MAPPING PROPERTIES OF SOME CLASSES OF ANALYTIC FUNCTIONS UNDER A GENERAL INTEGRAL OPERATOR DEFINED BY THE HADAMARD PRODUCT

Serap Bulut and Pranay Goswami

Abstract

In this paper, we consider certain subclasses of analytic functions with bounded radius and bounded boundary rotation and study the mapping properties of these classes under a general integral operator defined by the Hadamard product.

1. Introduction

Let \mathcal{A} be the class of all functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc

$$
\mathbb{U}=\{z \in \mathbb{C}:|z|<1\} .
$$

A function $f \in \mathcal{A}$ is said to be spiral-like if there exists a real number $\lambda\left(|\lambda|<\frac{\pi}{2}\right)$ such that

$$
\Re\left\{e^{i \lambda} \frac{z f^{\prime}(z)}{f(z)}\right\}>0 \quad(z \in \mathbb{U}) .
$$

The class of all spiral-like functions was introduced by L. Spacek [16] in 1933 and we denote it by $\mathcal{S}_{\lambda}^{*}$. Later in 1969, Robertson [15] considered the class \mathcal{C}_{λ} of analytic functions in \mathbb{U} for which $z f^{\prime}(z) \in \mathcal{S}_{\lambda}^{*}$.

Let $\mathcal{P}_{k}^{\lambda}(\delta)$ be the class of functions $h(z)$ analytic in \mathbb{U} with $h(0)=1$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\frac{\Re e^{i \lambda} h(z)-\delta \cos \lambda}{1-\delta}\right| d \theta \leq k \pi \cos \lambda, \quad z=r e^{i \theta} \tag{1.2}
\end{equation*}
$$

where $k \geq 2,0 \leq \delta<1, \lambda$ is real with $|\lambda|<\frac{\pi}{2}$.
2010 Mathematics Subject Classification: 30C45
Keywords and phrases: Bounded boundary and bounded radius rotations; integral operator; Hadamard product (convolution).

For $\lambda=0$, this class was introduced in [12] and for $\delta=0$, see [13]. For $k=2$, $\lambda=0$ and $\delta=0$, the class $\mathcal{P}_{2}^{0}(0)$ reduces to the class \mathcal{P} of functions $h(z)$ analytic in \mathbb{U} with $h(0)=1$ and whose real part is positive.

Definition 1.1. (Hadamard product or convolution) Given two functions f and g in the class \mathcal{A}, where f is given by (1.1) and g is given by

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}
$$

the Hadamard product (or convolution) $f * g$ is defined by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=(g * f)(z) \quad(z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

Definition 1.2. A function $f \in \mathcal{A}$ is said to belong to the class $\mathcal{R}_{k}^{\lambda}(\delta, b ; g)$ if and only if

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z(f * g)^{\prime}(z)}{(f * g)(z)}-1\right) \in \mathcal{P}_{k}^{\lambda}(\delta) \tag{1.4}
\end{equation*}
$$

where $(f * g)(z) / z \neq 0(z \in \mathbb{U}), k \geq 2,0 \leq \delta<1, \lambda$ is real with $|\lambda|<\frac{\pi}{2}, b \in \mathbb{C}-\{0\}$ and $g \in \mathcal{A}$.

Remark 1.3. (i) If we set

$$
g(z)=z+\sum_{n=2}^{\infty} z^{n} \quad \text { and } \quad g(z)=z+\sum_{n=2}^{\infty} n z^{n}
$$

in Definition 1.2, then we obtain the classes

$$
\mathcal{R}_{k}^{\lambda}\left(\delta, b ; z+\sum_{n=2}^{\infty} z^{n}\right):=\mathcal{R}_{k}^{\lambda}(\delta, b)=\left\{f \in \mathcal{A}: 1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \in \mathcal{P}_{k}^{\lambda}(\delta)\right\}
$$

and

$$
\mathcal{R}_{k}^{\lambda}\left(\delta, b ; z+\sum_{n=2}^{\infty} n z^{n}\right):=\mathcal{V}_{k}^{\lambda}(\delta, b)=\left\{f \in \mathcal{A}: 1+\frac{1}{b} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \in \mathcal{P}_{k}^{\lambda}(\delta)\right\}
$$

respectively. For $\lambda=0$, these classes were studied by Noor et al. [10].
(ii) If we set $b=1$ in (i), then we have the classes

$$
\mathcal{R}_{k}^{\lambda}\left(\delta, 1 ; z+\sum_{n=2}^{\infty} z^{n}\right)=\mathcal{R}_{k}^{\lambda}(\delta)=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \in \mathcal{P}_{k}^{\lambda}(\delta)\right\}
$$

and

$$
\mathcal{R}_{k}^{\lambda}\left(\delta, 1 ; z+\sum_{n=2}^{\infty} n z^{n}\right)=\mathcal{V}_{k}^{\lambda}(\delta)=\left\{f \in \mathcal{A}: 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \in \mathcal{P}_{k}^{\lambda}(\delta)\right\}
$$

respectively, studied by Noor et al. [11] and Moulis [9].
(iii) For $k=2$ and $\lambda=0$, we have the class

$$
\mathcal{R}_{2}^{0}(\delta, b ; g)=\mathcal{S}_{\delta}(g, b)=\left\{f \in \mathcal{A}: \Re\left\{1+\frac{1}{b}\left(\frac{z(f * g)^{\prime}(z)}{(f * g)(z)}-1\right)\right\}>\delta\right\}
$$

defined by Prajapat [14].
(iv) If we set

$$
g(z)=z+\sum_{n=2}^{\infty} z^{n} \quad \text { and } \quad g(z)=z+\sum_{n=2}^{\infty} n z^{n}
$$

in (iii), then we have the classes

$$
\mathcal{R}_{2}^{0}\left(\delta, b ; z+\sum_{n=2}^{\infty} z^{n}\right)=\mathcal{S}_{\delta}^{*}(b)=\left\{f \in \mathcal{A}: \Re\left\{1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right\}>\delta\right\}
$$

and

$$
\mathcal{R}_{2}^{0}\left(\delta, b ; z+\sum_{n=2}^{\infty} n z^{n}\right)=\mathcal{C}_{\delta}(b)=\left\{f \in \mathcal{A}: \Re\left\{1+\frac{1}{b} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\delta\right\},
$$

respectively, introduced by Frasin [6].
Definition 1.4. [7] Given $f_{j}, g_{j} \in \mathcal{A}, \alpha_{j} \in \mathbb{C}$ for all $j=1,2, \ldots, n, n \in \mathbb{N}$. We let $\mathcal{I}: \mathcal{A}^{n} \rightarrow \mathcal{A}$ be the integral operator defined by

$$
\begin{gather*}
\mathcal{I}\left(f_{1}, \ldots, f_{n} ; g_{1}, \cdots, g_{n}\right)=\mathcal{F} \\
\mathcal{F}(z)=\int_{0}^{z}\left(\frac{\left(f_{1} * g_{1}\right)(t)}{t}\right)^{\alpha_{1}} \cdots\left(\frac{\left(f_{n} * g_{n}\right)(t)}{t}\right)^{\alpha_{n}} d t \tag{1.5}
\end{gather*}
$$

where $\left(f_{j} * g_{j}\right)(z) / z \neq 0(z \in \mathbb{U}, 1 \leq j \leq n)$.
REmark 1.5. The integral operator \mathcal{F} generalizes many operators which were introduced and studied recently.
(i) For $g_{j}(z)=z+\sum_{n=2}^{\infty} z^{n}$ with $\alpha_{j}>0(1 \leq j \leq n)$, we have the integral operator

$$
\begin{equation*}
\mathcal{F}_{n}(z)=\int_{0}^{z}\left(\frac{f_{1}(t)}{t}\right)^{\alpha_{1}} \cdots\left(\frac{f_{n}(t)}{t}\right)^{\alpha_{n}} d t \tag{1.6}
\end{equation*}
$$

and for $g_{j}(z)=z+\sum_{n=2}^{\infty} n z^{n}$ with $\alpha_{j}>0(1 \leq j \leq n)$, we have the integral operator

$$
\begin{equation*}
\mathcal{F}_{\alpha_{1}, \ldots, \alpha_{n}}(z)=\int_{0}^{z}\left(f_{1}^{\prime}(t)\right)^{\alpha_{1}} \cdots\left(f_{n}^{\prime}(t)\right)^{\alpha_{n}} d t \tag{1.7}
\end{equation*}
$$

recently studied by Breaz and Breaz [2], Breaz et al. [4], Breaz and Güney [3] and Bulut [5].
(ii) For $n=1, \alpha_{1}=\alpha \in[0,1], \alpha_{2}=\cdots=\alpha_{n}=0$ and $f_{1}=f \in \mathcal{S}$, $g_{1}(z)=g(z)=z+\sum_{n=2}^{\infty} z^{n}$, we have the integral operator

$$
\mathcal{F}(z)=\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\beta} d t
$$

studied in [8].
(iii) For $n=1, \alpha_{1}=1, \alpha_{2}=\cdots=\alpha_{n}=0$ and $f_{1}=f \in \mathcal{A}, g_{1}(z)=g(z)=$ $z+\sum_{n=2}^{\infty} z^{n}$, we have the integral operator of Alexander

$$
\mathcal{F}(z)=\int_{0}^{z} \frac{f(t)}{t} d t
$$

introduced in [1].
For other examples, see Frasin [7].
In this paper, we investigate some properties of the integral operator \mathcal{F} defined by (1.5) for the class $\mathcal{R}_{k}^{\lambda}(\delta, b ; g)$.

2. Main results

Theorem 2.1. Let $f_{j} \in \mathcal{R}_{k}^{\lambda}\left(\delta_{j}, b ; g_{j}\right)$ for $1 \leq j \leq n$ with $k \geq 2,0 \leq \delta_{j}<1$, $b \in \mathbb{C}-\{0\}$. Also let λ is real with $|\lambda|<\frac{\pi}{2}, \alpha_{j}>0(1 \leq j \leq n)$. If

$$
0 \leq 1+\sum_{j=1}^{n} \alpha_{j}\left(\delta_{j}-1\right)<1
$$

then the integral operator \mathcal{F} defined by (1.5) is in the class $\mathcal{V}_{k}^{\lambda}(\gamma, b)$ with

$$
\begin{equation*}
\gamma=1+\sum_{j=1}^{n} \alpha_{j}\left(\delta_{j}-1\right) \tag{2.1}
\end{equation*}
$$

Proof. Since $f_{j}, g_{j} \in \mathcal{A}(1 \leq j \leq n)$, by (1.3), we have

$$
\frac{\left(f_{j} * g_{j}\right)(z)}{z}=1+\sum_{n=2}^{\infty} a_{n, j} b_{n, j} z^{n-1}
$$

and $\frac{\left(f_{j} * g_{j}\right)(z)}{z} \neq 0$ for all $z \in \mathbb{U}$. By (1.5), we get

$$
\mathcal{F}^{\prime}(z)=\left(\frac{\left(f_{1} * g_{1}\right)(z)}{z}\right)^{\alpha_{1}} \cdots\left(\frac{\left(f_{n} * g_{n}\right)(z)}{z}\right)^{\alpha_{n}}
$$

This equality implies that

$$
\ln \mathcal{F}^{\prime}(z)=\alpha_{1} \ln \frac{\left(f_{1} * g_{1}\right)(z)}{z}+\cdots+\alpha_{n} \ln \frac{\left(f_{n} * g_{n}\right)(z)}{z}
$$

or equivalently

$$
\ln \mathcal{F}^{\prime}(z)=\alpha_{1}\left[\ln \left(f_{1} * g_{1}\right)(z)-\ln z\right]+\cdots+\alpha_{n}\left[\ln \left(f_{n} * g_{n}\right)(z)-\ln z\right]
$$

By differentiating above equality, we get

$$
\frac{\mathcal{F}^{\prime \prime}(z)}{\mathcal{F}^{\prime}(z)}=\sum_{j=1}^{n} \alpha_{j}\left(\frac{\left(f_{j} * g_{j}\right)^{\prime}(z)}{\left(f_{j} * g_{j}\right)(z)}-\frac{1}{z}\right)
$$

Hence, we obtain from this equality that

$$
\frac{z \mathcal{F}^{\prime \prime}(z)}{\mathcal{F}^{\prime}(z)}=\sum_{j=1}^{n} \alpha_{j}\left(\frac{z\left(f_{j} * g_{j}\right)^{\prime}(z)}{\left(f_{j} * g_{j}\right)(z)}-1\right)
$$

Then by multiplying the above relation with $1 / b$, we have

$$
\begin{aligned}
\frac{1}{b} \frac{z \mathcal{F}^{\prime \prime}(z)}{\mathcal{F}^{\prime}(z)} & =\sum_{j=1}^{n} \alpha_{j} \frac{1}{b}\left(\frac{z\left(f_{j} * g_{j}\right)^{\prime}(z)}{\left(f_{j} * g_{j}\right)(z)}-1\right) \\
& =\sum_{j=1}^{n} \alpha_{j}\left[1+\frac{1}{b}\left(\frac{z\left(f_{j} * g_{j}\right)^{\prime}(z)}{\left(f_{j} * g_{j}\right)(z)}-1\right)\right]-\sum_{j=1}^{n} \alpha_{j}
\end{aligned}
$$

or equivalently
$e^{i \lambda}\left(1+\frac{1}{b} \frac{z \mathcal{F}^{\prime \prime}(z)}{\mathcal{F}^{\prime}(z)}\right)=\left(1-\sum_{j=1}^{n} \alpha_{j}\right) e^{i \lambda}+\sum_{j=1}^{n} \alpha_{j} e^{i \lambda}\left[1+\frac{1}{b}\left(\frac{z\left(f_{j} * g_{j}\right)^{\prime}(z)}{\left(f_{j} * g_{j}\right)(z)}-1\right)\right]$.
Subtracting and adding $\left(\cos \lambda \sum_{j=1}^{n} \alpha_{j} \delta_{j}\right)$ on the left hand side and then taking real part, we have

$$
\begin{align*}
& \Re\left\{e^{i \lambda}\left(1+\frac{1}{b} \frac{z \mathcal{F}^{\prime \prime}(z)}{\mathcal{F}^{\prime}(z)}\right)-\gamma \cos \lambda\right\} \\
& \quad=\sum_{j=1}^{n} \alpha_{j} \Re\left\{e^{i \lambda}\left[1+\frac{1}{b}\left(\frac{z\left(f_{j} * g_{j}\right)^{\prime}(z)}{\left(f_{j} * g_{j}\right)(z)}-1\right)\right]-\delta_{j} \cos \lambda\right\} \tag{2.2}
\end{align*}
$$

where γ is given by (2.1). Integrating (2.2) and then using (2.1), we have

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|\Re\left\{e^{i \lambda}\left(1+\frac{1}{b} \frac{z \mathcal{F}^{\prime \prime}(z)}{\mathcal{F}^{\prime}(z)}\right)-\gamma \cos \lambda\right\}\right| d \theta \\
& \leq \sum_{j=1}^{n} \alpha_{j} \int_{0}^{2 \pi}\left|\Re\left\{e^{i \lambda}\left[1+\frac{1}{b}\left(\frac{z\left(f_{j} * g_{j}\right)^{\prime}(z)}{\left(f_{j} * g_{j}\right)(z)}-1\right)\right]-\delta_{j} \cos \lambda\right\}\right| d \theta \tag{2.3}
\end{align*}
$$

Since $f_{j} \in \mathcal{R}_{k}^{\lambda}\left(\delta_{j}, b ; g_{j}\right)(1 \leq j \leq n)$, we get

$$
\begin{align*}
\int_{0}^{2 \pi}\left|\Re\left\{e^{i \lambda}\left[1+\frac{1}{b}\left(\frac{z\left(f_{j} * g_{j}\right)^{\prime}(z)}{\left(f_{j} * g_{j}\right)(z)}-1\right)\right]-\delta_{j} \cos \lambda\right\}\right| & d \theta \\
& \leq\left(1-\delta_{j}\right) k \pi \cos \lambda \tag{2.4}
\end{align*}
$$

for $1 \leq j \leq n$. Using (2.4) in (2.3), we obtain

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|\Re\left\{e^{i \lambda}\left(1+\frac{1}{b} \frac{z \mathcal{F}^{\prime \prime}(z)}{\mathcal{F}^{\prime}(z)}\right)-\gamma \cos \lambda\right\}\right| d \theta & \leq k \pi \cos \lambda \sum_{j=1}^{n} \alpha_{j}\left(1-\delta_{j}\right) \\
& =k \pi \cos \lambda(1-\gamma)
\end{aligned}
$$

Hence, we obtain $\mathcal{F} \in \mathcal{V}_{k}^{\lambda}(\gamma, b)$ with γ is given by (2.1).
By setting $g_{j}(z)=z+\sum_{n=2}^{\infty} z^{n}(1 \leq j \leq n)$ in Theorem 2.1, we obtain the following result.

Corollary 2.2. Let $f_{j} \in \mathcal{R}_{k}^{\lambda}\left(\delta_{j}, b\right)$ for $1 \leq j \leq n$ with $k \geq 2,0 \leq \delta_{j}<1$, $b \in \mathbb{C}-\{0\}$. Also let λ is real with $|\lambda|<\frac{\pi}{2}, \alpha_{j}>0(1 \leq j \leq n)$. If

$$
0 \leq 1+\sum_{j=1}^{n} \alpha_{j}\left(\delta_{j}-1\right)<1
$$

then the integral operator \mathcal{F}_{n} defined by (1.6) is in the class $\mathcal{V}_{k}^{\lambda}(\gamma, b)$, where γ is defined by (2.1).

Remark 2.3. If we set $k=2$ and $\lambda=0$ in Corollary 2.2, then we have [5, Theorem 1].

By setting $g_{j}(z)=z+\sum_{n=2}^{\infty} n z^{n}(1 \leq j \leq n)$ in Theorem 2.1, we obtain the following result.

Corollary 2.4. Let $f_{j} \in \mathcal{V}_{k}^{\lambda}\left(\delta_{j}, b\right)$ for $1 \leq j \leq n$ with $k \geq 2,0 \leq \delta_{j}<1$, $b \in \mathbb{C}-\{0\}$. Also let λ is real with $|\lambda|<\frac{\pi}{2}, \alpha_{j}>0(1 \leq j \leq n)$. If

$$
0 \leq 1+\sum_{j=1}^{n} \alpha_{j}\left(\delta_{j}-1\right)<1
$$

then the integral operator $\mathcal{F}_{\alpha_{1}, \ldots, \alpha_{n}}$ defined by (1.7) is in the class $\mathcal{V}_{k}^{\lambda}(\gamma, b)$, where γ is defined by (2.1).

REmark 2.5. If we set $k=2$ and $\lambda=0$ in Corollary 2.4, then we have [5, Theorem 3].

Letting $k=2$ and $\lambda=0$ in Theorem 2.1, we have [7, Theorem 2.1] as follows.
Corollary 2.6. Let $f_{j} \in \mathcal{S}_{\delta_{j}}\left(g_{j}, b\right)$ for $1 \leq j \leq n$ with $0 \leq \delta_{j}<1, b \in$ $\mathbb{C}-\{0\}$. Also let $\alpha_{j}>0(1 \leq j \leq n)$. If

$$
0 \leq 1+\sum_{j=1}^{n} \alpha_{j}\left(\delta_{j}-1\right)<1
$$

then the integral operator \mathcal{F} defined by (1.5) is in the class $\mathcal{C}_{\gamma}(b)$, where γ is defined by (2.1).

REFERENCES

[1] I.W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. 17 (1915), 12-22.
[2] D. Breaz, N. Breaz, Two integral operators, Studia Univ. Babeş-Bolyai Math. 47 (2002), 13-19.
[3] D. Breaz, H. Ö. Güney, The integral operator on the classes $S_{\alpha}^{*}(b)$ and $C_{\alpha}(b)$, J. Math. Ineq. 2 (2008), 97-100.
[4] D. Breaz, S. Owa, N. Breaz, A new integral univalent operator, Acta Univ. Apulensis Math. Inform. No. 16 (2008), 11-16.
[5] S. Bulut, A note on the paper of Breaz and Güney, J. Math. Inequal. 2 (2008), 549-553.
[6] B.A. Frasin, Family of analytic functions of complex order, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 22 (2006), 179-191.
[7] B.A. Frasin, General integral operator defined by Hadamard product, Mat. Vesnik 62 (2010), 127-136.
[8] S.S. Miller, P.T. Mocanu, M.O. Reade, Starlike integral operators, Pacific J. Math. 79 (1978), 157-168.
[9] E.J. Moulis, Generalizations of the Robertson functions, Pacific J. Math. 81 (1979), 167-174.
[10] K.I. Noor, M. Arif, W.U. Haq, Some properties of certain integral operators, Acta Univ. Apulensis Math. Inform. No. 21 (2010), 89-95.
[11] K.I. Noor, M. Arif, A. Muhammad, Mapping properties of some classes of analytic functions under an integral operator, J. Math. Inequal. 4 (2010), 593-600.
[12] K. Padmanabhan, R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math. 31 (1975), 311-323.
[13] B. Pinchuk, Functions with bounded boundary rotation, Isr. J. Math. 10 (1971), 7-16.
[14] J.K. Prajapat, Subordination theorem for a family of analytic functions associated with the convolution structure, JIPAM 9 (2008)4, Art. 102, 8 pp.
[15] M.S. Robertson, Univalent functions $f(z)$ for wich $z f^{\prime}(z)$ is spiral-like, Mich. Math. J. 16 (1969), 97-101.
[16] L. Spacek, Prispĕvek k teorii funkei prostych, Čapopis Pest. Mat. Fys. 62 (1933), 12-19.
(received 18.07.2011; in revised form 19.02.2012; available online 01.05.2012)
Kocaeli University, Civil Aviation College, Arslanbey Campus, 41285 Kocaeli, Turkey
E-mail: serap.bulut@kocaeli.edu.tr
Department of Mathematics, Amity University Rajasthan, Jaipur-302003, India
E-mail: pranaygoswami83@gmail.com

