Then the limit y(n) = limk→∞Qnx

(n)
k

exists and lies in R(Qn). However, there is no element x(n) ∈ `1 satisfying the
equation Qnx(n) = y(n) as the algebraic solution to this equation is (1, 1, 1, . . . ) /∈ `1.
Define T on X = `1 ⊕ `1 by T = Q ⊕ 0. Then σ(T ) = σa(T ) = {0}, Ea(T ) = {0}
and E0

a(T ) = ∅. Since R(Tn) = R(Qn) ⊕ {0}, R(Tn) is not closed for any n ∈ N;
so T is not a semi-B-Fredholm operator, and σSBF−+

(T ) = {0}. Furthermore, T 6∈
SF−+ (X), and σSF−+

(T ) = {0}. We then have ∆g
+(T ) 6= Ea(T ) , ∆+(T ) = E0

a(T ).
Hence T possesses property (z), but it does not possess property (gz).

Theorem 2.4. Let T ∈ L(X). Then the following assertions hold.
(i) T possesses property (z) if and only if T satisfies a-Weyl’s theorem and

σ(T ) = σa(T ).
(ii) T possesses property (gz) if and only if T satisfies generalized a-Weyl’s

theorem and σ(T ) = σa(T ).

Proof. (i) Assume that T possesses property (z). If λ ∈ ∆a(T ), then λ ∈
∆+(T ). Therefore λ ∈ E0

a(T ) and ∆a(T ) ⊂ E0
a(T ). Now if λ ∈ E0

a(T ), then
λ ∈ σa(T ) and since T possesses property (z), it follows that λ ∈ ∆a(T ). Hence
∆a(T ) = E0

a(T ) and T satisfies a-Weyl’s theorem. Consequently, ∆+(T ) = E0
a(T )

and ∆a(T ) = E0
a(T ). Hence σ(T ) = isoσa(T ) ∪ σSF−+

(T ) and σa(T ) = isoσa(T ) ∪
σSF−+

(T ). This implies that σ(T ) = σa(T ). Conversely, assume that T satisfies

a-Weyl’s theorem and σ(T ) = σa(T ). Then ∆a(T ) = E0
a(T ) and σ(T ) = σa(T ). So

∆+(T ) = E0
a(T ) and T possesses property (z).

(ii) Assume that T possesses property (gz). If λ ∈ ∆g
a(T ), then λ ∈ ∆g

+(T ).
Thus λ ∈ Ea(T ) and ∆g

a(T ) ⊂ Ea(T ). Now if λ ∈ Ea(T ), then λ ∈ σa(T ) and since
T possesses property (gz), λ ∈ ∆g

a(T ). Therefore ∆g
a(T ) = Ea(T ) and T satisfies

generalized a-Weyl’s theorem. We then have ∆g
+(T ) = Ea(T ) and ∆g

a(T ) = Ea(T )
which implies that σ(T ) = isoσa(T )∪σSBF−+

(T ) and σa(T ) = isoσa(T )∪σSBF−+
(T ),

so that σ(T ) = σa(T ). Conversely, assume that T satisfies generalized a-Weyl’s
theorem and σ(T ) = σa(T ). Then ∆g

a(T ) = Ea(T ) and σ(T ) = σa(T ). So ∆g
+(T ) =

Ea(T ) and T possesses property (gz).
The following example shows that generalized a-Weyl’s theorem and gener-

alized Weyl’s theorem do not imply property (gz). It shows also that a-Weyl’s
theorem and Weyl’s theorem do not imply property (z).

Example 2.5. Let R be the unilateral right shift operator defined on
the Hilbert space `2(N). It is known from [15, Theorem 3.1] that σ(R) =
D(0, 1) is the closed unit disc in C, σa(R) = C(0, 1) is the unit circle of C. De-
fine T on the Banach space `2(N) ⊕ `2(N) by T = 0 ⊕ R. Then σ(T ) = D(0, 1),
σa(T ) = C(0, 1) ∪ {0}, σSF−+

(T ) = C(0, 1) ∪ {0}, σSBF−+
(T ) = C(0, 1), E0

a(T ) = ∅
and Ea(T ) = {0}. Hence ∆g

a(T ) = Ea(T ) and ∆a(T ) = E0
a(T ), i.e. T sat-

isfies generalized a-Weyl’s theorem and a-Weyl’s theorem. Moreover, we have
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σBW (T ) = σW (T ) = D(0, 1) and E(T ) = E0(T ) = ∅. So ∆g(T ) = E(T ) and
∆(T ) = E0(T ), i.e. T satisfies generalized Weyl’s theorem and Weyl’s theorem.
But T does not possess property (gz) or property (z), since ∆g

+(T ) 6= Ea(T ) and
∆+(T ) 6= E0

a(T ).

Theorem 2.6. Let T ∈ L(X). The following statements are equivalent.
(i) T possesses property (gz)
(ii) T possesses property (z) and Ea(T ) = Πa(T ).

Proof. (i)=⇒ (ii) Assume that T possesses property (gz), then T possesses
property (z). If λ ∈ Ea(T ), then λ ∈ isoσa(T ) and since T possesses property (gz),
T − λI is an upper semi-B-Fredholm operator such that ind(T − λI) ≤ 0. From
[7, Theorem 2.8] we deduce that λ ∈ Πa(T ). Consequently, Ea(T ) ⊂ Πa(T ). As
Ea(T ) ⊃ Πa(T ) is always true, then Ea(T ) = Πa(T ).

(ii)=⇒ (i) Assume that T possesses property (z) and Ea(T ) = Πa(T ). By The-
orem 2.4, T satisfies a-Weyl’s theorem, which implies from [7, Corollary 3.5] that T
satisfies a-Browder’s theorem. As we know from [2, Theorem 2.2] that a-Browder’s
theorem is equivalent to generalized a-Browder’s theorem, then T satisfies gener-
alized a-Browder’s theorem. Hence we have ∆g

a(T ) = Πa(T ). Since T possesses
property (z), σ(T ) = σa(T ) and by the hypothesis Πa(T ) = Ea(T ), it then follows
that ∆g

+(T ) = Ea(T ) and T possesses property (gz).

Theorem 2.7. Let T ∈ L(X). Then T possesses property (gz) if and only if
T possesses property (gaw) and σSBF−+

(T ) = σBW (T ).

Proof. Assume that T possesses property (gz). Let λ ∈ ∆g(T ) be arbitrary,
then T−λI is a B-Weyl operator, thus λ 6∈ σSBF−+

(T ). As T possesses property (gz)

then λ ∈ Ea(T ) and hence ∆g(T ) ⊂ Ea(T ). Now if λ ∈ Ea(T ), then λ ∈ ∆g
+(T ).

So T − λI is a semi-B-Fredholm operator such that ind(T − λI) ≤ 0. Since λ is
isolated in σa(T ) and T possesses property (gz), it follows from Theorem 2.4 that
λ is isolated in σ(T ). Using the punctured neighborhood theorem [8, Corollary
3.2], we deduce that ind(T − λI) = 0. Hence T − λI is a B-Weyl operator. As a
conclusion, we see that T possesses property (gaw). We then have ∆g

+(T ) = Ea(T )
and ∆g(T ) = Ea(T ). Hence σSBF−+

(T ) = σBW (T ). Conversely, if T possesses

property (gaw) and σSBF−+
(T ) = σBW (T ), then ∆g

+(T ) = Ea(T ) and T possesses
property (gz).

Similarly we have the following result in the case of property (z), which we
give without proof.

Theorem 2.8. Let T ∈ L(X). Then T possesses property (z) if and only if T
possesses property (aw) and σSF−+

(T ) = σW (T ).

Remark 2.9. Generally, property (aw) and property (gaw) do not imply
property (z) and property (gz) respectively. Indeed, let R be the unilateral right
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shift operator defined on `2(N). Then σ(R) = D(0, 1), σa(R) = C(0, 1), σBW (R) =
D(0, 1), σW (R) = D(0, 1), E0

a(R) = ∅ and Ea(R) = ∅. Hence ∆g(R) = Ea(R) and
∆(R) = E0

a(R), i.e. R possesses property (gaw) and property (aw). Moreover, we
have σSBF−+

(R) = C(0, 1), σSF−+
(R) = C(0, 1). This implies that ∆g

+(R) 6= Ea(R)

and ∆+(R) 6= E0
a(R). So R does not possess property (z) or property (gz).

3. Properties (az) and (gaz)

Definition 3.1. A bounded linear operator T ∈ L(X) is said to possess
property (az) if ∆+(T ) = Π0

a(T ) and is said to possess property (gaz) if ∆g
+(T ) =

Πa(T ).

Theorem 3.2. Let T ∈ L(X). Then T possesses property (az) if and only if
T satisfies a-Browder’s theorem and σ(T ) = σa(T ).

Proof. Suppose that T possesses property (az), then ∆+(T ) = Π0
a(T ). If

λ ∈ ∆a(T ) be arbitrary, then λ ∈ ∆+(T ) = Π0
a(T ) and so ∆a(T ) ⊂ Π0

a(T ). If
λ ∈ Π0

a(T ) then T − λI is an upper semi-Fredholm operator of index less or equal
than 0, see [7, Theorem 2.8] and λ ∈ σa(T ). Hence ∆a(T ) = Π0

a(T ), i.e. T satisfies
a-Browder’s theorem. Consequently, ∆a(T ) = Π0

a(T ) and ∆+(T ) = Π0
a(T ). Hence

σa(T ) = isoσa(T )∪σSF−+
(T ) and σ(T ) = isoσa(T )∪σSF−+

(T ), so that σ(T ) = σa(T ).
Conversely, suppose that T satisfies a-Browder’s theorem and σ(T ) = σa(T ). Then
∆a(T ) = Π0

a(T ) and σ(T ) = σa(T ). So ∆+(T ) = Π0
a(T ) and T possesses property

(az).

The following example shows that in general, a-Browder’s theorem and Brow-
der’s theorem do not imply property (az).

Example 3.3. Let R be the unilateral right shift operator defined on `2(N)
and let S defined on `2(N) by S(x1, x2, x3, . . . ) = (0, x2, x3, . . . ). Define T on
the Banach space `2(N) ⊕ `2(N) by T = R ⊕ S. Then σ(T ) = D(0, 1), σa(T ) =
C(0, 1) ∪ {0}, σSF−+

(T ) = C(0, 1), σW (T ) = D(0, 1), Π0
a(T ) = {0} and Π0(T ) = ∅.

Hence ∆a(T ) = Π0
a(T ), ∆(T ) = Π0(T ). So T satisfies a-Browder’s theorem and

Browder’s theorem. But T does not possess property (az), since ∆+(T ) 6= Π0
a(T ).

Theorem 3.4. Let T ∈ L(X). Then T possesses property (gaz) if and only if
T satisfies generalized a-Browder’s theorem and σ(T ) = σa(T ).

Proof. Assume that T possesses property (gaz). If λ ∈ ∆g
a(T ), then λ ∈

∆g
+(T ) = Πa(T ). So ∆g

a(T ) ⊂ Πa(T ). If λ ∈ Πa(T ), then T−λI is an upper semi-B-
Fredholm operator such that ind(T−λI) ≤ 0 and λ ∈ σa(T ). Hence ∆g

a(T ) = Πa(T )
and T satisfies generalized a-Browder’s theorem. Consequently, ∆g

a(T ) = Πa(T )
and ∆g

+(T ) = Πa(T ). This implies that σa(T ) = isoσa(T )∪σSBF−+
(T ) and σ(T ) =

isoσa(T )∪σSBF−+
(T ), which implies that σ(T ) = σa(T ). Conversely, assume that T

satisfies generalized a-Browder’s theorem and σ(T ) = σa(T ). Then ∆g
a(T ) = Πa(T )

and σ(T ) = σa(T ). So ∆g
+(T ) = Πa(T ) and T possesses property (gaz).
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The operator T defined as in Example 3.3 shows that in general, generalized a-
Browder’s theorem and generalized Browder’s theorem do not imply property (gaz).
Indeed, σ(T ) = D(0, 1) and σa(T ) = C(0, 1)∪{0}. Moreover, σSBF−+

(T ) = C(0, 1),
Πa(T ) = {0}, Π(T ) = ∅ and σBW (T ) = D(0, 1). Hence ∆g

a(T ) = Πa(T ) and
∆g(T ) = Π(T ), i.e. T satisfies generalized a-Browder’s theorem and generalized
Browder’s theorem. But T does not possess property (gaz), since ∆g

+(T ) 6= Πa(T ).

Corollary 3.5. Let T ∈ L(X). Then T possesses property (gaz) if and only
if T possesses property (az).

Proof. If T possesses property (gaz) then by Theorem 3.4, T satisfies general-
ized a-Browder’s theorem and σ(T ) = σa(T ). Since a-Browder’s theorem is equiva-
lent to generalized a-Browder’s theorem, then T satisfies a-Browder’s theorem and
σ(T ) = σa(T ). By virtue of Theorem 3.2, T possesses property (az). Conversely,
if T possesses property (az), again by Theorem 3.2, T satisfies a-Browder’s theo-
rem and σ(T ) = σa(T ). Hence T satisfies generalized a-Browder’s theorem that’s
∆g

a(T ) = Πa(T ) and σ(T ) = σa(T ). So ∆g
+(T ) = Πa(T ) and T possesses property

(gaz).

Theorem 3.6. Let T ∈ L(X). Then T possesses property (z) if and only if T
possesses property (az) and E0

a(T ) = Π0
a(T ).

Proof. Assume that T possesses property (z), then ∆+(T ) = E0
a(T ). If λ ∈

∆+(T ), then λ ∈ isoσa(T ) and T−λI is an upper semi-Fredholm operator such that
ind(T −λI) ≤ 0. Hence λ ∈ Π0

a(T ). Therefore ∆+(T ) ⊂ Π0
a(T ). Now if λ ∈ Π0

a(T ),
then T − λI is an upper semi-Fredholm operator such that ind(T − λI) ≤ 0 and
λ ∈ σ(T ). Hence ∆+(T ) = Π0

a(T ), i.e. T possesses property (az) and Π0
a(T ) =

E0
a(T ). Conversely, assume that T possesses property (az) and Π0

a(T ) = E0
a(T ).

Then ∆+(T ) = Π0
a(T ) and Π0

a(T ) = E0
a(T ). So ∆+(T ) = E0

a(T ) and T possesses
property (z).

Corollary 3.7. Let T ∈ L(X). Then T possesses property (gz) if and only
if T possesses property (gaz) and Ea(T ) = Πa(T ).

Proof. If T possesses property (gz), then T possesses property (z). From
Theorem 3.6 we have T possesses property (az). Since property (az) is equivalent to
property (gaz), it follows that T possesses property (gaz). Hence we have ∆g

+(T ) =
Ea(T ) and ∆g

+(T ) = Πa(T ), and this implies that Ea(T ) = Πa(T ). Conversely, if
T possesses property (gaz) and Ea(T ) = Πa(T ) then ∆g

+(T ) = Πa(T ) and Ea(T ) =
Πa(T ). So ∆g

+(T ) = Ea(T ) and T possesses property (gz).
Remark 3.8. In general, property (az) or property (gaz) does not imply

property (z) or property (gz), respectively. Indeed, let T ∈ L(`2(N)) be defined
by T (x1, x2, x3, . . . ) = ( 1

2x2,
1
3x3, . . . ). Then σ(T ) = {0}, σSF−+

(T ) = σSBF−+
(T ) =

{0}, Π0
a(T ) = Πa(T ) = ∅. We then have ∆+(T ) = Π0

a(T ), ∆g
+(T ) = Πa(T ). So

T possesses properties (az) and (gaz). Moreover, E0
a(T ) = Ea(T ) = {0}. Conse-

quently, ∆+(T ) 6= E0
a(T ), ∆g

+(T ) 6= Ea(T ). Thus T does not possess property (z)
or property (gz).
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4. Conclusion

In this last part, we give a summary of the known Weyl type theorems as in
[7], including the properties introduced in [1, 9, 10, 16] and in this paper. We use
the abbreviations gaW, aW, gW, W, (gw), (w), (gaw), (aw), (gz) and (z) to signify
that an operator T ∈ L(X) obeys generalized a-Weyl’s theorem, a-Weyl’s theorem,
generalized Weyl’s theorem, Weyl’s theorem, property (gw), property (w), property
(gaw), property (aw), property (gz) and property (z), respectively. Similarly, the
abbreviations gaB, aB, gB, B, (gb), (b), (gab), (ab), (gaz) and (az) have analogous
meaning with respect to Browder’s theorem or the properties introduced in [9, 10]
or the new properties introduced in this paper.

The following table summarizes the meaning of various theorems and proper-
ties.

gaW σa(T ) \ σSBF−+
(T ) = Ea(T )

aW σa(T ) \ σSF−+
(T ) = E0

a(T )

gW σ(T ) \ σBW (T ) = E(T )
W σ(T ) \ σW (T ) = E0(T )

(gw) σa(T ) \ σSBF−+
(T ) = E(T )

(w) σa(T ) \ σSF−+
(T ) = E0(T )

(gaw) σ(T ) \ σBW (T ) = Ea(T )
(aw) σ(T ) \ σW (T ) = E0

a(T )
(gz) σ(T ) \ σSBF−+

(T ) = Ea(T )

(z) σ(T ) \ σSF−+
(T ) = E0

a(T )

gaB σa(T ) \ σSBF−+
(T ) = Πa(T )

aB σa(T ) \ σSF−+
(T ) = Π0

a(T )

gB σ(T ) \ σBW (T ) = Π(T )
B σ(T ) \ σW (T ) = Π0(T )

(gb) σa(T ) \ σSBF−+
(T ) = Π(T )

(b) σa(T ) \ σSF−+
(T ) = Π0(T )

(gab) σ(T ) \ σBW (T ) = Πa(T )
(ab) σ(T ) \ σW (T ) = Π0

a(T )
(gaz) σ(T ) \ σSBF−+

(T ) = Πa(T )

(az) σ(T ) \ σSF−+
(T ) = Π0

a(T )

In the diagram on the next page, which extends the similar diagram presented
in [9], arrows signify implications between various Weyl type theorems, Browder
type theorems, property (gw), property (gb), property (gab), property (gaw), prop-
erty (gz) and property (gaz). The numbers near the arrows are references to the
results in the present paper (numbers without brackets) or to the bibliography
therein (the numbers in square brackets).
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