GROWTH OF POLYNOMIALS WITH PRESCRIBED ZEROS

M. S. Pukhta

Abstract

In this paper we study the growth of polynomials of degree n having all their zeros on $|z|=k, k \leq 1$. Using the notation $M(p, t)=\max _{|z|=t}|p(z)|$, we measure the growth of p by estimating $\left\{\frac{M(p, t)}{M(p, 1)}\right\}^{s}$ from above for any $t \geq 1$, s being an arbitrary positive integer. Also in this paper we improve the results recently proved by K. K. Dewan and Arty Ahuja [Growth of polynomials with prescribed zeros, J. Math. Ineq. 5 (2011), 355-361].

1. Introduction and statement of results

For an arbitrary entire function $f(z)$, let $M(f, r)=\max _{|z|=r}|f(z)|$ and $m(f, k)=\min _{|z|=k}|f(z)|$. Then for a polynomial $p(z)$ of degree n, it is a simple consequence of maximum modulus principle (for reference see [4, Vol. I, p. 137, Problem III, 269]) that

$$
\begin{equation*}
M(p, R) \leq R^{n} M(p, 1), \quad \text { for } \quad R \geq 1 \tag{1.1}
\end{equation*}
$$

The result is best possible and equality holds for $p(z)=\lambda z^{n}$, where $|\lambda|=1$.
If we restrict ourselves to the class of polynomials having no zeros in $|z|<1$, then inequality (1.1) can be sharpened. In fact it was shown by Ankeny and Rivlin [1] that if $p(z) \neq 0$ in $|z|<1$, then (1.1) can be replaced by

$$
\begin{equation*}
M(p, R) \leq\left(\frac{R^{n}+1}{2}\right) M(p, 1), \quad R \geq 1 \tag{1.2}
\end{equation*}
$$

The result is sharp and equality holds for $p(z)=\alpha+\beta z^{n}$, where $|\alpha|=|\beta|$.
For the class of polynomials not vanishing in the disk $|z|<k, k \geq 1$, Shah [6] proved that if $p(z)$ is a polynomial of degree n having no zeros in $|z|<k, k \geq 1$, then for every real number $R>K$,

$$
M(p, R) \leq\left(\frac{R^{n}+k}{1+k}\right) M(p, 1)-\left(\frac{R^{n}-1}{1+k}\right) m(p, k)
$$

The result is best possible in case $k=1$ and equality holds for the polynomial $p(z)=z^{n}+1$.

Recently Dewan and Arty [3] proved that if $p(z)$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$ then for every positive integer s

$$
\{M(p, R)\}^{s} \leq\left(\frac{k^{n-1}(1+k)+\left(R^{n s}-1\right)}{k^{n-1}+k^{n}}\right)\{M(p, 1)\}^{s}, \quad R \geq 1
$$

While trying to obtain inequality analogous to (1.2) for polynomials not vanishing in $|z|<k, k \leq 1$, we have been able to prove the following results.

THEOREM 1. If $p(z)=c_{n} z^{n}+\sum_{v=\mu}^{n} c_{n-v} z^{n-v}, 1 \leq \mu<n$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then for every positive integer s

$$
\begin{equation*}
\{M(p, R)\}^{s} \leq\left(\frac{k^{n-\mu}\left(k^{1-\mu}+k\right)+\left(R^{n s}-1\right)}{k^{n-2 \mu+1}+k^{n-\mu+1}}\right)\{M(p, 1)\}^{s}, \quad R \geq 1 \tag{1.3}
\end{equation*}
$$

If we take $k=1$ in Theorem 1, we get the following result.
Corollary 1. If $p(z)=\sum_{v=0}^{n} c_{v} z^{v}$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then for every positive integer s

$$
\{M(p, R)\}^{s} \leq\left(\frac{k^{n-1}(1+k)+\left(R^{n s}-1\right)}{k^{n-1}+k^{n}}\right)\{M(p, 1)\}^{s}, \quad R \geq 1
$$

The following corollary immediately follows from inequality (1.6) by taking $s=1$.

Corollary 2. If $p(z)=\sum_{v=0}^{n} c_{v} z^{v}$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then

$$
M(p, R) \leq\left(\frac{k^{n-1}(1+k)+\left(R^{n}-1\right)}{k^{n-1}+k^{n}}\right) M(p, 1), \quad R \geq 1
$$

If we take $\mu=1$ in inequality (1.3), we get the following corollary
Corollary 3. If $p(z)=\sum_{v=0}^{n} c_{v} z^{v}$ is a polynomial of degree n having all its zeros on $|z|=1$, then

$$
M(p, R) \leq\left(\frac{R^{n}+1}{2}\right) M(p, 1), \quad R \geq 1
$$

If we involve the coefficients of $p(z)$ also, then we are able to obtain a bound which is better than the bound obtained in Theorem 1. More precisely, we prove

THEOREM 2. If $p(z)=c_{n} z^{n}+\sum_{v=\mu}^{n} c_{n-v} z^{n-v}, 1 \leq \mu<n$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then for every positive integer s

$$
\{M(p, R)\}^{s} \leq \frac{1}{k^{n-\mu+1}}
$$

$$
\times\left[\frac{n\left|c_{n}\right|\left\{k^{n}\left(1+k^{\mu+1}\right)+k^{2 \mu}\left(R^{n s}-1\right)\right\}+\mu\left|c_{n-\mu}\right|\left\{k^{n}\left(1+k^{1-\mu}\right)+k^{\mu-1}\left(R^{n s}-1\right)\right\}}{\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)+n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)}\right]
$$

$$
\times\{M(p, 1)\}^{s}, \quad R \geq 1
$$

To prove that the bound obtained in the above theorem is, in general, better than the bound obtained in Theorem 1, we show that

$$
\begin{aligned}
& \frac{1}{k^{n-\mu+1}} \\
& \times\left[\frac{n\left|c_{n}\right|\left\{k^{n}\left(1+k^{\mu+1}\right)+k^{2 \mu}\left(R^{n s}-1\right)\right\}+\mu\left|c_{n-\mu}\right|\left\{k^{n}\left(1+k^{1-\mu}\right)+k^{\mu-1}\left(R^{n s}-1\right)\right\}}{\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)+n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)}\right] \\
& \quad \leq\left(\frac{k^{n-\mu}\left(k^{1-\mu}+k\right)+\left(R^{n s}-1\right)}{k^{n-2 \mu+1}+k^{n-\mu+1}}\right)
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& n\left|c_{n}\right|\left\{k^{n}\left(1+k^{\mu+1}\right)\left(k^{-\mu}+1\right)+k^{2 \mu}\left(k^{-\mu}+1\right)\left(R^{n s}-1\right)\right\} \\
& \quad+\mu\left|c_{n-\mu}\right|\left\{k^{n}\left(1+k^{1-\mu}\right)\left(k^{-\mu}+1\right)+k^{\mu-1}\left(k^{-\mu}+1\right)\left(R^{n s}-1\right)\right\} \\
& \leq n\left|c_{n}\right| k^{\mu-1}\left(k^{\mu+1}+1\right)\left\{k^{n-2 \mu+1}+k^{n-\mu+1}+R^{n s}-1\right\} \\
& \quad+\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)\left\{k^{n-2 \mu+1}+k^{n-\mu+1}+R^{n s}-1\right\}
\end{aligned}
$$

and therefore

$$
\begin{array}{r}
n\left|c_{n}\right|\left\{-k^{\mu}+k^{\mu} R^{n s}\right\}+\mu\left|c_{n-\mu}\right|\left\{k^{n}-k^{-1}+k^{-1} R^{n s}\right\} \\
\leq n\left|c_{n}\right|\left\{-k^{\mu-1}+k^{\mu-1} R^{n s}\right\}+\mu\left|c_{n-\mu}\right|\left\{k^{n}-1+R^{n s}\right\}
\end{array}
$$

or

$$
\begin{aligned}
n\left|c_{n}\right|\left\{k^{\mu}\left(R^{n s}-1\right)\right\} & +\mu\left|c_{n-\mu}\right|\left\{k^{-1}\left(R^{n s}-1\right)\right\} \\
& \leq n\left|c_{n}\right|\left\{k^{\mu-1}\left(R^{n s}-1\right)\right\}+\mu\left|c_{n-\mu}\right|\left\{\left(R^{n s}-1\right)\right\} \\
\mu\left|c_{n-\mu}\right|\left(k^{-1}-1\right) & \leq n\left|c_{n}\right|\left(k^{-1}-1\right) k^{\mu} \\
\frac{\mu}{n} \frac{\left|c_{n-\mu}\right|}{\left|c_{n}\right|} & \leq k^{\mu},
\end{aligned}
$$

which is always true (see Lemma 4).
Example 1. Let $p(z)=z^{4}-\frac{1}{50} z^{2}+\left(\frac{1}{100}\right)^{2}$ and $k=\frac{1}{10}, R=1.5, \mu=1$ and $s=2$.

Then by Theorem 1 , we have $\{M(p, R)\}^{s} \leq 22390.909\{M(p, 1)\}^{s}$, while by Theorem 2, we get $\{M(p, R)\}^{s} \leq 2439.505\{M(p, 1)\}^{s}$.

If we take $\mu=1$ in Theorem 2, we get the following corollary.
Corollary 4. If $p(z)=\sum_{v=0}^{n} c_{v} z^{v}$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then for every positive integer s

$$
\begin{aligned}
\{M(p, R)\}^{s} \leq \frac{1}{k^{n}} & {\left[\frac{n\left|c_{n}\right|\left\{k^{n}\left(1+k^{2}\right)+k^{2}\left(R^{n s}-1\right)\right\}+\left|c_{n-1}\right|\left\{2 k^{n}+\left(R^{n s}-1\right)\right\}}{2\left|c_{n-1}\right|+c_{n} \mid\left(1+k^{2}\right)}\right] } \\
& \times\{M(p, 1)\}^{s}, \quad R \geq 1
\end{aligned}
$$

In the above inequality, if we take $s=1$, we get the following result.
Corollary 5. If $p(z)=\sum_{v=0}^{n} c_{v} z^{v}$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then

$$
\begin{aligned}
M(p, R) \leq \frac{1}{k^{n}} & {\left[\frac{n\left|c_{n}\right|\left\{k^{n}\left(1+k^{2}\right)+k^{2}\left(R^{n}-1\right)\right\}+\left|c_{n-1}\right|\left\{2 k^{n}+\left(R^{n}-1\right)\right\}}{2\left|c_{n-1}\right|+c_{n} \mid\left(1+k^{2}\right)}\right] } \\
& \times M(p, 1), \quad R \geq 1
\end{aligned}
$$

2. Lemmas

For the proof of these theorems, we need the following lemmas.
LEMMA 1. [7] If $p(z)=c_{n} z^{n}+\sum_{v=\mu}^{n} c_{n-v} z^{n-v}, 1 \leq \mu<n$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then

$$
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{k^{n-2 \mu+1}+k^{n-\mu+1}} \max _{|z|=1}|p(z)|
$$

Lemma 2. [2] If $p(z)=c_{n} z^{n}+\sum_{v=\mu}^{n} c_{n-v} z^{n-v}, 1 \leq \mu<n$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then

$$
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{k^{n-\mu+1}}\left[\frac{n\left|c_{n}\right| k^{2 \mu}+\mu\left|c_{n-\mu}\right| k^{\mu-1}}{n\left|c_{n}\right|\left(k^{2 \mu}+k^{\mu-1}\right)+\mu\left|c_{n-\mu}\right|\left(k^{\mu-1}+1\right)}\right] \max _{|z|=1}|p(z)| .
$$

Lmma 3. [5, Remark 1] If $p(z)=c_{0}+\sum_{v=\mu}^{n} c_{v} z^{v}, 1 \leq \mu \leq n$ is a polynomial of degree n having no zeros in the disk $|z|<k, k \geq 1$, then for $|z|=1$,

$$
\frac{\mu}{n}\left|\frac{c_{\mu}}{c_{0}}\right| k^{\mu} \leq 1
$$

LEMMA 4. If $p(z)=c_{n} z^{n}+\sum_{v=\mu}^{n} c_{n-v} z^{n-v}, 1 \leq \mu<n$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then

$$
\frac{\mu}{n}\left|\frac{c_{n-\mu}}{c_{n}}\right| \leq k^{\mu}
$$

Proof. If $p(z)$ has all its zeros on $|z|=k, k \leq 1$, then $q(z)=z^{n} p(1 / z)$ has all its zeros on $|z| \geq 1 / k, 1 / k \leq 1$. Now apply Lemma 3 to the polynomial $q(z)$, and Lemma 4 follows.

3. Proof of the theorems

Proof of Theorem 1. Let $M(p, 1)=\max _{|z|=1}|p(z)|$. Since $p(z)$ is a polynomial of degree n having all its zeros $|z|=k, k \leq 1$, therefore, by Lemma 1 , we have

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{k^{n-2 \mu+1}+k^{n-\mu+1}} M(p, 1) \quad \text { for } \quad|z|=1 . \tag{3.1}
\end{equation*}
$$

Now applying inequality (1.1) to the polynomial $p^{\prime}(z)$ which is of degree $n-1$ and noting (3.1), it follows that for all $r \geq 1$ and $0 \leq \theta<2 \pi$

$$
\begin{equation*}
\left|p^{\prime}\left(r e^{i \theta}\right)\right| \leq \frac{n r^{n-1}}{k^{n-2 \mu+1}+k^{n-\mu+1}} M(p, 1) \tag{3.2}
\end{equation*}
$$

Also for each $\theta, 0 \leq \theta<2 \pi$ and $R \geq 1$, we obtain

$$
\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(e^{i \theta}\right)\right\}^{s}=\int_{1}^{R} \frac{d}{d t}\left\{p\left(t e^{i \theta}\right)\right\}^{s} d t=\int_{1}^{R} s\left\{p\left(t e^{i \theta}\right)\right\}^{s-1} p^{\prime}\left(t e^{i \theta}\right) e^{i \theta} d t
$$

This implies

$$
\left|\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(e^{i \theta}\right)\right\}^{s}\right| \leq s \int_{1}^{R}\left|p\left(t e^{i \theta}\right)\right|^{s-1}\left|p^{\prime}\left(t e^{i \theta}\right)\right| d t
$$

which on combining with inequality (3.2) and (1.1), gives

$$
\begin{aligned}
\left|\left\{p\left(R^{i \theta}\right)\right\}^{s}-\left\{p\left(e^{i \theta}\right)\right\}^{s}\right| & \leq \frac{n s}{k^{n-2 \mu+1}+k^{n-\mu+1}}\{M(p, 1)\}^{s} \int_{1}^{R} t^{n s-1} d t \\
& =\left(\frac{R^{n s}-1}{k^{n-2 \mu+1}+k^{n-\mu+1}}\right)\{M(p, 1)\}^{s}
\end{aligned}
$$

and therefore,

$$
\begin{align*}
\left|p\left(R e^{i \theta}\right)\right|^{s} & \leq\left|p\left(e^{i \theta}\right)\right|^{s}+\left(\frac{R^{n s}-1}{k^{n-2 \mu+1}+k^{n-\mu+1}}\right)\{M(p, 1)\}^{s} \\
& \leq\{M(p, 1)\}^{s}+\left(\frac{R^{n s}-1}{k^{n-2 \mu+1}+k^{n-\mu+1}}\right)\{M(p, 1)\}^{s} \tag{3.3}
\end{align*}
$$

Hence from (3.3) we conclude that

$$
\{M(p, R)\}^{s} \leq\left(\frac{k^{n-\mu}\left(k^{1-\mu}+k\right)+\left(R^{n s}-1\right)}{k^{n-2 \mu+1}+k^{n-\mu+1}}\right)\{M(p, 1)\}^{s} .
$$

This completes the proof of Theorem 1. ■
Proof of Theorem 2. The proof of Theorem 2 follows on the same lines as that of Theorem 1 by using Lemma 2 instead of Lemma 1. But for the sake of completeness we give a brief outline of the proof. Since $p(z)$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, therefore, by Lemma 2, we have

$$
\left\lvert\, p^{\prime}(z) \leq \frac{n}{k^{n-\mu+1}}\left(\frac{n\left|c_{n}\right| k^{2 \mu}+\mu\left|c_{n-\mu}\right| k^{\mu-1}}{\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)+n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)}\right) M(p, 1)\right. \text { for }|z|=1
$$

Now $p^{\prime}(z)$ is a polynomial of degree $n-1$, therefore, it follows by (1.1) that for all $r \geq 1$ and $0 \leq \theta<2 \pi$

$$
\begin{equation*}
\left|p^{\prime}\left(r e^{i \theta}\right)\right| \leq \frac{n r^{n-1}}{k^{n-\mu+1}}\left(\frac{n\left|c_{n}\right| k^{2 \mu}+\mu\left|c_{n-\mu}\right| k^{\mu-1}}{\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)+n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)}\right) M(p, 1) \tag{3.4}
\end{equation*}
$$

Also for each $\theta, 0 \leq \theta<2 \pi$ and $R \geq 1$ we obtain

$$
\left|\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(e^{i \theta}\right)\right\}^{s}\right| \leq s \int_{1}^{R}\left|p\left(t e^{i \theta}\right)\right|^{s-1}\left|p^{\prime}\left(t e^{i \theta}\right)\right| d t
$$

which on combining with inequalities (1.1) and (3.4), gives

$$
\begin{aligned}
& \left|\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(e^{i \theta}\right)\right\}^{s}\right| \\
& \quad \leq\left(\frac{R^{n s}-1}{k^{n-\mu+1}}\right)\left(\frac{n\left|c_{n}\right| k^{2 \mu}+\mu\left|c_{n-\mu}\right| k^{\mu-1}}{\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)+n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)}\right)\{M(p, 1)\}^{s}
\end{aligned}
$$

and therefore

$$
\begin{align*}
\mid p\left(R e^{i \theta}\right)^{s} \leq & \{M(p, 1)\}^{s}+\left(\frac{R^{n s}-1}{k^{n-\mu+1}}\right) \\
& \times\left(\frac{n\left|c_{n}\right| k^{2 \mu}+\mu\left|c_{n-\mu}\right| k^{\mu-1}}{\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)+n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)}\right)\{M(p, 1)\}^{s} \tag{3.5}
\end{align*}
$$

Hence, from (3.5), we conclude that

$$
\begin{aligned}
& \{M(p, R)\}^{s} \leq \frac{1}{k^{n-\mu+1}} \\
& \quad \times\left(\frac{n\left|c_{n}\right|\left\{k^{n}\left(1+k^{\mu+1}\right)+k^{2 \mu}\left(R^{n s}-1\right)\right\}+\mu\left|c_{n-\mu}\right|\left\{k^{n}\left(1+k^{1-\mu}\right)+k^{\mu-1}\left(R^{n s}-1\right)\right\}}{\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)+n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)}\right) \\
& \quad \times\{M,(p, 1)\}^{s}
\end{aligned}
$$

This completes the proof of Theorem 2.

REFERENCES

[1] N.C. Ankeny, T.J. Rivlin, On a theorem of S. Bernstein, Pacific J. Math. 5 (1955), 849-852.
[2] M.S. Pukhta, Abdullah Mir, T.A. Raja, Note on a theorem of S. Bernstein, J. Comp. \& Math. Sci. 1 (2010), 419-423.
[3] K.K. Dewan, Arty Ahuja, Growth of polynomials with prescribed zeros, J. Math. Ineq. 5 (2011), 355-361.
[4] G. Polya, G. Szego, Aufgaben and Lehrsätze aus der Analysis, Springer-Verlag, Berlin, 1925.
[5] M.A. Qazi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc. 115 (1992), 337-343.
[6] W.M. Shah, Extremal properties and bounds for the zeros of polynomials, Ph.D. thesis, University of Kashmir, 1998.
[7] K.K. Dewan, Sunil Hans, On extremal properties for the derivative of polynomials, Math. Balkanica 23 (2009), 27-35.
(received 05.06.2011; in revised form 24.11.2011; available online 01.01.2012)
Division of Agri. Engineering, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 191121 (India)
E-mail: mspukhta_67@yahoo.co.in

