COMPACT-LIKE PROPERTIES IN HYPERSPACES

J. Angoa, Y. F. Ortiz-Castillo and Á. Tamariz-Mascarúa

Abstract. $\mathcal{CL}(X)$ and $\mathcal{K}(X)$ denote the hyperspaces of non-empty closed and non-empty compact subsets of X, respectively, with the Vietoris topology. For an infinite cardinal number α , a space X is α -hyperbounded if for every family $\{S_{\xi} : \xi < \alpha\}$ of non-empty compact subsets of X, $Cl_X(\bigcup_{\xi < \alpha} S_{\xi})$ is a compact set, and a space X is pseudo- ω -bounded if for each countable family \mathcal{U} of non-empty open subsets of X, there exists a compact set $K \subseteq X$ such that each element in \mathcal{U} has a non-empty intersection with K. We prove that X is α -hyperbounded if and only if $\mathcal{K}(X)$ is α -hyperbounded, if and only if $\mathcal{K}(X)$ is initially α -compact. Moreover, $\mathcal{K}(X)$ is pseudocompact if and only if X is pseudo- ω -bounded. Also, we show than if $\mathcal{K}(X)$ is normal and C^* -embbeded in $\mathcal{CL}(X)$, then X is ω -hyperbounded, and X is α -bounded if and only if X is α -hyperbounded, for every infinite cardinal number α .

1. Notations, basic definitions and introduction

Every space in this article is a Tychonoff space with more than one point. The letters ξ , ζ , γ and η represent ordinal numbers and the letters α , τ , κ and θ represent infinite cardinal numbers; ω is the first infinite cardinal, ω_1 is the first non-countable cardinal and $cf(\xi)$ is the cofinality of the ordinal ξ . Given a set X and a cardinal number κ , $[X]^{\leq \kappa}$ and $[X]^{\kappa}$ represent the sets $\{A \subseteq X : |A| \leq \kappa\}$ and $\{A \subseteq X : |A| = \kappa\}$, respectively. \mathbb{R} is the space of real numbers with its usual topology and \mathbb{N} is the subspace of \mathbb{R} constituted by the natural numbers. Given two spaces X, Y, C(X, Y) denotes the set of continuous functions from X to Y; if $Y = \mathbb{R}$, we write $C^*(X)$ for the set of bounded continuous functions with real values. For $X = \prod_{s \in S} X_s$ and $s \in S$, π_s is the projection from X onto X_s . $\beta(X)$ is the *Stone-Čech* compactification of the space X and X^* denotes the set $\beta(X) \setminus X$.

We will denote an ordinal number η with its discrete topology simply as η . The ordinal number η with its order topology will be symbolized by $[0, \eta)$.

Let X be a space, κ a cardinal number, $p \in \beta(\kappa)$ an ultrafilter, and $(x_{\xi})_{\xi < \kappa}$ (respectively $(S_{\xi})_{\xi < \kappa}$) a sequence of points (resp., a sequence of non-empty subsets)

This research was supported by PAPIIT No. IN-102910.

²⁰¹⁰ Mathematics Subject Classification: 54B20, 54D99, 54D15, 54C45

Keywords and phrases: Hyperspaces; Vietoris topology; α -hyperbounded spaces; pseudo- ω -bounded spaces; normal and C^* -embedded spaces.

³⁰⁶

of X, we say that the point $z \in X$ is the *p*-limit of $(x_{\xi})_{\xi < \kappa}$ (resp., of $(S_{\xi})_{\xi < \kappa}$) if for all open neighbourhoods W of z,

$$\{\xi < \kappa : x_{\xi} \in W\} \in p \quad (\text{resp.}, \{\xi < \kappa : S_{\xi} \cap W \neq \emptyset\} \in p)$$

A space X is p-compact (p-pseudocompact; see [4] and [7]) if, for every countable sequence of points (resp., of non-empty open sets) of X, there exists $x \in X$ which is a p-limit of $(x_{\xi})_{\xi < \kappa}$ (resp., of $(S_{\xi})_{\xi < \kappa}$). p-limits of sequences of points are unique (when they exist), if x is the p-limit point of the sequence $(x_{\xi})_{\xi < \kappa}$, then we write $x = p - \lim x_{\xi}$. The p-limits of sequences of sets are not necessarily unique, then, we denote with $L(p, (S_{\xi})_{\xi < \kappa})$ the set of p-limit points of the sequence $(S_{\xi})_{\xi < \kappa}$. Given an infinite cardinal κ , we say that X is κ -compact if X can be written as the union of κ compact subspaces of X; X is *initially* κ -compact if every set $A \in [X]^{\leq \kappa}$ has a complete cluster point and X is κ -bounded if every set $A \in [X]^{\leq \kappa}$ has a compact closure in X (see [15]). It is easy to see that every κ -bounded space is initially κ -compact.

For a topological space (X, \mathcal{T}) , CL(X), K(X) and $F_n(X)$ denote the sets of closed, compact and finite subsets of cardinality less or equal than n of X, respectively. $\mathcal{CL}(X)$ denotes the hyperspace of non-empty closed subsets of Xwith the Vietoris topology. $\mathcal{K}(X)$ and, for each $n \in \mathbb{N}$, $\mathcal{F}_n(X)$ are the subspaces of $\mathcal{CL}(X)$ formed by compact and finite subsets of cardinality less or equal to n, respectively. Remember that, the Vietoris topology has the sets of the form

$$V^+ = \{A \in CL(X) : A \subseteq V\} \text{ and } V^- = \{A \in CL(X) : A \cap V \neq \emptyset\}$$

as a subbase, where V is an open subset of X. Given open sets U_1, \ldots, U_n of X, we define

$$\langle U_1, \dots, U_n \rangle = \{T \in CL(X) : T \in (\bigcup_{1 \le k \le n} U_k)^+ \text{ and } T \in U_k^- \text{ for each } 1 \le k \le n\}.$$

So, the collection

$$\{\langle U_1, \ldots, U_n \rangle : n \in \mathbb{N}, U_1, \ldots, U_n \in \mathcal{T}\}\$$

constitutes a base for $\mathcal{CL}(X)$.

It is known that the space X is homeomorphic to the subspace $\mathcal{F}_1(X)$ of $\mathcal{CL}(X)$, that $\mathcal{K}(X)$ is dense in $\mathcal{CL}(X)$ and $\mathcal{CL}(X)$ is compact if and only if X is compact, if and only if $\mathcal{CL}(X) = \mathcal{K}(X)$. On the other hand, for each $A \in CL(X)$, $\mathcal{CL}(A)$ can be considered as a subspace of $\mathcal{CL}(X)$; in particular, if $A \in K(X)$, then $\mathcal{K}(A)$ is a compact subspace of $\mathcal{CL}(X)$.

The class of hyperspaces has been widely studied and continues to generate significant results and problems. In 1985 Dušan Milovančević showed in [12] that countable compactness, ω -boundedness (strongly countable compactness according to the terminology of Milovančević) and hypercountable compactness (the closure of every σ -compact subset is compact) coincide in the class of spaces of the form $\mathcal{K}(X)$. In Section 1, we continue in this mood by introducing and studying the concept of α -hyperboundedness, and we prove that for every space X, $\mathcal{K}(X)$ is initially α -compact if and only if $\mathcal{K}(X)$ is α -bounded, if and only if $\mathcal{K}(X)$ is α hyperbounded. Moreover, we show that for every infinite cardinal number α , there is an α -bounded space X which is not ω -hyperbounded. We finish Section 1 by analyzing the relationship between the maximal α -hyperbounded extension of a space X and its maximal α -bounded extension.

In Section 2 we give some equivalent conditions to that of pseudocompactness in the class of spaces of the form $\mathcal{K}(X)$. In particular, we show that $\mathcal{K}(X)$ is pseudocompact if and only if X is pseudo- ω -bounded. Also, we obtain some results about $\mathcal{K}(X)$ and X when $\mathcal{K}(X)$ is normal and C^* -embedded in $\mathcal{CL}(X)$. In particular, we show than if $\mathcal{K}(X)$ is normal and C^* -embedded in $\mathcal{CL}(X)$ then X is ω -hyperbounded, and X is α -bounded if and only if X is α -hyperbounded, for every infinite cardinal number α .

For those concepts which appear in this article without definition consult [6].

2. $\mathcal{K}(\mathbf{X})$ and α -hyperbounded spaces.

We begin this section by introducing the concept of α -hyperboundedness.

DEFINITION 2.1. Let X be a space and let α be an infinite cardinal. We say that X is α -hyperbounded if for each family $\{S_{\xi} : \xi < \alpha\}$ of compact sets of X, $Cl_X(\bigcup_{\xi \leq \alpha} S_{\xi})$ is a compact subspace.

It is clear that if κ and α are cardinals such that $\omega \leq \kappa \leq \alpha$, then every α -hyperbounded space is κ -hyperbounded; also every compact space is α -hyperbounded and every α -hyperbounded space is α -bounded.

THEOREM 2.2. Let X, Y be two spaces and let α be an infinite cardinal. Then:

- (1) The α -hyperboundedness is inherited by closed subsets.
- (2) A topological product $\prod_{s \in S} X_s$ is α -hyperbounded if and only if each factor X_s is α -hyperbounded.
- (3) If Y is a continuous and perfect image of X then Y is α-hyperbounded if and only if X is α-hyperbounded.

Proof. (1) Let X be an α -hyperbounded space, A a closed set of X and $\{S_{\xi} : \xi < \alpha\}$ a family of non-empty compact subspaces of A. Of course, $\{S_{\xi} : \xi < \alpha\}$ is a family of non-empty compact sets of X, so $Cl_X(\bigcup_{\xi < \alpha} S_{\xi})$ is a compact set of X. Since A is closed, $Cl_A(\bigcup_{\xi < \alpha} S_{\xi}) = Cl_X(\bigcup_{\xi < \alpha} S_{\xi})$ is a compact set of A.

(2) Let $\{X_s : s \in S\}$ be a family of spaces and let X be the topological product of this family. If X is α -hyperbounded, then, because of (1), for each $s \in S$, X_s is α -hyperbounded.

Now, suppose that each X_s is α -hyperbounded. Let $\{S_{\xi} : \xi < \alpha\}$ be a family of non-empty compact subsets of X. Then, for each $s \in S$, $(\pi_s[S_{\xi}])_{\xi < \alpha}$ is a family of non-empty compact subsets of X_s . Therefore, $L_s = Cl(\bigcup_{\xi < \alpha} \pi_s[S_{\xi}])$ is a compact set of X_s . To finish the proof, since

$$Cl_X(\bigcup_{\xi<\alpha}S_\xi)\subseteq\prod_{s\in S}L_s,$$

then $Cl_X(\bigcup_{\xi < \alpha} S_{\xi})$ is a compact subspace of X.

(3) Let $f: X \longrightarrow Y$ be a continuous, perfect and onto function. Suppose that X is α -hyperbounded and let $\{S_{\xi}: \xi < \alpha\}$ be a family of non-empty compact subsets of Y. Since f is perfect, $(f^{-1}[S_{\xi}])_{\xi < \alpha}$ is a family of non-empty compact subsets of X. Since X is α -hyperbounded, $Cl_X(\bigcup_{\xi < \alpha} f^{-1}[S_{\xi}])$ is a compact subset of X and $L = f[Cl_X(\bigcup_{\xi < \alpha} f^{-1}[S_{\xi}])]$ is a compact subset of Y; since $Cl_Y(\bigcup_{\xi < \alpha} S_{\xi}) \subseteq L$, $Cl_Y(\bigcup_{\xi < \alpha} S_{\xi})$ is compact.

On the other hand, if Y is α -hyperbounded, then X is α -hyperbounded by (1), (2) and Theorem 3.7.26 in [6].

THEOREM 2.3. (Theorem 2.2 in [12]) Let X be a space. Then the following statements are equivalent:

- (1) Every σ -compact set of X has a compact closure in X (X is ω -hyperbounded);
- (2) $\mathcal{K}(X)$ is countably compact;
- (3) $\mathcal{K}(X)$ is ω -bounded; and
- (4) Every σ -compact subspace of $\mathcal{K}(X)$ has a compact closure in $\mathcal{K}(X)$ ($\mathcal{K}(X)$ is ω -hyperbounded).

Now, we are going to generalize Theorem 2.3. First, we will prove some lemmas. As usual, $U(\kappa)$ will denote the set of uniform ultrafilters on κ .

LEMMA 2.4. Let X be a space, let κ be an infinite cardinal and let $\{S_{\xi} : \xi < \kappa\}$ be a subcollection of $\mathcal{CL}(X)$. Let $S = \bigcup_{\xi < \kappa} S_{\xi}$ and, for each $\xi < \kappa$, we define the set $T_{\xi} = Cl_X(\bigcup_{\zeta \leq \xi} S_{\xi})$. Then the sequence $(T_{\xi})_{\xi < \kappa}$ of $\mathcal{CL}(X)$ converges to $Cl_X(S)$ in $\mathcal{CL}(X)$.

Proof. Let $\mathcal{U} = \langle U_1, \ldots, U_n \rangle$ be such that $Cl_X(S) \in \mathcal{U}$. Note that, for each $\xi < \tau, T_{\xi} \subseteq Cl_X(S)$. Since $Cl_X(S) \subseteq \bigcup_{i \leq n} U_i$, for every $\xi < \alpha, T_{\xi} \subseteq \bigcup_{i \leq n} U_i$. On the other hand, for each $i \leq n$, there exists $\xi_i < \alpha$ such that $T_{\xi_i} \cap U_i \neq \emptyset$. Let $\eta = max\{\xi_i : i \leq n\}$. Then, for every $\xi \geq \eta$ and all $i \leq n, T_{\xi} \cap U_i \neq \emptyset$. So, we conclude that, for every $\xi \geq \eta, T_{\xi} \in \mathcal{U}$.

LEMMA 2.5. Let T be a compact subspace of $\mathcal{K}(X)$. Then $A = \bigcup T$ is a compact subspace of X and $T \subseteq \mathcal{K}(A)$.

Proof. Let \mathcal{U} be an open cover of A. Since $T \subseteq \mathcal{K}(X)$, for every $F \in T$, there exists a finite subcollection \mathcal{U}_F of \mathcal{U} which covers F. For each $F \in T$, take $V_F = \bigcup \mathcal{U}_F$. Then, the family $\{V_F^+ : F \in T\}$ is an open cover of T in $\mathcal{CL}(X)$. Since T is compact, there are sets $F_1, \ldots, F_n \in T$ such that $T \subseteq \bigcup_{k=1}^n V_{F_k}^+$, which implies that for each $F \in T$, there exists $1 \leq k \leq n$ such that $F \subseteq V_{F_k}$. Then $A \subseteq \bigcup_{k=1}^n V_{F_k}$. Thus, A is compact. Moreover, each $F \in T$ is a compact subspace of A, so $T \subseteq \mathcal{K}(A)$.

THEOREM 2.6. Let X be an space and let α be an infinite cardinal. Then the following statements are equivalent:

- (1) X is α -hyperbounded;
- (2) for every infinite cardinal $\kappa \leq \alpha$, every transfinite sequence $(S_{\xi})_{\xi < \kappa}$ of non-empty compact subspaces of X and every uniform ultrafilter $p \in U(\kappa)$, $L(p, (S_{\xi})_{\xi < \kappa})$ is a non-empty compact subspace of X;
- (3) for every infinite cardinal $\kappa \leq \alpha$ and every transfinite sequence $(S_{\xi})_{\xi < \kappa}$ of non-empty compact subspaces of X, there exists a uniform ultrafilter $p \in U(\kappa)$ such that $L(p, (S_{\xi})_{\xi < \kappa})$ is a non-empty compact subspace of X;
- (4) $\mathcal{K}(X)$ is α -bounded;
- (5) $\mathcal{K}(X)$ is initially α -compact; and
- (6) $\mathcal{K}(X)$ is α -hyperbounded.

Proof. (1) \Rightarrow (2). Let $p \in U(\kappa)$ and let $(S_{\xi})_{\xi < \kappa}$ be a transfinite sequence of non-empty compact subspaces of X. For each $\xi < \kappa$, choose $x_{\xi} \in S_{\xi}$. Since $(x_{\xi})_{\xi < \kappa}$ is contained in the compact space $Cl_X(\bigcup_{\xi < \kappa} S_{\xi})$, there exists $x \in X$ such that $x = p - \lim x_{\xi}$. That is, $x \in L(p, (S_{\xi})_{\xi < \kappa})$. Moreover, it is known that, for every infinite cardinal $\kappa \leq \alpha$, every transfinite sequence $(S_{\xi})_{\xi < \kappa}$ of non-empty subsets of X and all uniform ultrafilter $p \in U(\kappa)$, $L(p, (S_{\xi})_{\xi < \kappa})$ is closed in Xand $L(p, (S_{\xi})_{\xi < \kappa}) \subseteq Cl(\bigcup_{\xi < \kappa} S_{\xi})$. Then, $L(p, (S_{\xi})_{\xi < \kappa})$ is a non-empty compact subspace of X.

The implication $(2) \Rightarrow (3)$ is obvious.

 $(3) \Rightarrow (1)$. We will show this implication by transfinite induction. We begin by proving that if the ω -version of (3) holds, then X is ω -hyperbounded.

Let $(S_n)_{n\in\mathbb{N}}$ be a sequence of compact subspaces of X. For each $n \in \mathbb{N}$, put $D_n = \bigcup_{i=1}^n S_i$. Since every S_n is a compact subspace of X, $(D_n)_{n\in\mathbb{N}}$ is an increasing sequence of non-empty compact subsets of X such that $S = \bigcup_{n\in\mathbb{N}} D_n$. Because of our hypotheses, there is $p \in \omega^*$ such that $L(p, (D_n)_{n\in\mathbb{N}})$ is a non-empty compact subspace of X.

We will show that $Cl_X(S) \subseteq L(p, (D_n)_{n \in \mathbb{N}})$. Take $x \in Cl_X(S)$ and let V be an open neighbourhood of x. By Lemma 2.4, the sequence $(D_n)_{n \in \mathbb{N}}$ converges to $Cl_X(S)$ in $\mathcal{CL}(X)$. Since V^- is an open neighbourhood of $Cl_X(S)$, there exists $m \in \mathbb{N}$ such that $D_n \in V^-$ for every $n \geq m$. Then

$$\{n: D_n \cap V \neq \emptyset\} \supseteq \{n: m \le n\} \in p.$$

So, we conclude that $x \in L(p, (D_n)_{n \in \mathbb{N}})$ and $Cl_X(S)$ is compact.

Given a cardinal $\alpha > \omega$, assume that for all cardinals $\omega \leq \theta < \alpha$, condition (3) with θ in place of α implies that X is θ -hyperbounded. Let $(S_{\xi})_{\xi < \alpha}$ be a transfinite sequence of compact subsets of X with union S. Assume (3), which, by inductive hypothesis, implies that $D_{\xi} = Cl_X(\bigcup_{\eta \leq \xi} S_{\eta})$ is compact for each $\xi < \alpha$. By (3), there is $p \in U(\alpha)$ with $L(p, (D_{\xi})_{\xi < \alpha}) \in \mathcal{K}(X)$, and we will be done if we show that $D = Cl_X(\bigcup_{\xi < \alpha} D_{\xi}) \subseteq L(p, (D_{\xi})_{\xi < \alpha})$. Indeed, let $x \in D$ and V be an open neighbourhood of x. Since by Lemma 2.4 $(D_{\xi})_{\xi < \alpha}$ converges to $D \in \mathcal{CL}(X)$, there exists $\xi_0 < \alpha$ such that $D_{\xi} \in V^-$ for all $\xi \geq \xi_0$. Then

$$\{\xi: D_{\xi} \cap V \neq \emptyset\} \supseteq \{\xi: \xi_0 \le \xi < \alpha\} \in p;$$

thus, $x \in L(p, (D_{\xi})_{\xi < \alpha})$.

(1) \Rightarrow (4). Assuming (1), and given a collection $\{S_{\xi} : \xi < \alpha\} \subseteq \mathcal{K}(X)$, we have that $D = Cl_X(\bigcup_{\xi < \alpha} S_{\xi}) \in \mathcal{K}(X)$. Since $\mathcal{K}(D)$ is a compact subspace of $\mathcal{K}(X)$, then $Cl_{\mathcal{K}(X)}(\{S_{\xi} : \xi < \alpha\}) \subseteq \mathcal{K}(D)$ is compact.

The implication $(4) \Rightarrow (5)$ is clear.

(5) \Rightarrow (6). For $\alpha = \omega$, the implication follows from Theorem 2.3. Given a cardinal $\alpha > \omega$, assume that for all cardinals $\omega \leq \theta < \alpha$, if $\mathcal{K}(X)$ is initially θ -compact, then $\mathcal{K}(X)$ is θ -hyperbounded. Let $\mathcal{K}(X)$ be initially α -compact. Then $\mathcal{K}(X)$, and by Theorem 2.2.(1), also X is θ -hyperbounded for all cardinals $\omega \leq \theta < \alpha$. If $\{S_{\xi} : \xi < \alpha\}$ is a collection of compact subsets of $\mathcal{K}(X)$, then by Lemma 2.5, $\bigcup S_{\xi} \in \mathcal{K}(X)$, moreover, by our assumptions $D_{\xi} = Cl_X(\bigcup_{\eta \leq \xi} \bigcup S_{\eta}) \in \mathcal{K}(X)$ for each $\xi < \alpha$. If $Z \in \mathcal{K}(X)$ is a complete cluster point of $(D_{\xi})_{\xi < \alpha}$, we will be done if we show that $D = \bigcup \{D_{\xi} : \xi < \alpha\} \subseteq Z$ (because then $Cl_{\mathcal{K}(X)}(\{S_{\xi} : \xi < \alpha\}) \subseteq \mathcal{K}(Cl_X(D))$, and the latter is a compact subspace of $\mathcal{K}(X)$): suppose, on the contrary, that there exists $x \in D_{\xi_0} \setminus Z$ for some $\xi_0 < \alpha$. By compactness of Z we can find an open neighbourhood U of Z that misses x. Since $(D_{\xi})_{\xi < \alpha}$ is nondecreasing, it follows that $D_{\xi} \notin U^+$ for every $\xi_0 \leq \xi < \alpha$, which contradicts the fact U^+ is an open neighbourhood of Z, and hence, should contain α -many members of $(D_{\xi})_{\xi < \alpha}$.

 $(6) \Rightarrow (1)$ is a consequence of (1) from Theorem 2.2.

S

PROPOSITION 2.7. Let X be a space with an α -compact dense subspace. Then X is α -hyperbounded if and only if it is compact.

In [12], Milovančević gives examples of ω -bounded spaces that are not ω -hyperbounded. The following result shows an example of an α -bounded space which is not ω -hyperbounded for each $\alpha \geq \omega$; we use the Σ_{κ} -product of a cube $\{0, 1\}^S$. Given a family of spaces $\{X_s : s \in S\}$, take the Tychonoff product $X = \prod_{s \in S} X_s$ and a fixed point $x \in X$. For each $z \in X$, we define the support of z with respect to x as the set

$$\operatorname{supp}_{x}(z) = \{ s \in S : \pi_{s}(x) \neq \pi_{s}(z) \}.$$

For an infinite cardinal κ , we define the Σ_{κ} -product of X with respect to x as the subspace

$$\Sigma_{\kappa}(x,X) = \{ z \in X : |\operatorname{supp}_{x}(z)| < \kappa \}$$

of X.

THEOREM 2.8. For every cardinal $\kappa \geq \omega$, there exists a κ -bounded space X which is not ω -hyperbounded.

Proof. Let κ be an infinite cardinal and S a set such that $\kappa < |S|$. Consider the space $X = \Sigma_{\kappa^+}(\underline{0}, \{0, 1\}^S)$. It is easy to show that X is a proper dense κ -bounded subspace of $\{0, 1\}^S$ (it is even C^* -embedded in $\{0, 1\}^S$, see [1]). We will show that X has a dense σ -compact subspace. Let $S_n = \{x \in X : |\operatorname{supp}_0(x)| \le n\}$ and let $z \in \{0, 1\}^S \setminus S_n$. Let $F \in [\operatorname{supp}_0(z)]^{n+1}$ and let $U = \bigcap_{s \in F} \pi_s^{-1}(1)$. It is apparent

that $z \in U$ and $U \cap S_n = \emptyset$, so $z \notin Cl(S_n)$. Then S_n is a closed subset of $\{0, 1\}^S$. Therefore S_n is a compact subspace of X for all $n \in \mathbb{N}$.

We have:

$$\bigcup_{n \in \mathbb{N}} S_n = \{ x \in \{0,1\}^S : |\operatorname{supp}_{\underline{0}}(x)| < \omega \} = \Sigma_{\omega}(\underline{0}, \{0,1\}^S).$$

This last set is dense in $\{0,1\}^S$, so it is dense in X. By Proposition 2.7, X cannot be ω -hyperbounded because X is not a compact space.

Another important observation is the following: given a space X, and a closedhereditary, productive topological property P, there exists the maximal extension $\beta_P(X)$ of X having property P (see Proposition 4.1(k) in [13]). It follows by Theorem 2.2, that X has a maximal α -hyperbounded (resp., α -bounded) extension $\beta_{h\alpha}(X)$ (resp., $\beta_{\alpha}(X)$). Such extension is the only α -hyperbounded (resp., α bounded) space, up to topological equivalence, with the property that for all α hyperbounded (resp., α -bounded) space Y and every $f \in C(X, Y)$, there exists a continuous extension $F \in C(\beta_{h\alpha}(X), Y)$ (resp., $F \in C(\beta_{\alpha}(X), Y)$) such that $F|_X = f$. It is known that such extension can be considered as the intersection of all α -hyperbounded (resp., α -bounded) subspaces of $\beta(X)$ containing X (see Chapter 5 of [13]). We finish this section by providing an example of a space X for which $X \subsetneq \beta_{\alpha}(X) \subsetneq \beta_{h\alpha}(X) \subsetneq \beta(X)$ (see Theorem 2.11 below). In order to obtain this example we need to recall the following known results.

LEMMA 2.9. (Theorem 1 in [9]) Let $\{X_s : s \in S\}$ be a family of spaces such that for all $s_0 \in S$, $\prod_{s \in S \setminus \{s_0\}} X_s$ is infinite. Then

$$\beta(\prod_{s\in S} X_s) = \prod_{s\in S} \beta(X_s)$$

if and only if $\prod_{s \in S} X_s$ is a pseudocompact space.

We say that a topological property P is a *Tychonoff extension property* (see 5.6 in [13]) if it is inherited by closed subsets, productive and every compact space has property P.

LEMMA 2.10. (Theorem 3.2 in [5]) Let P be a Tychonoff extension property which implies pseudocompactness. Then the following statements are equivalent for any pair of spaces X and Y.

- (1) $X \times Y$ is pseudocompact.
- (2) $\beta_P(X \times Y) = \beta_P(X) \times \beta_P(Y).$

THEOREM 2.11. For each infinite cardinal α there exists a space X such that $X \subsetneq \beta_{\alpha}(X) \subsetneq \beta_{h\alpha}(X) \subsetneq \beta(X)$.

Proof. Let κ and τ be infinite cardinals such that $max\{\omega_1, \alpha\} < \kappa < \tau$, define $Y = \Sigma_{\kappa^+}(\underline{0}, \{0, 1\}^{\tau})$ and $Z = Y \setminus \{\underline{0}\}$. In Theorem 2.8 we showed that Y is an α -bounded and non- α -hyperbounded space. Furthermore, it is easy to check that $[0, \alpha^+)$ is α -hyperbounded, and Z is not α -bounded. Let $S \in [\tau]^{\omega_1}$, and $p \in \{0, 1\}^S$

be such that $\operatorname{supp}_{\underline{0}}(p) = S$. The Σ -product $\Sigma(p) = \Sigma_{\omega_1}(p, \{0, 1\}^{\tau})$ is a subspace of Z, and by a theorem of Glicksberg (Theorem 2 in [9]), $\beta(\Sigma(p)) = \{0, 1\}^{\tau}$. Also, since $\Sigma(p)$ and $[0, \alpha^+)$ are ω -bounded, so is $\Sigma(p) \times [0, \alpha^+)$, thus, $\Sigma(p) \times [0, \alpha^+)$ is pseudocompact. Then, using Lemma 2.9 for $X = Z \times [0, \alpha^+)$, we have:

$$\beta(X) \subseteq \beta(Z) \times \beta([0, \alpha^+)) \subseteq \{0, 1\}^\tau \times [0, \alpha^+] = \beta(\Sigma(p) \times [0, \alpha^+)) \subseteq \beta(X),$$

therefore, $\beta(X) = \beta(Z) \times \beta([0, \alpha^+)) = \{0, 1\}^{\tau} \times [0, \alpha^+]$, so, by Lemma 2.9, X is pseudocompact. Then, by Lemma 2.10, and since $Y = Z \cup \{\underline{0}\}$ is the smallest α -bounded superset of Z, we get

$$\beta_{\alpha}(X) = \beta_{\alpha}(Z) \times \beta_{\alpha}([0, \alpha^{+})) = Y \times [0, \alpha^{+}).$$

Since every α -hyperbounded space is α -bounded, $\beta_{\alpha}(X) \subseteq \beta_{h\alpha}(X)$, moreover, $\beta_{\alpha}(X) \neq \beta_{h\alpha}(X)$ (otherwise, $\beta_{\alpha}(X) = Y \times [0, \alpha^+)$ is α -hyperbounded, which implies that Y is α -hyperbounded). In conclusion, observe that

$$X \subsetneq \beta_{\alpha}(X) \subsetneq \beta_{h\alpha}(X) \subseteq \beta_{h\alpha}(Z) \times [0, \alpha^{+}) \subsetneq \{0, 1\}^{\tau} \times [0, \alpha^{+}] = \beta(X). \quad \bullet$$

Note that if $\alpha < \kappa$ are infinite cardinals, and X is the space from Theorem 2.8, then $\beta_{\kappa}(\beta_{h\alpha}(X)) = \beta_{h\alpha}(\beta_{\kappa}(X))$: indeed, $\beta_{\kappa}(X) = X$, furthermore, $\beta_{h\alpha}(X)$ contains a dense σ -compact subspace, so by Proposition 2.7, $\beta_{h\alpha}(X)$ is compact, so $\beta_{h\alpha}(\beta_{\kappa}(X)) = \beta_{h\alpha}(X) = \beta(X)$; on the other side, $\beta_{\kappa}(\beta_{h\alpha}(X)) = \beta_{\kappa}(\beta(X)) = \beta(X)$. Moreover, if we take Z from Theorem 2.11, and define $X = Z \times [0, \kappa^+)$, we can argue analogously as in Theorem 2.11 that $\beta_{\kappa}(X) = Y \times [0, \kappa^+)$, and that it is pseudocompact, so using Lemma 2.10 and the above argument for the space from Theorem 2.8, we get $\beta_{h\alpha}(\beta_{\kappa}(X)) = \beta_{h\alpha}(Y) \times \beta_{h\alpha}([0, \kappa^+)) = \beta(Y) \times [0, \kappa^+) = \{0, 1\}^{\tau} \times [0, \kappa^+)$; similarly, $\beta_{\kappa}(\beta_{h\alpha}(X)) = \beta_{\kappa}(\beta_{h\alpha}(Z) \times \beta_{h\alpha}([0, \kappa^+))) = \beta_{\kappa}(\beta(Z) \times [0, \kappa^+)) = \beta_{\kappa}(\{0, 1\}^{\tau} \times [0, \kappa^+)) = \{0, 1\}^{\tau} \times [0, \kappa^+)$, thus, again $\beta_{\kappa}(\beta_{h\alpha}(X)) = \beta_{h\alpha}(\beta_{\kappa}(X))$.

So, the following question arises:

QUESTION 2.12. Are there two infinite cardinals α and κ with $\alpha < \kappa$ and a space X such that $\beta_{\kappa}(\beta_{h\alpha}(X)) \neq \beta_{h\alpha}(\beta_{\kappa}(X))$?

3. Pseudocompactness of $\mathcal{K}(X)$ and consequences when $\mathcal{K}(X)$ is normal and C^* -embedded in $\mathcal{CL}(X)$.

In this section we are going to give some equivalent conditions to that of pseudocompactness in $\mathcal{K}(X)$. Also we are going to obtain some results about $\mathcal{K}(X)$ and X when $\mathcal{K}(X)$ is normal and C^* -embedded in $\mathcal{CL}(X)$. We begin with some definitions:

DEFINITION 3.1. Let X be a space and let $p \in \mathcal{D} \subseteq \mathbb{N}^*$. We say that:

- (1) X is *p*-pseudocompact if for each sequence $(U_n)_{n \in \mathbb{N}}$ of non-empty open subsets of X, $L(p, (U_n)_{n \in \mathbb{N}}) \neq \emptyset$.
- (2) X is strongly p-pseudocompact if for each sequence $(U_n)_{n\in\mathbb{N}}$ of non-empty open subsets of X there exists a sequence of points $(x_n)_{n\in\mathbb{N}}$ and there exists $z \in X$ such that, for each $n \in \mathbb{N}$, $x_n \in U_n$ and $z = p - \lim x_n$.

- (3) X is pseudo- \mathcal{D} -bounded if for each sequence $(U_n)_{n\in\mathbb{N}}$ of non-empty open subsets of X there exists a sequence of points $(x_n)_{n\in\mathbb{N}}$ such that, for each $n\in\mathbb{N}$, $x_n\in U_n$ and for each $p\in\mathcal{D}$, there exists $z_p\in X$ such that $z_p=p-\lim x_n$.
- (4) X is pseudo- ω -bounded if for each countable family \mathcal{U} of non-empty open subsets of X, there exists a compact set $K \subseteq X$ such that, for each $U \in \mathcal{U}$, $K \cap U \neq \emptyset$.

It is clear that the property of pseudo- ω -boundedness is equal to the property of pseudo- \mathbb{N}^* -boundedness and, in general, the property of pseudo- \mathcal{D} -boundedness is stronger than that of strongly *p*-pseudocompactness and weaker than pseudo- ω -boundedness.

Now we determine when $\mathcal{K}(X)$ is pseudocompact in terms of some properties of X.

THEOREM 3.2. Let X be a space. Then the following statements are equivalent:

- (1) X is pseudo- ω -bounded;
- (2) $\mathcal{K}(X)$ is pseudo- ω -bounded;
- (3) $\mathcal{K}(X)$ is pseudo- \mathcal{D} -bounded for some $\mathcal{D} \subseteq \mathbb{N}^*$;
- (4) $\mathcal{K}(X)$ is strongly-p-pseudocompact for some $p \in \mathbb{N}^*$;
- (5) $\mathcal{K}(X)$ is p-pseudocompact for some $p \in \mathbb{N}^*$; and
- (6) $\mathcal{K}(X)$ is pseudocompact.

Proof. The implications $(2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6)$ are easy to see (cf. Section 3 of [2]).

 $(1) \Rightarrow (2)$. Suppose that X is pseudo- ω -bounded and let $(\mathcal{U}_n)_{n \in \mathbb{N}}$ be a sequence of non-empty canonical open sets of $\mathcal{K}(X)$; that is, for each $n \in \mathbb{N}$, the open set \mathcal{U}_n is of the form $\langle U_1^n, \ldots, U_{k_n}^n \rangle$ where U_j^n is a non-empty open subset of X. Then the set

$$\{U_j^n : n \in \mathbb{N} \text{ and } 1 \le j \le k_n\}$$

is a countable family of non-empty open subsets of X. So, there exists a compact set C in X such that $C \cap U_j^n \neq \emptyset$ for every $n \in \mathbb{N}$, $1 \leq j \leq k_n$. Because of C is compact in X, $\mathcal{K}(C)$ is a compact subspace of $\mathcal{K}(X)$; so, it is enough to show that, for each $n \in \mathbb{N}$, $\mathcal{U}_n \cap \mathcal{K}(C) \neq \emptyset$. For each $n \in \mathbb{N}$ and $1 \leq j \leq k_n$, take $x_j^n \in C \cap U_j^n$. Take $F_n = \{x_1^n, \ldots, x_{k_n}^n\}$. Then, it is clear that, for every $n \in \mathbb{N}$, $F_n \in \mathcal{K}(C) \cap \mathcal{U}_n$. Therefore, $\mathcal{K}(X)$ is pseudo- ω -bounded.

 $(6) \Rightarrow (1)$. Suppose that $\mathcal{K}(X)$ is pseudocompact and let $(U_n)_{n \in \mathbb{N}}$ be a sequence of non-empty open subsets of X. For each $n \in \mathbb{N}$, let V_n be a non-empty open subset of X such that $Cl(V_n) \subseteq U_n$ and let $\mathcal{V}_n = \langle V_1, \ldots, V_n \rangle$. It is enough to show that there exists a compact space T such that, for each $n \in \mathbb{N}$, $Cl(V_n) \cap T \neq \emptyset$. Since $\mathcal{K}(X)$ is a pseudocompact space, there exists $T \in \mathcal{K}(X)$ such that T is a cluster point of the sequence $(\mathcal{V}_n)_{n \in \mathbb{N}}$. Suppose that there exists a natural number $n \in \mathbb{N}$ such that $T \cap Cl(V_n) = \emptyset$. Then, there exists an open set W such that $T \subseteq W$ and $W \cap Cl(V_n) = \emptyset$. So $T \in W^+$ and, for each $m \ge n$, $\mathcal{V}_m \cap W^+ = \emptyset$. This last equality contradicts the fact that T is a cluster point of the sequence $(\mathcal{V}_n)_{n \in \mathbb{N}}$.

Below, we are going to obtain some interesting consequences on X and $\mathcal{K}(X)$ when $\mathcal{K}(X)$ is normal. First some known results:

THEOREM 3.3. (Theorem 4.9.13 in [11]) A space X is metrizable if and only if $\mathcal{K}(X)$ is metrizable.

LEMMA 3.4. Let η be an ordinal number with $cf(\eta) = \omega$. Then $\mathcal{K}(\eta)$ is σ -compact.

Proof. Let $(\xi_n)_{n < \omega}$ be an increasing and cofinal sequence of ordinal numbers in η . Then $\mathcal{K}(\eta)$ is equal to $\bigcup_{n < \omega} \mathcal{K}(\xi_n + 1)$. For each $n < \omega$, $\mathcal{K}(\xi_n + 1)$ is compact, so $\mathcal{K}(\eta)$ is σ -compact.

THEOREM 3.5. (Corollary 10 in [10]) Let η be an ordinal number. Then $\mathcal{K}(\eta)$ is normal if and only if $cf(\eta) \in \{1, \omega, \eta\}$.

On the other hand, G. Artico and R. Moresco show in [3] that if X is the Sorgenfrey line then the hyperspace $\mathcal{K}(X)$ is not normal. Remember that the Sorgenfrey line is a submetrizable, perfectly normal and hereditarily Lindelöf space.

We say that a space X is $<\alpha$ -bounded if X is θ -bounded for each infinite cardinal $\theta < \alpha$. Recall that a space X is α -pseudocompact if f[X] is a compact subset of \mathbb{R}^{α} for every continuous function $f: X \to \mathbb{R}^{\alpha}$. ω -pseudocompactness is equivalent to pseudocompactnes, and if $\theta < \alpha$, every α -pseudocompact space is θ -pseudocompact. Moreover, every initially α -compact space is α -pseudocompact.

LEMMA 3.6. (Theorem 1.7 in [8]) Let α be an infinite cardinal. Then every α -pseudocompact, $<\alpha$ -bounded and normal space is initially α -compact.

THEOREM 3.7. Let α be an infinite cardinal number and let X be a topological space such that $\mathcal{K}(X)$ is normal. Then $\mathcal{K}(X)$ is α -pseudocompact if and only if X is α -hyperbounded.

Proof. We will prove this theorem by transfinite induction. It is known that a normal pseudocompact space is countably compact, so by Theorem 2.3, X is ω -hyperbounded. Now, suppose that $\mathcal{K}(X)$ is α -pseudocompact and suppose that our statement is true for every $\theta < \alpha$. Then, by Theorem 2.6, $\mathcal{K}(X)$ is $<\alpha$ -bounded. By Lemma 3.6, $\mathcal{K}(X)$ is initially α -compact and again, by Theorem 2.6, X is α -hyperbounded.

COROLLARY 3.8. Let X be the space defined in Theorem 2.8. Then X is a normal space such that $\mathcal{K}(X)$ is not normal.

Proof. From Theorem 2.8, we know that X is ω -bounded. So, X is pseudo- ω -bounded. Then, by Theorem 3.2, $\mathcal{K}(X)$ is pseudocompact. If $\mathcal{K}(X)$ is a normal space then by Theorem 3.7, X is ω -hyperbounded. But, by Theorem 2.8, the last statement is not true.

THEOREM 3.9. (R. Hernández) Let X be a space. If $\mathcal{K}(X)$ is a normal space which is C^* -embedded in $\mathcal{CL}(X)$ then X is ω -hyperbounded.

Proof. Suppose that X is not ω -hyperbounded. Let $\{S_n : n \in \mathbb{N}\}$ be a collection of compact subsets of X such that $Cl_X(S)$ is not a compact set, where $S = \bigcup_{n \in \mathbb{N}} S_n$. We will define a strictly increasing sequence $(A_n)_{n \in \mathbb{N}}$ of compact subsets of X such that $\bigcup_{n \in \mathbb{N}} A_n = S$ and $A_k \subsetneq A_{k+1} \subsetneq S$ for each $k \in \mathbb{N}$. We take $A_1 = S_1$. Suppose we have defined all compact sets A_1, \ldots, A_m such that, for each $1 \leq k < m$, $A_k \subsetneq A_{k+1} \subsetneq S$. Since $Cl_X(S)$ is not a compact set of X, there exists N(m) > m such that $S_{N(m)} \setminus A_m \neq \emptyset$. Let $A_{m+1} = A_m \cup (\bigcup_{n < N(m)} S_n)$. Then the sequence $(A_n)_{n \in \mathbb{N}}$ satisfies our conditions. By Lemma 2.4, the sequence $(A_n)_{n\in\mathbb{N}}$ converges to $Cl_X(S)$ in $\mathcal{CL}(X)$. Thus, $\{A_n : n \in \mathbb{N}\} \bigcup \{Cl_X(S)\}$ is a compact subspace of $\mathcal{CL}(X)$. Since $Cl_X(S)$ is the only cluster point of the set $\mathcal{A} = \{A_n : n \in \mathbb{N}\}$ in $\mathcal{CL}(X)$, \mathcal{A} is a discrete subset of $\mathcal{CL}(X)$. Moreover, $Cl_X(S) \in \mathcal{CL}(X)$ $\mathcal{CL}(X) \setminus \mathcal{K}(X)$, hence \mathcal{A} is closed and discrete in $\mathcal{K}(X)$. On the other hand, $\mathcal{K}(X)$ is a normal space, then $\{A_n : n \in \mathbb{N}\}$ is C^{*}-embedded in $\mathcal{K}(X)$. But $\mathcal{K}(X)$ is C^* -embedded in $\mathcal{CL}(X)$, so $\{A_n : n \in \mathbb{N}\}$ is C^* -embedded in $\mathcal{CL}(X)$. This last assertion contradicts the fact that $(A_n)_{n\in\mathbb{N}}$ is a non-trivial convergent sequence in $\mathcal{CL}(X)$. Therefore, we have to conclude that X is ω -hyperbounded.

Recall that a point x in a space X is a *butterfly* point of X ([14]) if there are two disjoint subsets A and B of $X \setminus \{x\}$ such that $\{x\} = Cl_X(A) \cap Cl_X(B)$. These kind of points have been useful in solving problems about normality, as we can see in the following known result.

LEMMA 3.10. Let Y be a C^{*}-embedded subspace of X. If there is a point $x \in X \setminus Y$ which is a butterfly point of $Y \cup \{x\}$ then Y is not normal.

LEMMA 3.11. (Theorem 2.3 in [15]) Let X be a space and let κ be a singular cardinal number. If X is an initially θ -compact space for every cardinal number $\theta < \kappa$, then X is an initially κ -compact space.

THEOREM 3.12. Let α be an infinite cardinal number. Let X be a space such that $\mathcal{K}(X)$ is normal and C^{*}-embedded in $\mathcal{CL}(X)$. Then, X is α -bounded if and only if X is α -hyperbounded.

Proof. Of course, if X is α -hyperbounded then X is α -bounded. Now, suppose that X is α -bounded and assume that X is not α -hyperbounded. Let τ be the minimum cardinal κ such that X is not κ -hyperbounded. By Lemma 3.9, $\tau > \omega$ and by Theorem 2.6 and Lemma 3.11, τ is regular. Note that X is $< \tau$ -hyperbounded and $\tau \leq \alpha$. Since X is not τ -hyperbounded, there exists a transfinite sequence $(S_{\xi})_{\xi < \tau}$ of non-empty compact subspaces of X such that $Cl_X(S)$ is a non-compact space, where $S = \bigcup_{\xi < \tau} S_{\xi}$. We construct two sets \mathcal{B} and \mathcal{C} contained in $\mathcal{K}(X)$ with disjoint closures in $\mathcal{K}(X)$ each of them converging to $Cl_X(S)$ in $\mathcal{CL}(X)$. For each $\xi < \tau$, let $A_{\xi} = \bigcup_{\zeta \leq \xi} S_{\xi}$ and $B_{\xi} = Cl_X(A_{\xi})$. For each $\xi < \tau$, X is $|\xi|$ hyperbounded, so $B_{\xi} \in \mathcal{K}(X)$. Thus, for each $\xi < \tau$, $B_{\xi} \in \mathcal{K}(X)$. Moreover, for each $\xi < \tau$, there exists a point $x_{\xi} \in S \setminus B_{\xi}$. Let $R = Cl_X(\{x_{\xi} : \xi < \tau\})$. Since X is α -bounded, R is a compact subspace of X. For each $\xi < \tau$, let $C_{\xi} = B_{\xi} \cup R$. Then, for each $\xi < \tau$, $C_{\xi} \in \mathcal{K}(X)$. Let $\mathcal{B} = \{B_{\xi} : \xi < \tau\}$ and $\mathcal{C} = \{C_{\xi} : \xi < \tau\}$. Then \mathcal{B} , \mathcal{C} are clearly disjoint subsets of $\mathcal{K}(X)$ and, by Lemma 2.4, they both converge to

 $Cl_X(S) \in \mathcal{CL}(X) \setminus \mathcal{K}(X)$. It follows that $\{Cl_X(S)\} = CL_{\mathcal{CL}(X)}(\mathcal{B}) \cap CL_{\mathcal{CL}(X)}(\mathcal{C})$, so $Cl_X(S)$ is a butterfly point of $\mathcal{CL}(X)$ and, by Lemma 3.10, $\mathcal{K}(X)$ cannot be normal. This contradiction says that X must be α -hyperbounded.

The transfinite sequences \mathcal{B} and \mathcal{C} converge to $Cl_X(S)$.

CLAIM 1. $Cl_{\mathcal{K}(X)}(\mathcal{B}) \cap Cl_{\mathcal{K}(X)}(\mathcal{C}) = \emptyset.$

Let $T \in Cl_{\mathcal{K}(X)}(\mathcal{B})$. Since T is a compact space, we can take the minimum ordinal of the set $\{\xi < \tau : B_{\xi} \nsubseteq T\}$. Call this number η . Let $x \in B_{\eta} \setminus T$ and let U_1 be an open set of X such that $T \subseteq U_1$ and $x \notin U_1$. Of course, for each $\xi < \eta$, $B_{\xi} \subseteq T$.

CLAIM 2. $T = Cl_X(\bigcup_{\xi < \tau} B_\eta)$

Indeed, assume the contrary, so there exists a point $y \in T \setminus Cl_X(\bigcup_{\xi < \eta} B_{\xi})$ and an open set U_2 of X such that $y \in U_2$ and $U_2 \cap Cl_X(\bigcup_{\xi < \eta} B_{\xi}) = \emptyset$. But this is not possible because $T \in U_1^+ \cap U_2^-$ and $(U_1^+ \cap U_2^-) \cap \mathcal{B} = \emptyset$. Then, $T \subseteq B_\eta$ and our Claim 2 is proved.

As $x_{\eta} \notin B_{\eta}$, there exists an open subset U_3 of X such that $B_{\eta} \subseteq U_3$ and $x_{\eta} \notin U_3$. It is apparent that $T \in U_3^+$ and $U_3^+ \cap \mathcal{C} = \emptyset$, so the proof of our claim is complete.

By Claim 1, $\{Cl_X(S)\} = Cl_{\mathcal{CL}(X)}(\mathcal{B}) \cap Cl_{\mathcal{CL}(X)}(\mathcal{C})$. Then $Cl_X(S)$ is a butterfly point of $\mathcal{CL}(X)$. By Lemma 3.10, $\mathcal{K}(X)$ cannot be normal. This contradiction says that X must be α -hyperbounded.

THEOREM 3.13. Let X be a space such that $\mathcal{K}(X)$ is C^{*}-embedded in $\mathcal{CL}(X)$. Then the next statements are equivalent:

- (1) X is compact,
- (2) X is σ -compact,
- (3) $\mathcal{K}(X)$ is compact,
- (4) $\mathcal{K}(X)$ is σ -compact,
- (5) $\mathcal{K}(X)$ is Lindelöf, and
- (6) $\mathcal{K}(X)$ is paracompact.

Proof. The implications $(1) \Rightarrow (2) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6)$ and $(1) \Leftrightarrow (3)$ are well known. Suppose that $\mathcal{K}(X)$ is a paracompact space, then $\mathcal{K}(X)$ is normal. By Theorems 3.9 and 2.6, $\mathcal{K}(X)$ is countably compact. It is known that every paracompact and countably compact space is compact. So $\mathcal{K}(X)$ is a compact space and then X is compact.

COROLLARY 3.14. Let X be a metrizable space. Then $\mathcal{K}(X)$ is C^{*}-embedded in $\mathcal{CL}(X)$ if and only if X is a compact space.

Proof. Let X be a metrizable space. By Theorem 3.3, $\mathcal{K}(X)$ is metrizable. It is clear that if X is a compact space, then $\mathcal{K}(X)$ is C^* -embedded in $\mathcal{CL}(X)$. On the other hand, if $\mathcal{K}(X)$ is C^* -embedded in $\mathcal{CL}(X)$, then, by Theorem 3.13, X is a compact space because every metrizable space is a paracompact space.

COROLLARY 3.15. For every infinite discrete space X, $\mathcal{K}(X)$ is not C^* -embedded in $\mathcal{CL}(X)$.

COROLLARY 3.16. Let η be an ordinal such that $cf(\eta) = \omega$. Then $\mathcal{K}([0,\eta))$ is not C^* -embedded in $\mathcal{CL}([0,\eta))$.

Proof. Follows from Lemma 3.4 and Theorem 3.13.

QUESTION 3.17. For which ordinal numbers η , $\mathcal{K}([0,\eta))$ is C*-embedded in $\mathcal{CL}([0,\eta))$?

ACKNOWLEDGEMENT. The authors would like to thank the referee for a generous and helpful report.

REFERENCES

- J. Angoa, Y. Ortiz-Castillo, A. Tamariz-Mascarúa, Normality and λ-extendable properties in Σ_κ(F)-products, Topology Proc. 39 (2012), 251–279.
- J. Angoa, Y. Ortiz-Castillo, A. Tamariz-Mascarúa, Ultrafilters and properties related to compactness, manuscript.
- [3] G. Artico, R. Moresco, An answer to a question on hyperspaces, Rend. Sem. Mat. Univ. Padova 64 (1981), 173–174.
- [4] A. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185–193.
- [5] S. Broverman, The topological extension of a product, Canad. Math. Bull. 19 (1976), 13–19.
- [6] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- [7] S. García-Ferreira, Some generalizations of pseudocompactness, Ann. New York Acad. Sci. 728 (1994), 22–31.
- [8] S. García-Ferreira, H. Ohta, α-pseudocompact spaces and their subspaces, Math. Japon. 52 (2000), 71–77.
- [9] I. Glicksberg, Stone-Čech compactification of products, Trans. Amer. Math. Soc. 90 (1959), 369–382.
- [10] N. Kemoto, Normality and countable paracompactness of hyperspaces of ordinals, Topology Appl. 154 (2007), 358–363.
- [11] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182.
- [12] D. Milovančević, A property between compact and strongly countably compact, Publ. Inst. Math. (Beograd) (N.S.) 38(52) (1985), 193–201.
- [13] J. Porter, R. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, New York, 1988.
- [14] B.E. Shapirovskii, The imbedding of extremally disconnected spaces in bicompacta, b-points and weight of pointwise normal spaces, Soviet Math. Dokl. 16 (1975), 1056–1061.
- [15] R.M. Stephenson, Jr., Initially κ -compact and related spaces, Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, 603–632.

(received 04.07.2011; in revised form 21.01.2012; available online 01.05.2012)

Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Mexico *E-mail*: jangoa@fcfm.buap.mx, yasserfoc@yahoo.com.mx Departamento de Matemáticas, Facultad de Ciencias UNAM, Mexico *E-mail*: atamariz@servidor.unam.mx