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BUTZER-FLOCKE-HAUSS OMEGA FUNCTION

Tibor K. Pogány, Živorad Tomovski and Delčo Leškovski

Dedicated to the memory of Milorad Bertolino (1929–1981)

Abstract. The main aim of this short note is to obtain two sided bounding inequalities
for the real argument Butzer-Flocke-Hauss complete Omega function improving and developing
a recent result by Pogány and Srivastava [Some two-sided bounding inequalities for the Butzer-
Flocke-Hauss Omega function, Math. Inequal. Appl. 10 (2007), 587–595]. The main tools are the

ODE whose particular solution is the Omega function and the related Čaplygin type differential
inequality.

1. Introduction and preliminaries

In the course of their investigation of the complex-index Euler function Eα(z),
Butzer, Flocke and Hauss (BHF) [8] introduced the following special function:

Ω(w) = 2
∫ 1

2

0+

sinh(uw) cot(πu) du, w ∈ C, (1)

which they called the complete Omega function (see also [6, Definition 7.1]). On the
other hand, in view of the definition of the Hilbert transform, the complete Omega
function Ω(w) is the Hilbert transform H(e−xw)1(0) of the 1-periodic continuation
of e−xw, x ∈ [−1/2, 1/2]; w ∈ C at 0, that is,

Ω(w) = H(e−xw)1(0) = P.V.
∫ 1

2

− 1
2

ewu cot(πu) du

where the integral is taken in the sense of Cauchy’s P.V. at zero [6, p. 67].
We also recall the following partial-fraction expansion of the Omega function

(see [6, Theorem 1.3] and [8]):

πΩ(2πw)
2 sinh(πw)

=
∞∑

n=1

(−1)n−1 n

n2 + w2
, w ∈ C. (2)
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Additional links to the various applications of the Omega function Ω(w), w ∈ C
in generating-function descriptions and allied considerations of the complex-index
Euler Eα(z) and the complex-index Bernoulli function Bα(z) include (for example)
[6, 7, 8].

Butzer et al. [9, Theorem 1] showed that the real-argument complete BHF
Omega function Ω(x) is a particular solution of the linear ODE

y ′ =
1
2

coth
(x

2

)
y − x

2π3
sinh

(x

2

)
S̃

( x

2π

)
, x ∈ R, (3)

where

S̃(w) =





1
w

∫ ∞

0

t sin(wt)
et + 1

dt, w 6= 0,

2η(3), w = 0,

(4)

and

η(s) :=
∞∑

n=1

(−1)n−1

ns
=: (1− 21−s) ζ(s), R(s) > 0; s 6= 1

denotes the Dirichlet Eta function, ζ(s) being the Riemann Zeta function.
To make precise the structure of (3), we point out that the celebrated Mathieu

series

S(x) =
∞∑

n=1

2n

(n2 + x2)2
, x ∈ R ,

has been considered for the first time by É. L. Mathieu in his book [23] devoted
to mathematical physics investigations on the elasticity of rigid bodies. (For the
sake of completeness, various generalizations of Mathieu series can be found in the
exhaustive research paper [31] and the references therein). According to proposal
by Tomovski, the alternating Mathieu series S̃(x) was introduced by Pogány et al.
in [31, p. 72, Eq. (2.7)]. Thus

S̃(x) =
∞∑

n=1

(−1)n−1 2n

(n2 + x2)2
, x ∈ R .

In the same article [31, Eq. (2.8)] the authors reported on the integral representation

S̃(x) =
1
x

∫ ∞

0

t sin(xt)
et + 1

dt, x > 0 .

Now obvious steps lead to (4).
Our aim in this section is first to derive a two-sided bounding inequality for

Ω(x) with the help of the linear first-order ODE (3) and the Čaplygin Comparison
Theorem associated with the Omega function (see, for details, [10, 11, 12], [5,
Section 15] and [25, Section I.1].

Consider the Cauchy problem given by

y ′ = f(x, y) and y(x0) = y0 . (5)
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For a given interval I ⊆ R, let x0 ∈ I and let the functions ϕ,ψ ∈ C1(I). We say
that ϕ and ψ are the lower and the upper functions, respectively, if

ϕ ′(x) ≤ f
(
x, ϕ(x)

)
and ψ ′(x) ≥ f

(
x, ψ(x)

)
, x ∈ I;

ϕ(x0) = ψ(x0) = y0 .

Suppose also that the function f(x, y) is continuous on some domain D in the
(x, y)-plane containing the interval I with the lower and upper functions ϕ and
ψ, respectively. Then the solution y(x) of the Cauchy problem (5) satisfies the
following two-sided inequality:

ϕ(x) ≤ y(x) ≤ ψ(x), x ∈ I . (6)

This is actually the so-called Čaplygin type Differential Inequality or the Čaplygin
type Comparison Theorem (see [5, p. 202] and [25, pp. 3–4]).

Finally, it is not hard to see that

S̃(x) = S(x)− 1
4
S

(x

2

)
, x ∈ R . (7)

So, having certain two-sided bounding inequality L(x) < S(x) < R(x), say, we
conclude

L(x)− 1
4
R

(x

2

)
< S̃(x) < R(x)− 1

4
L

(x

2

)
, x ∈ R . (8)

2. Two-sided inequalities associated with the class R

The bilateral bounds for Mathieu series S(x) attracted many mathematicians
like Schröder [35], Emersleben [16], Berg [3], Makai [22], Diananda [13] and more
recently we have the works by Alzer, Guo, Lampret, Mortici, Pogány, Qi, Srivastava,
Tomovski and coworkers (see [1, 2, 14, 16–20, 24, 26, 27, 29–35, 40–42] among
others), while Mathieu himself conjectured [23, Ch. X, pp. 256–258] only the upper
bound S(x) < x−2, x > 0, proved first by Berg [3] (see also the paper by van der
Corput and Heflinger [12]). Then, the bilateral bounding inequality of the same
type like Berg’s:

1
x2 + 1

2

< S(x) <
1

x2 + 1
6

,

has been given Makai [22] who proved it in a highly elegant manner (compare
to (9)).

There are three different kind of bounds L,R upon S(x): (i) the class R of
rational bounds [1, 2, 6, 12, 13, 15–17, 19, 20, 22, 23, 27, 29, 31, 34]; (ii) a class A
of bounds consisting of combination of rational, algebraic, exponential, hyperbolic
and logarithmic functions [18, 31–33, 37] and (iii) the class O of bounds containing
definite integrals of certain kind differential operators [14] and higher transcendental
functions [29, 30, 39].

Let us mention that the recent paper by Mortici [27] contains exhaustive ef-
ficiency discussion upon the whole class R of rational bounds (except Lampret’s
results), giving good account to our further considerations.
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Naturally, we are looking for the at tightest possible couple (L0, R0) of lower
and upper bound of bilateral approximation (8), such that attains minimal devia-
tion

δ(x) := R(x)− L(x) +
1
4

(
R

(x

2

)
− L

(x

2

))
.

Obviously, tighter L,R result in tighter bounds for S̃(x).
The famous result by Alzer et al. [2] states that

1
x2 + 1

2ζ(3)

< S(x) <
1

x2 + 1
6

, x > 0 , (9)

where the constants 1/(2ζ(3)) (first conjectured by Elbert [15]) and 1/6 are sharp
in the sense that cannot be replaced with another smaller lower and bigger upper
ones. Here ζ(3) ≈ 1.2020569 stands for the celebrated Apèry’s constant. The main
advantage of Alzer’s bound is its simple structure. However, Mortici [27] states
the following result such that turns out to be superior to the bounds by Alzer [2],
Hoorfar and Qi [19], Qi [32] and Qi et al. [33]. According to [27, p. 910, Theorem
1], we have

a(x) < S(x) < b(x), x > 0 , (10)

where

a(x) =
5(42x6 + 341x4 + 885x2 + 814)

6(x2 + 1)(x2 + 4)(35x4 + 115x2 + 72)

b(x) =
1 680x10 + 22 460x8 + 130 092x6 + 403 017x4 + 665570x2 + 499 305

6(x2 + 1)2(280x8 + 3230x6 + 15 583x4 + 36 627x2 + 34 614)
.

Mortici give two another simpler bounds [27, p. 910, Corollary 1]; the first one
reads as follows:

1
x2 + 1

6 + 13
210x2

< S(x) <
1

x2 + 1
6 + 11

180x2

. (11)

Here the left-hand side inequality holds true for all x ≥ xL, where xL ≈ 9.59595556
is the greatest real root of the polynomial

P6(x) ≡ 7x6 − 292x4 − 32 581x2 + 10 582 , (12)

and the right-hand side inequality holds even for every x ≥ xR, being xR ≈ 0.603078
the greatest real positive root of the polynomial

P8(x) ≡ 11 960x8 + 2 956x6 + 48 213x4 + 15 082 700x2 − 5 492 355 .

The second estimate is

S(x) <
1

x2 + 1
2µ − 32

25 x
, x > 0, µ =

166 435
138 456

. (13)

Let us mention that these bounds improve the earlier mentioned ones in their ranges
of validity.
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Now, applying (8), from (11) we deduce for all x ≥ xL:

x2

x4 + 1
6 x2 + 13

210

− x2

x4 + 2
3 x2 + 44

45

< S̃(x) <
x2

x4 + 1
6 x2 + 11

180

− x2

x4 + 2
3 x2 + 104

105

.

(14)
To estimate S(x) with some tight two-sided bounding inequality, we point out that

δ(x) ≈ 5
4
{
R(x)− L(x)} ,

in both cases when x → 0 or x → ∞, therefore, in the case x ≥ q > 0, reasonable
candidate for the couple (L0, R0) is Mortici’s bound (11), since (10) gives hardly
handleable upper and lower Čaplygin’s ODEs.

Theorem 1. For all x ≥ xL ≈ 9.59595556, where xL denotes the greatest real
root of the polynomial P6(x) (12), the following two-sided inequality holds true for
the complete real parameter Butzet-Flocke-Hauss Omega-function:

ϕ1(x) < Ω(x) < ψ1(x) , (15)

where

ϕ1(x) = sinh
(x

2

) (
1
2π

ln
77

(
x4 + 8

3π2 x2 + 1 664
105 π4

)

78
(
x4 + 2

3π2 x2 + 44
45π4

)

+
1
π

√
5
39

arctan
3
√

195 x2

15x2 + 44π2
− 1

π

√
35
277

arctan
3
√

9 695 x2

105x2 + 1 248π2

)

ψ1(x) = sinh
(x

2

) (
1
2π

ln
78

(
x4 + 8

3π2 x2 + 704
45 π4

)

77
(
x4 + 2

3π2 x2 + 104
105π4

)

− 1
π

√
5
39

arctan
3
√

195 x2

15x2 + 176π2
+

1
π

√
35
277

arctan
3
√

9 695 x2

105x2 + 312π2

)
.

Moreover, for x < 0 opposite inequalities hold true.

Proof. Consider the Cauchy problem

Ω ′ − 1
2

coth
(x

2

)
· Ω = − x

2π3
sinh

(x

2

)
· S̃

( x

2π

)
, Ω(0) = 0 . (16)

Evaluating S̃(x) with the bilateral estimate (14), we deduce the Čaplygin lower and
upper ODEs respectively:

ϕ′1 −
1
2

coth
(x

2

)
ϕ1

=
2x3

π
sinh

(x

2

) (
1

x4 + 8
3π2 x2 + 1 664

105 π4
− 1

x4 + 2
3 π2x2 + 44

45π4

)

(17)
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ψ′1 −
1
2

coth
(x

2

)
ψ1

=
2x3

π
sinh

(x

2

) (
1

x4 + 8
3π2 x2 + 704

45 π4
− 1

x4 + 2
3 π2x2 + 104

105π4

)
,

(18)

on the interval I = R+. The solutions of these linear ODEs are:

ϕ1(x) = sinh
(x

2

) (
C1 +

1
2π

ln
x4 + 8

3π2 x2 + 1 664
105 π4

x4 + 2
3π2 x2 + 44

45π4

+
1
π

√
5
39

arctan
√

5 (3x2 + π2)
π2
√

39
− 1

π

√
35
277

arctan
√

35 (3x2 + 4π2)
4π2

√
277

)
,

(19)

ψ1(x) = sinh
(x

2

) (
C2 +

1
2π

ln
x4 + 8

3π2 x2 + 704
45 π4

x4 + 2
3π2 x2 + 104

105π4

+
1
π

√
35
277

arctan
√

35 (3x2 + π2)
π2
√

277
− 1

π

√
5
39

arctan
√

5 (3x2 + 4π2)
4π2

√
39

)
.

(20)

We point out that the initial condition Ω(0) = 0 is chosen in accordance with the
behaviour of the Omega function Ω(x) given by

Ω(x) = 8π sinh
(x

2

) ∞∑
n=1

(−1)n−1 n

x2 + 4π2n2
∼ 2

π
η(1) sinh

(x

2

)
=

2 ln 2
π

sinh
(x

2

)
= o(x) ,

(21)
as x → 0, provided by the partial-fraction expansions (2). Thus, by (19) and (20),
we get

ϕ1(x) ∼ sinh
(x

2

)(
C1 + Cϕ

)
and ψ1(x) ∼ sinh

(x

2

)(
C2 + Cψ

)
, x → 0 ,

where

Cϕ =
1
2π

ln
1 248
77

+
1
π

√
5
39

arctan

√
5
39
− 1

π

√
35
277

arctan

√
35
277

,

Cψ =
1
2π

ln
616
39

+
1
π

√
35
277

arctan

√
35
277

− 1
π

√
5
39

arctan

√
5
39

.

So, by the constraint (6), near to the origin

ϕ1(x) ∼ sinh
(x

2

)(
C1 + Cϕ

) ≤ 2 ln 2
π

sinh
(x

2

)
≤ sinh

(x

2

)(
C2 + Cψ

) ∼ ψ1(x) ,

that is

C1 =
1
2π

ln
77
78
− 1

π

√
5
39

arctan

√
5
39

+
1
π

√
35
277

arctan

√
35
277

,

C2 =
1
2π

ln
78
77

+
1
π

√
5
39

arctan

√
5
39
− 1

π

√
35
277

arctan

√
35
277

.

Now, obvious steps lead to the assertion of the Theorem.
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Remark 1. Let us mention that the numerical values of the integration con-
stants read as follows:

C1 ≈ −0.00259805 , C2 ≈ 0.00259805 .

The calculations throughout have been performed by Mathematica 8.
Since Mortici’s bound comparison analysis does not include Lampret’s bounds,

we list this result as well. Using Euler-Maclaurin summation formula for the
(m− 1)-th partial sum for Mathieu series, Lampret derived [20, p. 2274, Eq. (17)]
a set of two-sided inequalities:

am(x) < S(x) < bm(x) x > 0 , (22)

where for all m ≥ 1 it is

am(x) =
(
1− 1

2(m2 + x2)2 + 2m3 + m2

)
σm(x)

bm(x) =
(
1 +

1
2(m2 + x2)2 + 2m3 + m2

)
σm(x)

σm(x) =
m−1∑

j=1

2j

(j2 + x2)2
+

1
m2 + x2

+
m

(m2 + x2)2
+

3m2 − x2

6(m2 + x2)3
.

Obviously, for all x > 0 we have

lim
m→∞

am(x) = lim
m→∞

bm(x) = lim
m→∞

σm(x) = S(x) ,

where the relative convergence rate has the magnitude O(m−4), see [20, Eq. (15)].
In what follows we consider Lampret’s bounds a2(x) < S(x) < b2(x), x > 0 as

an illustrative example of his set of results. First, setting m = 2 in (22) we arrive
at (

1− 1
2(x2 + 4)2 + 20

)
σ2(x) < S(x) <

(
1 +

1
2(x2 + 4)2 + 20

)
σ2(x) ,

where

σ2(x) =
2

(x2 + 1)2
+

1
x2 + 4

+
2

(x2 + 4)2
+

12− x2

6(x2 + 4)3
.

By virtue of (8) we get

(
1− 1

2(x2 + 4)2 + 20

)
σ2(x)− 1

4

(
1 +

1
2((x/2)2 + 4)2 + 20

)
σ2

(x

2

)

< S̃(x) <
(
1 +

1
2(x2 + 4)2 + 20

)
σ2(x)− 1

4

(
1− 1

2((x/2)2 + 4)2 + 20

)
σ2

(x

2

)
.

As x > 0 obviously

1 +
1

2(x2 + 4)2 + 20
<

21
20

and 1− 1
2(x2 + 4)2 + 20

>
19
20

,
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so the results

19
20

σ2(x)− 21
80

σ2

(x

2

)
< S̃(x) <

21
20

σ2(x)− 19
80

σ2

(x

2

)
. (23)

Now, we are ready to expose our next main result.

Theorem 2. For all x > 0 the complete, real argument BHF Omega function
has the following two-sided bounding inequality

ϕ2(x) < Ω(x) < ψ2(x) , (24)

where

ϕ2(x) = sinh
(x

2

) (
37
20π

+
1
π

ln
(
64π23/5

)
+

42π

5
1

x2 + 4π2
− 213π

5
1

x2 + 16π2

− 112π3

5
1

(x2 + 16π2)2
− 461π

15
1

x2 + 64π2
− 1 216π3

15
1

(x2 + 64π2)2

− 21
10π

ln(x2 + 16π2) +
19
20π

ln(x2 + 64π2)
)

ψ2(x) = sinh
(x

2

) (
379
240π

+
1
π

ln
16

π2/5
+

38π

5
1

x2 + 4π2
− 799π

30
1

x2 + 16π2

− 304
15π

1
(x2 + 16π2)2

− 329π

3
1

x2 + 64π2
− 448π2

5
1

(x2 + 64π2)2

− 19
10π

ln(x2 + 16π2) +
21
20π

ln(x2 + 64π2)
)

.

Proof. The Cauchy problem (16) in conjunction with the previous estimates
(23) upon S̃(x) enables us to formulate the Čaplygin lower and upper ODEs re-
spectively:

ϕ′2 −
1
2

coth
(x

2

)
ϕ2 = − x

2π3
sinh

(x

2

) (
21
20

σ2

( x

2π

)
− 19

80
σ2

( x

4π

))

ψ′2 −
1
2

coth
(x

2

)
ψ2 = − x

2π3
sinh

(x

2

) (
19
20

σ2

( x

2π

)
− 21

80
σ2

( x

4π

))
,

on the interval I = R+. The solutions of these linear ODEs are:

ϕ2(x) = sinh
(x

2

) (
C3 − 23

10π
ln 2π +

42π

5
1

x2 + 4π2
− 213π

5
1

x2 + 16π2

− 112π3

5
1

(x2 + 16π2)2
− 461π

15
1

x2 + 64π2
− 1 216π3

15
1

(x2 + 64π2)2

− 21
10π

ln(x2 + 16π2) +
19
20π

ln(x2 + 64π2)
)
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ψ2(x) = sinh
(x

2

) (
C4 − 17

10π
ln 2π +

38π

5
1

x2 + 4π2
− 799π

30
1

x2 + 16π2

− 304
15π

1
(x2 + 16π2)2

− 329π

3
1

x2 + 64π2
− 448π2

5
1

(x2 + 64π2)2

− 19
10π

ln(x2 + 16π2) +
21
20π

ln(x2 + 64π2)
)

.

Letting x → 0, we conclude:

ϕ2(x) ∼ sinh
(x

2

)(
C3 + A

) ≤ 2 ln 2
π

sinh
(x

2

)
≤ sinh

(x

2

)(
C4 + B

) ∼ ψ1(x) ,

where

A = − 37
20π

− 1
π

ln
(
32 π23/5

)
, B = − 379

240π
− 1

π
ln

(
8π13/10

)
.

Obviously

C3 =
37
20π

+
1
π

ln
(
128π23/5

)
, C4 =

379
240π

+
1
π

ln
(
32π13/10

)
,

such that finishes the proof of the Theorem.
Remark 2. Routine calculations give us the approximate values of the con-

stants
C3 ≈ 3.8094651 and C4 ≈ 2.0795349 .

Remark 3. Pogány et al. [31, Proposition 2] reported on the estimate (related
to (9)):

4ζ(3)− 3
(3x2 + 2)(2ζ(3)x2 + 1)

< S̃(x) <
12− ζ(3)

(6x2 + 1)(ζ(3)x2 + 2)
x > 0 .

By virtue of this result, using Čaplygin’s Comparison Theorem, Pogány and Sri-
vastava [29, Theorem 3] proved that for all x ≥ 0, there holds true

1
π

sinh
(x

2

)
ln

(
ζ(3)x2 + 8π2

3x2 + 2π2

)
< Ω(x) <

1
π

sinh
(x

2

)
ln

(
3x2 + 8π2

ζ(3)x2 + 2π2

)
. (25)

For x < 0, we have the reversed inequalities.

3. Two-sided inequalities for the class A

In this section we present some bilateral bounding inequalities associated with
bounding functions L,R ∈ A. This kind of bounds have been considered by Guo,
Qi and coworkers (see [18, 19, 31–33]). Here we report on a new result.

Theorem 3. For all x ≥ 0, the following two-sided bounding inequalities hold
true

ϕ3(x) < Ω(x) < ψ3(x) , (26)
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where

ϕ3(x) = sinh
(x

2

) (
8π

x2 + 4π2
− 1

π2
ln

e2π2/x

e2π2/x − 1
− 1

π(e2π2/x − 1)
+

2(ln 2− 1)
π

)

ψ3(x) = sinh
(x

2

) (
4π

x2 + 4π2
+

1
π2

ln
e2π2/x

e2π2/x − 1
+

1
π(e2π2/x − 1)

+
2 ln 2− 1

π

)
.

Moreover, for x < 0, the inequality (26) reverses.

Proof. Consider the two-sided bounding inequality for the alternating Mathieu
series S̃(x) by Tomovski and Leškovski [37, Theorem 2.3]:

L̃(x) < S̃(x) < R̃(x), x > 0 (27)

where

L̃(x) =
2

(1 + x2)2
− 1

(1 + x2)2(1− e−π/x)
− πe−π/x

2x(1 + x2)(1− e−π/x)2

R̃(x) =
1

(1 + x2)2
+

1
(1 + x2)2(1− e−π/x)

+
πe−π/x

2x(1 + x2)(1− e−π/x)2
,

and take I = R+. Applying bounds (27) to the ODE (3), that is, for the Cauchy
problem

Ω ′ − 1
2

coth
(x

2

)
Ω = − x

2π3
sinh

(x

2

)
S̃

( x

2π

)
, Ω(0) = 0 , (28)

and using some elementary inequalities such as x2 + 4π2 ≥ 4πx, x2 + 4π2 ≥ x2, we
deduce the related lower and upper ODEs:

ϕ′3 −
1
2

coth
(x

2

)
ϕ3

= − sinh
(x

2

)
·
(

16πx

(x2 + 4π2)2
+

2
x2(e2π2/x − 1)

+
2πe2π2/x

x2(e2π2/x − 1)2

)

ψ′3 −
1
2

coth
(x

2

)
ψ3

= sinh
(x

2

)
·
(
− 8πx

(x2 + 4π2)2
+

2
x2(e2π2/x − 1)

+
2πe2π2/x

x2(e2π2/x − 1)2

)
,

respectively; the initial condition Ω(0) = 0 has been used in accordance with the
definition (1). The solutions of above lower and upper ODEs become

ϕ3(x) = sinh
(x

2

)
·
(

C5 +
8π

x2 + 4π2
− 1

π2
ln

e2π2/x

e2π2/x − 1
− 1

π(e2π2/x − 1)

)

(29)

ψ3(x) = sinh
(x

2

)
·
(

C6 +
4π

x2 + 4π2
+

1
π2

ln
e2π2/x

e2π2/x − 1
+

1
π(e2π2/x − 1)

)
,
(30)
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with the integration constants C5, C6. Bearing in mind (21), we clearly conclude
that

ϕ3(x) ∼ sinh
(x

2

)(
C5 +

2
π

)
and ψ3(x) ∼ sinh

(x

2

)(
C6 +

1
π

)
x → 0 .

Hence

ϕ3(x) ∼ sinh
(x

2

)(
C5 +

2
π

)
≤ 2 ln 2

π
sinh

(x

2

)
≤ sinh

(x

2

)(
C6 +

1
π

)
∼ ψ3(x) ,

that is

C5 =
2(ln 2− 1)

π
≈ −0.1953486, C6 =

2 ln 2− 1
π

≈ 0.1229613 .

The second assertion of the theorem follows from the fact that Ω(x) is odd.

4. Two-sided inequalities associated with the class O

In this section, at the beginning, we recall a refinement of Alzer’s bounds (9)
by Draščić and Pogány [14]. In that paper considering a special case of a more
general integral representation by Pogány [28], the authors derive the following
result. Denote

U(x) = 2
∫ ∞

1

[
√

t ]2

(x2 + t)3
dt, V (x) = 4

∫ ∞

1

[
√

t ]
(x2 + t)3

dt ,

where [α] stands for the integer part of the argument α. The inequality

1
x2 + 1

2ζ(3)

≤ U(x) ≤ S(x) (31)

holds for all x ∈ I1 = [x1, x2], where x1, x2 are the real positive roots of the equation

x2 + 3
(x2 + 1)2

− 8
3(x + 1)3

+
4x

(x + 1)4
− 8x2

5(x + 1)5
=

2ζ(3)
2ζ(3)x2 + 1

.

We remark that both equalities in (31) cannot happen simultaneously. Moreover,
the inequality

S(x) < U(x) + V (x) ≤ 1
x2 + 1

6

(32)

holds for all x ∈ I2 = (0, x3] ∪ [x4,∞), where x3, x4 are the positive real roots of
the equation

πx4 + 2(4 + π)x2 + π − 4
4x2(1 + x2)2

− 6
6x2 + 1

= 0.

In (31), (32) for xj , j = 1, 4 we have equalities. Calculations with Mathematica 8
give

x1 ≈ 0.394443, x2 ≈ 5.04572; x3 ≈ 0.660463, x4 ≈ 2.74663.
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Consequently, with the aid of (7) we conclude

L̃4(x) := 2
∫ ∞

1

(
[
√

t ]2

(x2 + t)3
− [
√

t ]2 + 2[
√

t ]
(x2 + 4t)3

)
dt

< S̃(x) < 2
∫ ∞

1

(
[
√

t ]2 + 2[
√

t ]
(x2 + t)3

− [
√

t ]2

(x2 + 4t)3

)
dt =: R̃4(x) .

(33)

Now, following the lines of here exposed results in previous sections, we can easi-
ly conclude the similar fashion results by using Čaplygin’s Comparison Theorem.
Although the same procedure, we cannot apply directly the results by Draščić and
Pogány [14], since solutions ϕ,ψ of Čaplygin’s upper and lower linear ODEs contain
terms ∫ x

0+

ξR̃4

(
ξ

2π

)
dξ,

∫ x

0+

ξR̃4

(
ξ

2π

)
dξ ,

respectively. Both integrands do not allow integration order exchange, because the
resulting integrals diverge for all x ∈ R+. On the other hand, the Čaplygin’s upper
and lower functions expressed via above functions are not applicable for Cauchy
problem solving directly. To skip these problems, let us evaluate U(x), V (x), by
the obvious estimate a− 1 < [a] < a, a ∈ R. Hence

x− arctanx

x3
= 2

∫ ∞

1

(
√

t− 1)2 dt

(x2 + t)3
< U(x) < 2

∫ ∞

1

tdt

(x2 + t)3
=

x2 + 2
(x2 + 1)2

.

Similar estimates can be achieved for V (x):

arctanx

x3
− 1

x2(x2 + 1)2
= 4

∫ ∞

1

(
√

t− 1) dt

(x2 + t)3
< V (x)

< 4
∫ ∞

1

√
t dt

(x2 + t)3
=

arctanx

x3
+

x2 − 1
x2(x2 + 1)2

.

Therefore, so do a fortiori for L̃4, R̃4. As the left-hand-side bounds in both esti-
mates are positive on R+, we have

ln
√

x2 + 1 +
arctanx

x2 + 1
− 1 <

∫ x

0+

ξU(ξ) dξ < ln
√

x2 + 1 +
x2

2(x2 + 1)
(34)

1− arctan x

x2 + 1
<

∫ x

0+

ξV (ξ) dξ < ln
√

x2 + 1 + 1− arctan x

x
.

(35)

We need these bounds in the proving procedure of our next main result.

Theorem 4. For all x > 0 we have

−
∫ x

0+

ξR̃4

(
ξ

2π

)
dξ <

2π3Ω(x)
sinh

(
x
2

) − π2 ln 16 < −
∫ x

0+

ξL̃4

(
ξ

2π

)
dξ , (36)

where the lower and upper guard-bound functions L̃4(x), R̃4(x) of S̃(x) are defined
by (33).
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Proof. The Čaplygin lower and upper ODEs are built with the help of the
upper and lower bounds R̃4, L̃4 respectively:

ϕ′4 −
1
2

coth
(x

2

)
ϕ4 = 64π3 x sinh

(x

2

) ∫ ∞

1

(
[
√

t ]2

(x2 + 16π2t)3
− [
√

t ]2 + 2[
√

t ]
(x2 + 4π2t)3

)
dt

(37)

ψ′4 −
1
2

coth
(x

2

)
ψ4 = 64π3 x sinh

(x

2

) ∫ ∞

1

(
[
√

t ]2 + 2[
√

t ]
(x2 + 16π2t)3

− [
√

t ]2

(x2 + 4π2t)3

)
dt .
(38)

The solutions are

ϕ4(x) = sinh
(x

2

) (
C7 − 1

2π3

∫ x

0+

ξR̃4

(
ξ

2π

)
dξ

)
,

ψ4(x) = sinh
(x

2

) (
C8 − 1

2π3

∫ x

0+

ξL̃4

(
ξ

2π

)
dξ

)
,

where we describe L̃4, R̃4 in (33).
Now, it is not hard to build by (7) the associated bounding guard-functions

L̃4(x), R̃4(x) and to conclude that the both Cauchy problems have boundary con-
ditions

ϕ(0+) = ψ(0+) = 0 .

Bearing in mind (34) and (35), we get

ϕ4(x) ∼ C7 sinh
(x

2

)
and ψ4(x) ∼ C8 sinh

(x

2

)
, x → 0 ,

yielding

ϕ4(x) ∼ C7 sinh
(x

2

)
≤ 2 ln 2

π
sinh

(x

2

)
≤ C8 sinh

(x

2

)
∼ ψ4(x) .

Finally, we have

C7 = C8 =
2 ln 2

π
.

This finishes the proof of the Theorem.

5. Two-sided inequalities associated with the explicit bounds on S̃(x)

Finally, bounds on alternating Mathieu series S̃(x) have been given exclusively
by Pogány, Srivastava, Tomovski and Leškovski alone and in collaboration in [29–
31, 36–39]. In that cases, faced with explicit lower and upper bounds L̃, R̃ we derive
in this section certain representative examples too.

First, we recall a very simple upper bound [39, p. 11, Theorem 3.1]TP by
Tomovski and Pogány:

∣∣S̃(x)
∣∣ ≤ 16

√
2π

x
, x > 0 .
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It is worth to mention another similar type upper bound of magnitude O(x−1/(2p)),
p > 1 such that readily follows by [39, p. 12, Theorem 3.2]. However, we present
the [30, p. 319, Theorem 2] for the Mathieu-series S(x), x ∈ R, such that links to
the modulus of the alternating Mathieu series:

∣∣S̃(x)
∣∣ ≤

√
3ζ(3)

1 + 4x2
. (39)

Theorem 5. For all x ≥ 0, we have
∣∣∣Ω(x)− ln 4

π
sinh

(x

2

) ∣∣∣ ≤ 2
√

3ζ(3)x2 sinh
(

x
2

)

π3(1 +
√

1 + 4x2)
. (40)

Proof. Both Čaplygin’s ODEs are

y′ − 1
2

coth
(x

2

)
y = ±

√
3ζ(3)
2π3

x sinh
(

x
2

)
√

1 + 4x2
y ∈ {ϕ5, ψ5} ,

and the related solutions are

y(x) = sinh
(x

2

) (
C9,10 ±

√
3ζ(3)
8π3

√
1 + 4x2

)
.

Now, easy steps show that

C9,10 =
ln 4
π
±

√
3ζ(3)
2π3

,

such that lead to the asserted two-sided bound (40).
Finally, we mention the upper bound [30, p. 320, Theorem 3], whose special

case relates to alternating Mathieu series. Namely:

S̃(x) ≤ 4π2

3

(
π x

5(1 + 2x2) 2F1

[ 1, 1/2

3/2

∣∣∣ 4x4

(1 + 2x2)2

])1/2

, x ≥ 0 .

Here 2F1[·] stands for the familiar Gauss hypergeometric function. However, the
use of this bound will result only in upper Čaplygin’s function.

6. Efficiency discussion. Further remarks

In this section we analyze the efficiency of bounds presented by Theorems 1–3
and Theorem 5. Of course, we are looking for at most tighter couple (ϕ,ψ) of lower
and upper bound of bilateral approximations, such that permits the least deviation

min
1≤j≤5

{
δj(x) := ψj(x)− ϕj(x)

}
.

Obviously, tighter L, R result in tighter bounds for S̃(x), that is for the complete
real argument BHF Omega function Ω(x). In other words as closer is δj(x) to the
real axis, as tighter the lower and upper Čaplygin’s functions are.
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Building the deviation δj(x) associated with bilateral bounds by Theorem j,
j = 1, 2, 3, 5, we get

δ1(x) = sinh
(x

2

) (
1
2π

ln
6 084

(
x4 + 2

3π2 x2 + 44
45π4

) (
x4 + 8

3π2 x2 + 704
45 π4

)

5 929
(
x4 + 2

3π2 x2 + 104
105π4

) (
x4 + 8

3π2 x2 + 1 664
105 π4

)

− 1
π

√
5
39

(
arctan

3
√

195 x2

15x2 + 176π2
+ arctan

3
√

195 x2

15x2 + 44π2

)

+
1
π

√
35
277

(
arctan

3
√

9 695x2

105x2 + 1248π2
+ arctan

3
√

9 695 x2

105x2 + 312π2

))
,
(41)

δ2(x) = sinh
(x

2

) (
− 13

48π
+

1
π

ln
4π5(x2 + 64π2)1/10

(x2 + 16π2)1/5
− 4π

5
1

x2 + 4π2

+
479π

30
1

x2 + 16π2
+

32
15π

1
(x2 + 16π2)2

−1184π

15
1

x2 + 64π2
− 128π3

15
1

(x2 + 64π2)2

)
, (42)

δ3(x) = sinh
(x

2

) (
3

4π3
− 4π

x2 + 4π3
+

2
π2

ln
e2π2/x

e2π2/x − 1
+

2
π(e2π2/x − 1)

)
,

(43)

δ4(x) =
1
π

sinh
(x

2

)
ln

(3x2 + 8π2)(3x2 + 2π2)
(ζ(3)x2 + 2π2)(ζ(3)x2 + 8π2)

, (44)

δ5(x) = sinh
(x

2

) 4
√

3ζ(3)x2

π3(1 +
√

1 + 4x2)
. (45)

Here, since Theorem 4 improves, by the Draščić-Pogány definite integral bounds
(31) and (32), the result (9) by Alzer et al. we consider their simple rational bound
instead of the result obtained in Theorem 4. Being the bilateral integral bound (36)
tighter then the one by Alzer et al. for all x ∈ [0.394443, 5.04572] to the left and
for all x ∈ R+ \ [0.660463, 2.74663] on the right, we can easily deduce the tightness
of the bounds exposed in Theorem 4. Hence, the deviation δ4(x) associated with
Alzer’s bounds we form by (25) in Remark 3, compare also [29, Theorem 3].

It is straightforward that Mortici’s bounds give the tighter bounding region for
the complete BHF Omega function. However, near to the origin another bounds
give precise approximations, while for larger values of the argument x the width of
the bounding regions, measured pointwise by the defiation functions δj(x), 1 ≤ j ≤
5 are of exponential growth (thanks to sinh factors).
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Figure 1. Deviation functions δj(x), 1 ≤ j ≤ 5 presented for x ∈ [0, 20].

From above at x = 10 the deviation functions are δ2 > δ5 > δ4 > δ3 > δ1.
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Vesnik because Professor Bertolino had carried out a number of different editori-
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uravnenij, Moskva, 1919, (Sobranie sočinenij I, Gostehizdat, Moskva, 1948, 348–368).
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ekspozicije 13, Naučna knjiga, Beograd, 1988.
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