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COMPACT-LIKE PROPERTIES IN HYPERSPACES

J. Angoa, Y. F. Ortiz-Castillo and Á. Tamariz-Mascarúa

Abstract. CL(X) and K(X) denote the hyperspaces of non-empty closed and non-empty
compact subsets of X, respectively, with the Vietoris topology. For an infinite cardinal number α,
a space X is α-hyperbounded if for every family {Sξ : ξ < α} of non-empty compact subsets of X,

ClX(
⋃

ξ<α
Sξ) is a compact set, and a space X is pseudo-ω-bounded if for each countable family

U of non-empty open subsets of X, there exists a compact set K ⊆ X such that each element in
U has a non-empty intersection with K. We prove that X is α-hyperbounded if and only if K(X)
is α-hyperbounded, if and only if K(X) is initially α-compact. Moreover, K(X) is pseudocompact
if and only if X is pseudo-ω-bounded. Also, we show than if K(X) is normal and C∗-embbeded
in CL(X), then X is ω-hyperbounded, and X is α-bounded if and only if X is α-hyperbounded,
for every infinite cardinal number α.

1. Notations, basic definitions and introduction

Every space in this article is a Tychonoff space with more than one point.
The letters ξ, ζ, γ and η represent ordinal numbers and the letters α, τ , κ and θ
represent infinite cardinal numbers; ω is the first infinite cardinal, ω1 is the first
non-countable cardinal and cf(ξ) is the cofinality of the ordinal ξ. Given a set X
and a cardinal number κ, [X]≤κ and [X]κ represent the sets {A ⊆ X : |A| ≤ κ}
and {A ⊆ X : |A| = κ}, respectively. R is the space of real numbers with its usual
topology and N is the subspace of R constituted by the natural numbers. Given
two spaces X, Y , C(X, Y ) denotes the set of continuous functions from X to Y ;
if Y = R, we write C∗(X) for the set of bounded continuous functions with real
values. For X =

∏
s∈S Xs and s ∈ S, πs is the projection from X onto Xs. β(X) is

the Stone-Čech compactification of the space X and X∗ denotes the set β(X) \X.
We will denote an ordinal number η with its discrete topology simply as η.

The ordinal number η with its order topology will be symbolized by [0, η).
Let X be a space, κ a cardinal number, p ∈ β(κ) an ultrafilter, and (xξ)ξ<κ

(respectively (Sξ)ξ<κ) a sequence of points (resp., a sequence of non-empty subsets)
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of X, we say that the point z ∈ X is the p-limit of (xξ)ξ<κ (resp., of (Sξ)ξ<κ) if for
all open neighbourhoods W of z,

{ξ < κ : xξ ∈ W} ∈ p (resp., {ξ < κ : Sξ ∩W 6= ∅} ∈ p).

A space X is p-compact (p-pseudocompact; see [4] and [7]) if, for every countable
sequence of points (resp., of non-empty open sets) of X, there exists x ∈ X which
is a p-limit of (xξ)ξ<κ (resp., of (Sξ)ξ<κ). p-limits of sequences of points are unique
(when they exist), if x is the p-limit point of the sequence (xξ)ξ<κ, then we write
x = p−lim xξ. The p-limits of sequences of sets are not necessarily unique, then, we
denote with L(p, (Sξ)ξ<κ) the set of p-limit points of the sequence (Sξ)ξ<κ. Given
an infinite cardinal κ, we say that X is κ-compact if X can be written as the union
of κ compact subspaces of X; X is initially κ-compact if every set A ∈ [X]≤κ has
a complete cluster point and X is κ-bounded if every set A ∈ [X]≤κ has a compact
closure in X (see [15]). It is easy to see that every κ-bounded space is initially
κ-compact.

For a topological space (X, T ), CL(X), K(X) and Fn(X) denote the sets
of closed, compact and finite subsets of cardinality less or equal than n of X,
respectively. CL(X) denotes the hyperspace of non-empty closed subsets of X
with the Vietoris topology. K(X) and, for each n ∈ N, Fn(X) are the subspaces
of CL(X) formed by compact and finite subsets of cardinality less or equal to n,
respectively. Remember that, the Vietoris topology has the sets of the form

V + = {A ∈ CL(X) : A ⊆ V } and V − = {A ∈ CL(X) : A ∩ V 6= ∅}
as a subbase, where V is an open subset of X. Given open sets U1, . . . ,Un of X,
we define

〈U1, . . . , Un〉 = {T ∈ CL(X) : T ∈ (
⋃

1≤k≤n

Uk)+ and T ∈ U−
k for each 1 ≤ k ≤ n}.

So, the collection
{〈U1, . . . , Un〉 : n ∈ N, U1, . . . , Un ∈ T }

constitutes a base for CL(X).
It is known that the space X is homeomorphic to the subspace F1(X) of

CL(X), that K(X) is dense in CL(X) and CL(X) is compact if and only if X is
compact, if and only if CL(X) = K(X). On the other hand, for each A ∈ CL(X),
CL(A) can be considered as a subspace of CL(X); in particular, if A ∈ K(X), then
K(A) is a compact subspace of CL(X).

The class of hyperspaces has been widely studied and continues to generate
significant results and problems. In 1985 Dušan Milovančević showed in [12] that
countable compactness, ω-boundedness (strongly countable compactness according
to the terminology of Milovančević) and hypercountable compactness (the closure
of every σ-compact subset is compact) coincide in the class of spaces of the form
K(X). In Section 1, we continue in this mood by introducing and studying the
concept of α-hyperboundedness, and we prove that for every space X, K(X) is
initially α-compact if and only if K(X) is α-bounded, if and only if K(X) is α-
hyperbounded. Moreover, we show that for every infinite cardinal number α, there
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is an α-bounded space X which is not ω-hyperbounded. We finish Section 1 by
analyzing the relationship between the maximal α-hyperbounded extension of a
space X and its maximal α-bounded extension.

In Section 2 we give some equivalent conditions to that of pseudocompact-
ness in the class of spaces of the form K(X). In particular, we show that K(X)
is pseudocompact if and only if X is pseudo-ω-bounded. Also, we obtain some
results about K(X) and X when K(X) is normal and C∗-embedded in CL(X). In
particular, we show than if K(X) is normal and C∗-embedded in CL(X) then X
is ω-hyperbounded, and X is α-bounded if and only if X is α-hyperbounded, for
every infinite cardinal number α.

For those concepts which appear in this article without definition consult [6].

2. K(X) and α-hyperbounded spaces.

We begin this section by introducing the concept of α-hyperboundedness.

Definition 2.1. Let X be a space and let α be an infinite cardinal. We say
that X is α-hyperbounded if for each family {Sξ : ξ < α} of compact sets of X,
ClX(

⋃
ξ<α Sξ) is a compact subspace.

It is clear that if κ and α are cardinals such that ω ≤ κ ≤ α, then ev-
ery α-hyperbounded space is κ-hyperbounded; also every compact space is α-
hyperbounded and every α-hyperbounded space is α-bounded.

Theorem 2.2. Let X, Y be two spaces and let α be an infinite cardinal. Then:
(1) The α-hyperboundedness is inherited by closed subsets.
(2) A topological product

∏
s∈S Xs is α-hyperbounded if and only if each factor Xs

is α-hyperbounded.
(3) If Y is a continuous and perfect image of X then Y is α-hyperbounded if and

only if X is α-hyperbounded.

Proof. (1) Let X be an α-hyperbounded space, A a closed set of X and
{Sξ : ξ < α} a family of non-empty compact subspaces of A. Of course, {Sξ : ξ < α}
is a family of non-empty compact sets of X, so ClX(

⋃
ξ<α Sξ) is a compact set of

X. Since A is closed, ClA(
⋃

ξ<α Sξ) = ClX(
⋃

ξ<α Sξ) is a compact set of A.

(2) Let {Xs : s ∈ S} be a family of spaces and let X be the topological product
of this family. If X is α-hyperbounded, then, because of (1), for each s ∈ S, Xs is
α-hyperbounded.

Now, suppose that each Xs is α-hyperbounded. Let {Sξ : ξ < α} be a family of
non-empty compact subsets of X. Then, for each s ∈ S, (πs[Sξ])ξ<α is a family of
non-empty compact subsets of Xs. Therefore, Ls = Cl(

⋃
ξ<α πs[Sξ]) is a compact

set of Xs. To finish the proof, since

ClX(
⋃

ξ<α

Sξ) ⊆
∏

s∈S

Ls,
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then ClX(
⋃

ξ<α Sξ) is a compact subspace of X.

(3) Let f : X −→ Y be a continuous, perfect and onto function. Suppose that
X is α-hyperbounded and let {Sξ : ξ < α} be a family of non-empty compact sub-
sets of Y . Since f is perfect, (f−1[Sξ])ξ<α is a family of non-empty compact subsets
of X. Since X is α-hyperbounded, ClX(

⋃
ξ<α f−1[Sξ]) is a compact subset of X

and L = f [ClX(
⋃

ξ<α f−1[Sξ])] is a compact subset of Y ; since ClY (
⋃

ξ<α Sξ) ⊆ L,
ClY (

⋃
ξ<α Sξ) is compact.

On the other hand, if Y is α-hyperbounded, then X is α-hyperbounded by (1),
(2) and Theorem 3.7.26 in [6].

Theorem 2.3. (Theorem 2.2 in [12]) Let X be a space. Then the following
statements are equivalent:
(1) Every σ-compact set of X has a compact closure in X (X is ω-hyperbounded);
(2) K(X) is countably compact;
(3) K(X) is ω-bounded; and
(4) Every σ-compact subspace of K(X) has a compact closure in K(X) (K(X) is

ω-hyperbounded).

Now, we are going to generalize Theorem 2.3. First, we will prove some lemmas.
As usual, U(κ) will denote the set of uniform ultrafilters on κ.

Lemma 2.4. Let X be a space, let κ be an infinite cardinal and let {Sξ : ξ < κ}
be a subcollection of CL(X). Let S =

⋃
ξ<κ Sξ and, for each ξ < κ, we define the

set Tξ = ClX(
⋃

ζ≤ξ Sξ). Then the sequence (Tξ)ξ<κ of CL(X) converges to ClX(S)
in CL(X).

Proof. Let U = <U1, . . . , Un > be such that ClX(S) ∈ U . Note that, for each
ξ < τ , Tξ ⊆ ClX(S). Since ClX(S) ⊆ ⋃

i≤n Ui, for every ξ < α, Tξ ⊆
⋃

i≤n Ui. On
the other hand, for each i ≤ n, there exists ξi < α such that Tξi ∩ Ui 6= ∅. Let
η = max{ξi : i ≤ n}. Then, for every ξ ≥ η and all i ≤ n, Tξ ∩ Ui 6= ∅. So, we
conclude that, for every ξ ≥ η, Tξ ∈ U .

Lemma 2.5. Let T be a compact subspace of K(X). Then A = ∪T is a compact
subspace of X and T ⊆ K(A).

Proof. Let U be an open cover of A. Since T ⊆ K(X), for every F ∈ T ,
there exists a finite subcollection UF of U which covers F . For each F ∈ T , take
VF =

⋃UF . Then, the family {V +
F : F ∈ T} is an open cover of T in CL(X).

Since T is compact, there are sets F1, . . . , Fn ∈ T such that T ⊆ ⋃n
k=1 V +

Fk
, which

implies that for each F ∈ T , there exists 1 ≤ k ≤ n such that F ⊆ VFk
. Then

A ⊆ ⋃n
k=1 VFk

. Thus, A is compact. Moreover, each F ∈ T is a compact subspace
of A, so T ⊆ K(A).

Theorem 2.6. Let X be an space and let α be an infinite cardinal. Then the
following statements are equivalent:
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(1) X is α-hyperbounded;
(2) for every infinite cardinal κ ≤ α, every transfinite sequence (Sξ)ξ<κ of

non-empty compact subspaces of X and every uniform ultrafilter p ∈ U(κ),
L(p, (Sξ)ξ<κ) is a non-empty compact subspace of X;

(3) for every infinite cardinal κ ≤ α and every transfinite sequence (Sξ)ξ<κ of
non-empty compact subspaces of X, there exists a uniform ultrafilter p ∈ U(κ)
such that L(p, (Sξ)ξ<κ) is a non-empty compact subspace of X;

(4) K(X) is α-bounded;
(5) K(X) is initially α-compact; and
(6) K(X) is α-hyperbounded.

Proof. (1) ⇒ (2). Let p ∈ U(κ) and let (Sξ)ξ<κ be a transfinite sequence
of non-empty compact subspaces of X. For each ξ < κ, choose xξ ∈ Sξ. Since
(xξ)ξ<κ is contained in the compact space ClX(

⋃
ξ<κ Sξ), there exists x ∈ X such

that x = p − lim xξ. That is, x ∈ L(p, (Sξ)ξ<κ). Moreover, it is known that,
for every infinite cardinal κ ≤ α, every transfinite sequence (Sξ)ξ<κ of non-empty
subsets of X and all uniform ultrafilter p ∈ U(κ), L(p, (Sξ)ξ<κ) is closed in X
and L(p, (Sξ)ξ<κ) ⊆ Cl(

⋃
ξ<κ Sξ). Then, L(p, (Sξ)ξ<κ) is a non-empty compact

subspace of X.
The implication (2) ⇒ (3) is obvious.
(3) ⇒ (1). We will show this implication by transfinite induction. We begin

by proving that if the ω-version of (3) holds, then X is ω-hyperbounded.
Let (Sn)n∈N be a sequence of compact subspaces of X. For each n ∈ N, put

Dn =
⋃n

i=1 Si. Since every Sn is a compact subspace of X, (Dn)n∈N is an increasing
sequence of non-empty compact subsets of X such that S =

⋃
n∈NDn. Because of

our hypotheses, there is p ∈ ω∗ such that L(p, (Dn)n∈N) is a non-empty compact
subspace of X.

We will show that ClX(S) ⊆ L(p, (Dn)n∈N). Take x ∈ ClX(S) and let V be
an open neighbourhood of x. By Lemma 2.4, the sequence (Dn)n∈N converges to
ClX(S) in CL(X). Since V − is an open neighbourhood of ClX(S), there exists
m ∈ N such that Dn ∈ V − for every n ≥ m. Then

{n : Dn ∩ V 6= ∅} ⊇ {n : m ≤ n} ∈ p.

So, we conclude that x ∈ L(p, (Dn)n∈N) and ClX(S) is compact.
Given a cardinal α > ω, assume that for all cardinals ω ≤ θ < α, condition (3)

with θ in place of α implies that X is θ-hyperbounded. Let (Sξ)ξ<α be a transfinite
sequence of compact subsets of X with union S. Assume (3), which, by inductive
hypothesis, implies that Dξ = ClX(

⋃
η≤ξ Sη) is compact for each ξ < α. By (3),

there is p ∈ U(α) with L(p, (Dξ)ξ<α) ∈ K(X), and we will be done if we show
that D = ClX(

⋃
ξ<α Dξ) ⊆ L(p, (Dξ)ξ<α). Indeed, let x ∈ D and V be an open

neighbourhood of x. Since by Lemma 2.4 (Dξ)ξ<α converges to D ∈ CL(X), there
exists ξ0 < α such that Dξ ∈ V − for all ξ ≥ ξ0. Then

{ξ : Dξ ∩ V 6= ∅} ⊇ {ξ : ξ0 ≤ ξ < α} ∈ p;
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thus, x ∈ L(p, (Dξ)ξ<α).
(1) ⇒ (4). Assuming (1), and given a collection {Sξ : ξ < α} ⊆ K(X), we have

that D = ClX(
⋃

ξ<α Sξ) ∈ K(X). Since K(D) is a compact subspace of K(X),
then ClK(X)({Sξ : ξ < α}) ⊆ K(D) is compact.

The implication (4) ⇒ (5) is clear.
(5) ⇒ (6). For α = ω, the implication follows from Theorem 2.3. Given a

cardinal α > ω, assume that for all cardinals ω ≤ θ < α, if K(X) is initially θ-
compact, then K(X) is θ-hyperbounded. Let K(X) be initially α-compact. Then
K(X), and by Theorem 2.2.(1), also X is θ-hyperbounded for all cardinals ω ≤ θ <
α. If {Sξ : ξ < α} is a collection of compact subsets of K(X), then by Lemma
2.5,

⋃Sξ ∈ K(X), moreover, by our assumptions Dξ = ClX(
⋃

η≤ξ

⋃Sη) ∈ K(X)
for each ξ < α. If Z ∈ K(X) is a complete cluster point of (Dξ)ξ<α, we will be
done if we show that D =

⋃{Dξ : ξ < α} ⊆ Z (because then ClK(X)({Sξ : ξ <
α}) ⊆ K(ClX(D)), and the latter is a compact subspace of K(X)): suppose, on
the contrary, that there exists x ∈ Dξ0 \ Z for some ξ0 < α. By compactness of
Z we can find an open neighbourhood U of Z that misses x. Since (Dξ)ξ<α is
nondecreasing, it follows that Dξ 6∈ U+ for every ξ0 ≤ ξ < α, which contradicts
the fact U+ is an open neighbourhood of Z, and hence, should contain α-many
members of (Dξ)ξ<α.

(6) ⇒ (1) is a consequence of (1) from Theorem 2.2.

Proposition 2.7. Let X be a space with an α-compact dense subspace. Then
X is α-hyperbounded if and only if it is compact.

In [12], Milovančević gives examples of ω-bounded spaces that are not ω-hyper-
bounded. The following result shows an example of an α-bounded space which is
not ω-hyperbounded for each α ≥ ω; we use the Σκ-product of a cube {0, 1}S .
Given a family of spaces {Xs : s ∈ S}, take the Tychonoff product X =

∏
s∈S Xs

and a fixed point x ∈ X. For each z ∈ X, we define the support of z with respect
to x as the set

suppx(z) = {s ∈ S : πs(x) 6= πs(z)}.
For an infinite cardinal κ, we define the Σκ-product of X with respect to x as the
subspace

Σκ(x,X) = {z ∈ X : | suppx(z)| < κ}
of X.

Theorem 2.8. For every cardinal κ ≥ ω, there exists a κ-bounded space X
which is not ω-hyperbounded.

Proof. Let κ be an infinite cardinal and S a set such that κ < |S|. Consider the
space X = Σκ+(0, {0, 1}S). It is easy to show that X is a proper dense κ-bounded
subspace of {0, 1}S (it is even C∗-embedded in {0, 1}S , see [1]). We will show that
X has a dense σ-compact subspace. Let Sn = {x ∈ X : | supp0(x)| ≤ n} and let
z ∈ {0, 1}S \ Sn. Let F ∈ [supp0(z)]n+1 and let U = ∩s∈F π−1

s (1). It is apparent
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that z ∈ U and U ∩ Sn = ∅, so z /∈ Cl(Sn). Then Sn is a closed subset of {0, 1}S .
Therefore Sn is a compact subspace of X for all n ∈ N.

We have:⋃

n∈N
Sn = {x ∈ {0, 1}S : | supp0(x)| < ω} = Σω(0, {0, 1}S).

This last set is dense in {0, 1}S , so it is dense in X. By Proposition 2.7, X cannot
be ω-hyperbounded because X is not a compact space.

Another important observation is the following: given a space X, and a closed-
hereditary, productive topological property P , there exists the maximal extension
βP (X) of X having property P (see Proposition 4.1(k) in [13]). It follows by
Theorem 2.2, that X has a maximal α-hyperbounded (resp., α-bounded) extension
βhα(X) (resp., βα(X)). Such extension is the only α-hyperbounded (resp., α-
bounded) space, up to topological equivalence, with the property that for all α-
hyperbounded (resp., α-bounded) space Y and every f ∈ C(X, Y ), there exists
a continuous extension F ∈ C(βhα(X), Y ) (resp., F ∈ C(βα(X), Y )) such that
F |X = f . It is known that such extension can be considered as the intersection
of all α-hyperbounded (resp., α-bounded) subspaces of β(X) containing X (see
Chapter 5 of [13]). We finish this section by providing an example of a space X
for which X  βα(X)  βhα(X)  β(X) (see Theorem 2.11 below). In order to
obtain this example we need to recall the following known results.

Lemma 2.9. (Theorem 1 in [9]) Let {Xs : s ∈ S} be a family of spaces such
that for all s0 ∈ S,

∏
s∈S\{s0}Xs is infinite. Then

β(
∏

s∈S

Xs) =
∏

s∈S

β(Xs)

if and only if
∏

s∈S Xs is a pseudocompact space.

We say that a topological property P is a Tychonoff extension property (see
5.6 in [13]) if it is inherited by closed subsets, productive and every compact space
has property P .

Lemma 2.10. (Theorem 3.2 in [5]) Let P be a Tychonoff extension property
which implies pseudocompactness. Then the following statements are equivalent for
any pair of spaces X and Y .
(1) X × Y is pseudocompact.
(2) βP (X × Y ) = βP (X)× βP (Y ).

Theorem 2.11. For each infinite cardinal α there exists a space X such that
X  βα(X)  βhα(X)  β(X).

Proof. Let κ and τ be infinite cardinals such that max{ω1, α} < κ < τ , define
Y = Σκ+(0, {0, 1}τ ) and Z = Y \ {0}. In Theorem 2.8 we showed that Y is an
α-bounded and non-α-hyperbounded space. Furthermore, it is easy to check that
[0, α+) is α-hyperbounded, and Z is not α-bounded. Let S ∈ [τ ]ω1 , and p ∈ {0, 1}S
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be such that supp0(p) = S. The Σ-product Σ(p) = Σω1(p, {0, 1}τ ) is a subspace
of Z, and by a theorem of Glicksberg (Theorem 2 in [9]), β(Σ(p)) = {0, 1}τ . Also,
since Σ(p) and [0, α+) are ω-bounded, so is Σ(p) × [0, α+), thus, Σ(p) × [0, α+) is
pseudocompact. Then, using Lemma 2.9 for X = Z × [0, α+), we have:

β(X) ⊆ β(Z)× β([0, α+)) ⊆ {0, 1}τ × [0, α+] = β(Σ(p)× [0, α+)) ⊆ β(X),

therefore, β(X) = β(Z) × β([0, α+)) = {0, 1}τ × [0, α+], so, by Lemma 2.9, X is
pseudocompact. Then, by Lemma 2.10, and since Y = Z ∪ {0} is the smallest
α-bounded superset of Z, we get

βα(X) = βα(Z)× βα([0, α+)) = Y × [0, α+).

Since every α-hyperbounded space is α-bounded, βα(X) ⊆ βhα(X), moreover,
βα(X) 6= βhα(X) (otherwise, βα(X) = Y × [0, α+) is α-hyperbounded, which im-
plies that Y is α-hyperbounded). In conclusion, observe that

X  βα(X)  βhα(X) ⊆ βhα(Z)× [0, α+)  {0, 1}τ × [0, α+] = β(X).

Note that if α < κ are infinite cardinals, and X is the space from Theorem
2.8, then βκ(βhα(X)) = βhα(βκ(X)): indeed, βκ(X) = X, furthermore, βhα(X)
contains a dense σ-compact subspace, so by Proposition 2.7, βhα(X) is compact,
so βhα(βκ(X)) = βhα(X) = β(X); on the other side, βκ(βhα(X)) = βκ(β(X)) =
β(X). Moreover, if we take Z from Theorem 2.11, and define X = Z × [0, κ+),
we can argue analogously as in Theorem 2.11 that βκ(X) = Y × [0, κ+), and that
it is pseudocompact, so using Lemma 2.10 and the above argument for the space
from Theorem 2.8, we get βhα(βκ(X)) = βhα(Y )×βhα([0, κ+)) = β(Y )× [0, κ+) =
{0, 1}τ × [0, κ+); similarly, βκ(βhα(X)) = βκ(βhα(Z)× βhα([0, κ+))) = βκ(β(Z)×
[0, κ+)) = βκ({0, 1}τ × [0, κ+)) = {0, 1}τ × [0, κ+), thus, again βκ(βhα(X)) =
βhα(βκ(X)).

So, the following question arises:
Question 2.12. Are there two infinite cardinals α and κ with α < κ and a

space X such that βκ(βhα(X)) 6= βhα(βκ(X))?

3. Pseudocompactness of K(X) and consequences when K(X)
is normal and C∗-embedded in CL(X).

In this section we are going to give some equivalent conditions to that of
pseudocompactness in K(X). Also we are going to obtain some results about K(X)
and X when K(X) is normal and C∗-embedded in CL(X). We begin with some
definitions:

Definition 3.1. Let X be a space and let p ∈ D ⊆ N∗. We say that:
(1) X is p-pseudocompact if for each sequence (Un)n∈N of non-empty open subsets

of X, L(p, (Un)n∈N) 6= ∅.
(2) X is strongly p-pseudocompact if for each sequence (Un)n∈N of non-empty open

subsets of X there exists a sequence of points (xn)n∈N and there exists z ∈ X
such that, for each n ∈ N, xn ∈ Un and z = p− lim xn.
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(3) X is pseudo-D-bounded if for each sequence (Un)n∈N of non-empty open subsets
of X there exists a sequence of points (xn)n∈N such that, for each n ∈ N,
xn ∈ Un and for each p ∈ D, there exists zp ∈ X such that zp = p− lim xn.

(4) X is pseudo-ω-bounded if for each countable family U of non-empty open
subsets of X, there exists a compact set K ⊆ X such that, for each U ∈ U ,
K ∩ U 6= ∅.
It is clear that the property of pseudo-ω-boundedness is equal to the property

of pseudo-N∗-boundedness and, in general, the property of pseudo-D-boundedness
is stronger than that of strongly p-pseudocompactness and weaker than pseudo-ω-
boundedness.

Now we determine when K(X) is pseudocompact in terms of some properties
of X.

Theorem 3.2. Let X be a space. Then the following statements are equivalent:
(1) X is pseudo-ω-bounded;
(2) K(X) is pseudo-ω-bounded;
(3) K(X) is pseudo-D-bounded for some D ⊆ N∗;
(4) K(X) is strongly-p-pseudocompact for some p ∈ N∗;
(5) K(X) is p-pseudocompact for some p ∈ N∗; and
(6) K(X) is pseudocompact.

Proof. The implications (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6) are easy to see (cf.
Section 3 of [2]).

(1) ⇒ (2). Suppose that X is pseudo-ω-bounded and let (Un)n∈N be a sequence
of non-empty canonical open sets of K(X); that is, for each n ∈ N, the open set Un

is of the form 〈Un
1 , . . . , Un

kn
〉 where Un

j is a non-empty open subset of X. Then the
set

{Un
j : n ∈ N and 1 ≤ j ≤ kn}

is a countable family of non-empty open subsets of X. So, there exists a compact
set C in X such that C ∩ Un

j 6= ∅ for every n ∈ N, 1 ≤ j ≤ kn. Because of C is
compact in X, K(C) is a compact subspace of K(X); so, it is enough to show that,
for each n ∈ N, Un ∩K(C) 6= ∅. For each n ∈ N and 1 ≤ j ≤ kn, take xn

j ∈ C ∩Un
j .

Take Fn = {xn
1 , . . . , xn

kn
}. Then, it is clear that, for every n ∈ N, Fn ∈ K(C) ∩ Un.

Therefore, K(X) is pseudo-ω-bounded.
(6) ⇒ (1). Suppose thatK(X) is pseudocompact and let (Un)n∈N be a sequence

of non-empty open subsets of X. For each n ∈ N, let Vn be a non-empty open subset
of X such that Cl(Vn) ⊆ Un and let Vn = 〈V1, . . . , Vn〉. It is enough to show that
there exists a compact space T such that, for each n ∈ N, Cl(Vn) ∩ T 6= ∅. Since
K(X) is a pseudocompact space, there exists T ∈ K(X) such that T is a cluster
point of the sequence (Vn)n∈N. Suppose that there exists a natural number n ∈ N
such that T ∩ Cl(Vn) = ∅. Then, there exists an open set W such that T ⊆ W
and W ∩ Cl(Vn) = ∅. So T ∈ W+ and, for each m ≥ n, Vm ∩W+ = ∅. This last
equality contradicts the fact that T is a cluster point of the sequence (Vn)n∈N.
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Below, we are going to obtain some interesting consequences on X and K(X)
when K(X) is normal. First some known results:

Theorem 3.3. (Theorem 4.9.13 in [11]) A space X is metrizable if and only
if K(X) is metrizable.

Lemma 3.4. Let η be an ordinal number with cf(η) = ω. Then K(η) is
σ-compact.

Proof. Let (ξn)n<ω be an increasing and cofinal sequence of ordinal numbers
in η. Then K(η) is equal to

⋃
n<ω K(ξn +1). For each n < ω, K(ξn +1) is compact,

so K(η) is σ-compact.

Theorem 3.5. (Corollary 10 in [10]) Let η be an ordinal number. Then K(η)
is normal if and only if cf(η) ∈ {1, ω, η}.

On the other hand, G. Artico and R. Moresco show in [3] that if X is the
Sorgenfrey line then the hyperspace K(X) is not normal. Remember that the
Sorgenfrey line is a submetrizable, perfectly normal and hereditarily Lindelöf space.

We say that a space X is <α-bounded if X is θ-bounded for each infinite
cardinal θ < α. Recall that a space X is α-pseudocompact if f [X] is a compact
subset of Rα for every continuous function f : X → Rα. ω-pseudocompactness
is equivalent to pseudocompactnes, and if θ < α, every α-pseudocompact space is
θ-pseudocompact. Moreover, every initially α-compact space is α-pseudocompact.

Lemma 3.6. (Theorem 1.7 in [8]) Let α be an infinite cardinal. Then every
α-pseudocompact, <α-bounded and normal space is initially α-compact.

Theorem 3.7. Let α be an infinite cardinal number and let X be a topological
space such that K(X) is normal. Then K(X) is α-pseudocompact if and only if X
is α-hyperbounded.

Proof. We will prove this theorem by transfinite induction. It is known that
a normal pseudocompact space is countably compact, so by Theorem 2.3, X is ω-
hyperbounded. Now, suppose that K(X) is α-pseudocompact and suppose that our
statement is true for every θ < α. Then, by Theorem 2.6, K(X) is <α-bounded.
By Lemma 3.6, K(X) is initially α-compact and again, by Theorem 2.6, X is α-
hyperbounded.

Corollary 3.8. Let X be the space defined in Theorem 2.8. Then X is a
normal space such that K(X) is not normal.

Proof. From Theorem 2.8, we know that X is ω-bounded. So, X is pseudo-
ω-bounded. Then, by Theorem 3.2, K(X) is pseudocompact. If K(X) is a normal
space then by Theorem 3.7, X is ω-hyperbounded. But, by Theorem 2.8, the last
statement is not true.

Theorem 3.9. (R. Hernández) Let X be a space. If K(X) is a normal space
which is C∗-embedded in CL(X) then X is ω-hyperbounded.
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Proof. Suppose that X is not ω-hyperbounded. Let {Sn : n ∈ N} be a
collection of compact subsets of X such that ClX(S) is not a compact set, where
S =

⋃
n∈N Sn. We will define a strictly increasing sequence (An)n∈N of compact

subsets of X such that
⋃

n∈NAn = S and Ak  Ak+1  S for each k ∈ N. We
take A1 = S1. Suppose we have defined all compact sets A1, . . . ,Am such that, for
each 1 ≤ k < m, Ak  Ak+1  S. Since ClX(S) is not a compact set of X, there
exists N(m) > m such that SN(m) \ Am 6= ∅. Let Am+1 = Am ∪ (

⋃
n≤N(m) Sn).

Then the sequence (An)n∈N satisfies our conditions. By Lemma 2.4, the sequence
(An)n∈N converges to ClX(S) in CL(X). Thus, {An : n ∈ N}⋃{ClX(S)} is a
compact subspace of CL(X). Since ClX(S) is the only cluster point of the set
A = {An : n ∈ N} in CL(X), A is a discrete subset of CL(X). Moreover, ClX(S) ∈
CL(X) \ K(X), hence A is closed and discrete in K(X). On the other hand, K(X)
is a normal space, then {An : n ∈ N} is C∗-embedded in K(X). But K(X) is
C∗-embedded in CL(X), so {An : n ∈ N} is C∗-embedded in CL(X). This last
assertion contradicts the fact that (An)n∈N is a non-trivial convergent sequence in
CL(X). Therefore, we have to conclude that X is ω-hyperbounded.

Recall that a point x in a space X is a butterfly point of X ([14]) if there are
two disjoint subsets A and B of X \ {x} such that {x} = ClX(A)∩ClX(B). These
kind of points have been useful in solving problems about normality, as we can see
in the following known result.

Lemma 3.10. Let Y be a C∗-embedded subspace of X. If there is a point
x ∈ X \ Y which is a butterfly point of Y ∪ {x} then Y is not normal.

Lemma 3.11. (Theorem 2.3 in [15]) Let X be a space and let κ be a singular
cardinal number. If X is an initially θ-compact space for every cardinal number
θ < κ, then X is an initially κ-compact space.

Theorem 3.12. Let α be an infinite cardinal number. Let X be a space such
that K(X) is normal and C∗-embedded in CL(X). Then, X is α-bounded if and
only if X is α-hyperbounded.

Proof. Of course, if X is α-hyperbounded then X is α-bounded. Now, suppose
that X is α-bounded and assume that X is not α-hyperbounded. Let τ be the
minimum cardinal κ such that X is not κ-hyperbounded. By Lemma 3.9, τ > ω and
by Theorem 2.6 and Lemma 3.11, τ is regular. Note that X is < τ -hyperbounded
and τ ≤ α. Since X is not τ -hyperbounded, there exists a transfinite sequence
(Sξ)ξ<τ of non-empty compact subspaces of X such that ClX(S) is a non-compact
space, where S =

⋃
ξ<τ Sξ. We construct two sets B and C contained in K(X)

with disjoint closures in K(X) each of them converging to ClX(S) in CL(X). For
each ξ < τ , let Aξ =

⋃
ζ≤ξ Sξ and Bξ = ClX(Aξ). For each ξ < τ , X is |ξ|-

hyperbounded, so Bξ ∈ K(X). Thus, for each ξ < τ , Bξ ∈ K(X). Moreover, for
each ξ < τ , there exists a point xξ ∈ S \Bξ. Let R = ClX({xξ : ξ < τ}). Since X is
α-bounded, R is a compact subspace of X. For each ξ < τ , let Cξ = Bξ ∪R. Then,
for each ξ < τ , Cξ ∈ K(X). Let B = {Bξ : ξ < τ} and C = {Cξ : ξ < τ}. Then B,
C are clearly disjoint subsets of K(X) and, by Lemma 2.4, they both converge to
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ClX(S) ∈ CL(X) \ K(X). It follows that {ClX(S)} = CLCL(X)(B) ∩ CLCL(X)(C),
so ClX(S) is a butterfly point of CL(X) and, by Lemma 3.10, K(X) cannot be
normal. This contradiction says that X must be α-hyperbounded.

The transfinite sequences B and C converge to ClX(S).
Claim 1. ClK(X)(B) ∩ ClK(X)(C) = ∅.
Let T ∈ ClK(X)(B). Since T is a compact space, we can take the minimum

ordinal of the set {ξ < τ : Bξ * T}. Call this number η. Let x ∈ Bη \ T and let
U1 be an open set of X such that T ⊆ U1 and x /∈ U1. Of course, for each ξ < η,
Bξ ⊆ T .

Claim 2. T = ClX(
⋃

ξ<τ Bη)

Indeed, assume the contrary, so there exists a point y ∈ T \ClX(
⋃

ξ<η Bξ) and
an open set U2 of X such that y ∈ U2 and U2 ∩ClX(

⋃
ξ<η Bξ) = ∅. But this is not

possible because T ∈ U+
1 ∩ U−

2 and (U+
1 ∩ U−

2 ) ∩ B = ∅. Then, T ⊆ Bη and our
Claim 2 is proved.

As xη /∈ Bη, there exists an open subset U3 of X such that Bη ⊆ U3 and
xη /∈ U3. It is apparent that T ∈ U+

3 and U+
3 ∩ C = ∅, so the proof of our claim is

complete.
By Claim 1, {ClX(S)} = ClCL(X)(B)∩ClCL(X)(C). Then ClX(S) is a butterfly

point of CL(X). By Lemma 3.10, K(X) cannot be normal. This contradiction says
that X must be α-hyperbounded.

Theorem 3.13. Let X be a space such that K(X) is C∗-embedded in CL(X).
Then the next statements are equivalent:
(1) X is compact,
(2) X is σ-compact,
(3) K(X) is compact,
(4) K(X) is σ-compact,
(5) K(X) is Lindelöf, and
(6) K(X) is paracompact.

Proof. The implications (1) ⇒ (2) ⇒ (4) ⇒ (5) ⇒ (6) and (1) ⇔ (3) are
well known. Suppose that K(X) is a paracompact space, then K(X) is normal.
By Theorems 3.9 and 2.6, K(X) is countably compact. It is known that every
paracompact and countably compact space is compact. So K(X) is a compact
space and then X is compact.

Corollary 3.14. Let X be a metrizable space. Then K(X) is C∗-embedded
in CL(X) if and only if X is a compact space.

Proof. Let X be a metrizable space. By Theorem 3.3, K(X) is metrizable. It
is clear that if X is a compact space, then K(X) is C∗-embedded in CL(X). On
the other hand, if K(X) is C∗-embedded in CL(X), then, by Theorem 3.13, X is a
compact space because every metrizable space is a paracompact space.
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Corollary 3.15. For every infinite discrete space X, K(X) is not C∗-
embedded in CL(X).

Corollary 3.16. Let η be an ordinal such that cf(η) = ω. Then K([0, η)) is
not C∗-embedded in CL([0, η)).

Proof. Follows from Lemma 3.4 and Theorem 3.13.
Question 3.17. For which ordinal numbers η, K([0, η)) is C∗-embedded in

CL([0, η))?
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in Σκ(F )-products, Topology Proc. 39 (2012), 251–279.

[2] J. Angoa, Y. Ortiz-Castillo, A. Tamariz-Mascarúa, Ultrafilters and properties related to com-
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