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ON THE RINGS ON TORSION-FREE GROUPS

F. Karimi and H. Mohtadifar

Abstract. The typeset of a torsion-free group is one of the important concepts in the theory
of abelian groups. We use the typeset of an abelian group to study the rings that exist over such
groups. Moreover, we consider the types of rational groups belonging to an independent set of a
group and obtain some results about their relation with the rings over the group.

1. Introduction

All groups considered in this paper are abelian, with addition as the group
operation. In the present paper we focus on the rings over torsion-free groups of
rank three and the related problems which are the main ideas of some papers such
as [4, 6, 7].

At first we consider this question: If all proper subgroups of a torsion-free
group are nil, then the whole group is nil? And in Theorem 3.2, we answer this
question under some conditions for torsion-free groups with rank less than or equal
two. Moreover, in Theorem 3.3, we find a property for the types of rank one
subgroups which yields the existence of a special ring over the group. In the sequel
we have some outcomes which discuss about the relation between elements with
maximal types and the nilpotency of a group with rank three.

Finally, in Theorems 3.8 and 3.11 we deal with the types of rational groups
belonging to an independent set of a group and their relation with the rings that
exist over the group and its homomorphic images.

2. Notations and preliminaries

All groups considered in this paper are torsion-free and abelian, with addition
as the group operation. Terminology and notation will mostly follow [5]. For a
torsion-free group A and a prime p, the p−height of x ∈ A denoted by hA

p (x), is the
largest integer k such that pk divides x in A; if no such maximal integer exists, we
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set hA
p (x) = ∞. Now let p1, p2, . . . be an increasing sequence of all primes. Then

the sequence
χA(x) = (hA

p1
(x), hA

p2
(x), . . . , hA

pn
(x), . . . ),

is said to be the height-sequence of x. We omit the subscript A if no ambi-
guity arises. For any two height-sequences χ = (k1, k2, . . . , kn, . . . ) and µ =
(l1, l2, . . . , ln, . . . ) we set χ ≥ µ if kn ≥ ln for all n. Moreover, χ and µ will be
considered equivalent if

∑
n |kn − ln| is finite [we set ∞−∞ = 0]. An equivalence

class of height-sequences is called a type. If χ(x) belongs to the type t, then we say
that x is of type t. By the typeset of a torsion-free group A we mean the partially
ordered set of types, i.e.,

T (A) = {t(x) | 0 6= x ∈ A}.
For two types t1 = [(l1, l2, . . . )] and t2 = [(k1, k2, . . . )] we set

t1 ∩ t2 = [(min{l1, k1}, min{l2, k2}, . . . )]
and

t1t2 = [(l1 + k1, l2 + k2, . . . )].

A function µ : A×A −→ A is called a multiplication on A if it satisfies

µ(a, b + c) = µ(a, b) + µ(a, c),

µ(b + c, a) = µ(b, a) + µ(c, a)

for all a, b, c ∈ A. Every ring R on A gives rise to a multiplication µ, namely,
µ(a, b) = ab, and this correspondence between rings structures and multiplications
on A is bijective. For two arbitrary multiplications µ and ν on A, we set

(µ + ν)(a, b) = µ(a, b) + ν(a, b),

for all a, b ∈ A. Then under this rule of composition, the multiplications on A forms
an abelian group, the group of multiplications on A, that is denoted by Mult(A).
A finite rank torsion-free group A is completely decomposable if A is the direct
sum of rank one groups and an arbitrary torsion-free group is nil group if the zero
ring is the only ring on it. Moreover, a torsion-free group A is of field type if there
exists a ring R on A with Q ⊗ R a field, where Q is the field of rational numbers
and the tensor product is taken over the integers. Finally, a ring R is said to be a
nil ring if for any element a ∈ R there exists an integer n such that an = 0 and R
is nilpotent, if Rk = 0 for some integer k. Also the ring R is called periodic if for
each x ∈ R the set {x, x2, x3, . . . } is finite.

3. Main results

At first we have a theorem which contains our efforts to answer the question:
If all proper subgroups of a torsion-free group are nil, then under which con-

ditions the whole group is nil?
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Lemma 3.1 [4, Corollary 2.1.3] Let A =
⊕

i∈I Ai be a completely decomposable
torsion-free group with r(Ai) = 1 for each i ∈ I. Then A is nil if and only if
t(Ai)t(Aj) � t(Ak) for all i, j, k ∈ I.

Theorem 3.2. Let A be a group of rank ≤ 2 which |T(A)| ≤ 3 and A be a
completely decomposable group when |T(A)| = 2. If all proper subgroups of A are
nil, then A is nil.

Proof. At first note that the group of integers, Z, does not satisfy in the
hypothesis of the Theorem; i.e., Z has many proper subgroups which are non-nil
and so the type of any rank one group which all its proper subgroups are nil, is
greater than t(Z).

Now let A be a rank one group with t(A) = [(ki)i∈I ] and all proper subgroups
of A be nil. If A is non-nil, then t2(A) = t(A) and so ki = 0 or ∞ for almost i. We
know B is a subgroup of A if and only if t(B) ≤ t(A) and so in this case, because
the type of A is greater than t(Z), it is easy to choose an idempotent type t′ < t
and B ≤ A with t(B) = t′. But such B is a non-nil subgroup of A which yields a
contradiction and this completes the firs part of the proof.

Now consider the case r(A) = 2. If |T(A)| = 2, then by hypothesis of the
Theorem, A is a completely decomposable group. Write A = A1 ⊕ A2. Now A1

and A2 are nil, because all proper subgroups of A are nil. Therefore t1 = t(A1)
and t2 = t(A2) are not idempotent, which means almost all of their components
are finite. Moreover, by |T(A)| = 2, without loss of generality, we could assume
that t1 < t2. Hence t1t2 > t1, t2 and by Lemma 3.1, A is a nil group.

Finally, let A be a rank two group with |T(A)| = 1 or 3 and all proper
subgroups of A are nil. Suppose that A be non-nil:

If |T(A)| = 1, then the type of A is idempotent and the first step of proof is
applied.

If T(A) = {t0, t1, t2} such that t0 < t1 and t0 < t2. Let {x, y} be a maximal
independent set of A such that t(x) = t1 and t(y) = t2. Then we have one of the
following cases:

(i) If t1, t2 are comparable, then any ring on A satisfies x2 = ax, y2 = by, xy =
yx = 0 for some rational numbers a, b;

(ii) If t21 = t1 and t22 6= t2, then any multiplication on A satisfies x2 = ax, y2 =
xy = yx = 0 for some rational number a.

(iii) If t21 = t1 and t22 = t2, then x2 = ax, y2 = by, xy = yx = 0 for some rational
numbers a, b which are not both zero.

Therefore in all cases we could obtain some proper subgroup B = 〈x〉∗ or 〈y〉∗
such that B is not nil and the proof completes.

Theorem 3.3 Let A = A1 ⊕ A2 be a torsion-free group of rank three such
that r(A2) = 2. If there exists a pure subgroup B of A2 with t(B) = t(A1) and
t( A

A1⊕B )2 ≤ t(A1 ⊕B), then A supports a non-trivial periodic ring.
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Proof. Let R1 ≤ R2 be two rational groups such that 1 ∈ R1, and

t(R1) = t(
A

A1 ⊕B
) , t(R2) = t(A1 ⊕B).

By hypothesis in the theorem we have R2
1 = {rr′ : | r, r′ ∈ R1} ⊆ R2. Now let

a ∈ A be such that
A

A1 ⊕B
= R1(a + (A1 ⊕B))

and a′ ∈ A1, b ∈ B such that A1 ⊕ B = R2a
′ + R2b. If x1, x2 ∈ A, then nixi =

mia + ai + bi with mi

ni
∈ R1 and ai + bi ∈ A1 ⊕B for i = 1, 2. Define

x1x2 =
m1m2

n1n2
(a′ + b),

and it is easy to see that this multiplication yields a periodic ring on A such that
x1x2x3 = 0 for all x1, x2, x3 ∈ A.

Proposition 3.4. [3, Proposition 2] Let A be a torsion-free group and a1, a2 ∈
A such that t(a1) and t(a2) are not idempotent. Then for all multiplications on A,
either t(a1a2) > t(a1) or t(a1a2) > t(a2).

Theorem 3.5. Let A be a torsion-free group of rank three. If A is non-nil,
then T(A) does not contain maximal elements t(xi), i = 1, 2, 3, with t(xi) non-
idempotent and {x1, x2, x3} independent.

Proof. Let t1 = t(x1), t2 = t(x2), t3 = t(x3) and {x1, x2, x3} be an independent
set of A. Now by Proposition 3.4, t(xixj) > t(xi) or t(xixj) > t(xj). Hence by
maximality of ti and tj we obtain xixj = 0 for all 1 ≤ i, j ≤ 3.

Moreover x2
i = 0 because t2i 6= ti and ti is a maximal element in T(A). But

x1, x2, x3 are independent, hence for all x, y ∈ A there exist n,m ∈ Z − {0} and
ni, mi ∈ Z, (i = 1, 2, 3), such that

nx =
3∑

i=1

nixi, my =
3∑

i=1

mixi.

This implies nmxy =
∑3

i,j=1 nimjxixj , hence xy = 0 contradicting the fact that A
is non-nil.

Remark 3.6. Similar result as Theorem 3.5 holds for every torsion-free groups
of finite rank, i.e., let A be a non-nil torsion-free abelian group of rank n, then T (A)
does not contain maximal elements t(xi), i = 1, 2, . . . , n, with t2(xi) 6= t(xi) and
{x1, x2, . . . , xn} a maximal independent subset of A. The proof of this statement
is easy and similar to the proof of Theorem 3.5.

Theorem 3.7. Let A be a torsion-free group of rank three and t(x1), t(x2) and
t(x3) be maximal elements in T (A) such that {x1, x2, x3} be an independent set of
A. If A is non-nil, then T (A) contains no another maximal element.
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Proof. The proof is similar to a part of the proof of Lemma 2.1.5, in [4]. Let
Ai = 〈xi〉∗ and t(xi) = ti, i = 1, 2, 3. Then t(Ai) = ti and t(Ai⊗Aj) = titj > ti, tj ,
for all i 6= j ∈ {1, 2, 3}. Now the sequence

0 −→ Ai ⊕Aj −→ A −→ A

Ai ⊕Aj
−→ 0

is exact, for all i 6= j ∈ {1, 2, 3}. This implies that

0 −→ (Ai ⊕Aj)⊗Ak −→ A⊗Ak −→ (
A

Ai ⊕Aj
)⊗Ak −→ 0

is exact, for all i 6= j 6= k ∈ {1, 2, 3}. Therefore we obtain the following exact
sequence:

0 → Hom((
A

Ai ⊕Aj
)⊗Ak, A) → Hom(A⊗Ak, A) → Hom((Ai ⊕Aj)⊗Ak, A).

But Hom((Ai⊕Aj)⊗Ak, A) ∼= Hom(Ai⊗Ak, A)⊕Hom(Aj⊗Ak, A) and Hom(Ai⊗
Ak, A) = 0, because if 0 6= x ∈ A with t(x) ≥ t(Ai⊗Ak) = titk, then we must have
t(x) > ti, tk that is a contradiction. Similarly, Hom(Aj ⊗Ak, A) = 0 and so

Hom((
A

Ai ⊕Aj
)⊗Ak, A) ∼= Hom(A⊗Ak, A) ∼= Hom(Ak,End(A)).

Now if t4 = t(x4) is another maximal element in T (A), then mx4 = n1x1 + n2x2 +
n3x3 for some 0 6= m ∈ Z and n1, n2, n3 ∈ Z with at least both of them non-zero.
Let for example n1, n3 6= 0. Hence mx4 + (A1 ⊕ A2) = n3x3 + (A1 ⊕ A2), and
t(x4 + (A1 ⊕ A2)) = t(x3 + (A1 ⊕ A2)). But t(x4 + (A1 ⊕ A2)) > t(x4) = t4, for
otherwise t4 = t(x4+(A1⊕A2)) = t(x3+(A1⊕A2)) ≥ t3 and by maximality of t3 we
have t4 = t3, a contradiction. So t(x4 +(A1⊕A2)) > t4 and hence Hom(( A

A1⊕A2
)⊗

A3, A) = 0, because A/(A1⊕A2) is a rank one group and x4 + (A1⊕A2) is a non-
zero element of this group, which means t(A/(A1 ⊕A2)) = t(x4 + (A1 ⊕A2)) > t4.
So A

A1⊕A2
⊗A3 is a rank one group in which:

t′ = t(
A

A1 ⊕A2
⊗A3) > t4t3 > t4, t3.

Now if (0 6=)ϕ ∈ Hom(( A
A1⊕A2

) ⊗ A3, A), then ϕ(( A
A1⊕A2

) ⊗ A3) is a rank one
subgroup of A and

t(ϕ((
A

A1 ⊕A2
)⊗A3)) ≥ t′ > t4, t3,

but t3, t4 are maximal elements of T(A) and A has no element of type greater than
t3 or t4 and so Hom(( A

A1⊕A2
)⊗A3, A) must be equal to zero.

Now by putting i = 1, j = 2, k = 3 in above sequences, we have
Hom(A3, End(A)) = 0. Similarly Hom(A2, End(A)) = Hom(A1,End(A)) = 0.
Now let a ∈ A andϕ ∈ Hom(A,End(A)). Then there exists an integer n 6= 0
and m1,m2,m3 ∈ Z such that na = m1x1 + m2x2 + m3x3. So nϕ(a) =
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m1ϕ(x1) + m2ϕ(x2) + m3ϕ(x3) = 0. But End(A) is torsion-free and therefore
ϕ(a) = 0, i.e.,

Hom(A, End(A)) = Mult(A) = 0,

which means A is a nil group. This yields a contradiction and so t1, t2, t3 are the
only maximal elements in T (A).

Now let A be a torsion-free group of rank three and {x, y, z} be a maximal
independent set of A. Each element a ∈ A has a unique representation a = αx +
βy + γz, where α, β, γ are rational numbers. Let

U = {α ∈ Q | αx + βy + γz ∈ A for some β, γ ∈ Q}, U0 = {α ∈ Q | αx ∈ A};
V = {β ∈ Q | αx + βy + γz ∈ A for some α, γ ∈ Q}, V0 = {β ∈ Q | βy ∈ A};
W = {γ ∈ Q | αx + βy + γz ∈ A for some α, β ∈ Q}, W0 = {γ ∈ Q | γz ∈ A}.

The rank one groups U,U0, V, V0, W,W0 are called the rational groups belonging to
x, y and z respectively. Note that 〈x〉∗ ∼= U0 ⊆ U, 〈y〉∗ ∼= V0 ⊆ V, 〈z〉∗ ∼= W0 ⊆ W .

Now in this part we deal with the types of rational groups belonging to an
independent set of a group and the rings that there exist over group and its homo-
morphic images.

Theorem 3.8. Let A = A1 ⊕A2 be a group of rank three such that r(A1) = 1
and A1, A2 be nil groups. Suppose that {x, y} be a maximal independent set of
A2 and z ∈ A1. If U,U0, V, V0,W,W0 be groups belonging to x, y and z such that
t(W0) > t(U), t(V ), then any ring on A is nil.

Proof. First note that t(z) = t(〈z〉∗) = t(W0) = t(A1). If z2 = ux + vy + wz
for some u ∈ U, v ∈ V, w ∈ W , then for any non-zero β ∈ W0 we have:

βz2 = βux + βvy + βwz.

This implies βu ∈ U that is impossible unless u = 0, (because t(W0) > t(U)).
Similarly v = 0 and therefore z2 = wz. But it holds only if w = 0. In fact, if
0 6= w, then t2(z) = t(z) which is a contradiction, hence z2 = 0. Moreover, if
x2 = αx + βy + γz and α 6= 0 or β 6= 0, then this contradicts the hypotheses that
A2 is nil. Therefore, x2 = γz. Similarly y2, xy, yx are some rational multiples of z.
Now let xz = rx + sy + tz for some r ∈ U, s ∈ V, t ∈ W . Then for any β ∈ W0 we
have:

x(βz) = rβx + sβy + tβz.

But rβ = 0 and sβ = 0, because t(W0) > t(U), t(V ). Hence xz = sz. Similarly
zx = δz, yz = γz, yz = ηz for some δ, γ, η ∈ Q. This implies that any multiplication
on A must be nil.

Now we review some concepts which are needed in Theorem 3.11.
Let A and B be groups. A is quasi-isomorphic to B (A ∼ B) if and only if

there exist subgroups A′ ⊆ A, B′ ⊆ B such that A′ ∼= B′ and A/A′ and B/B′ are
of bounded order. In [7], it is shown that if A is a torsion-free group of finite rank,
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then A ∼ A1 ⊕ · · ·Al with each Ai strongly indecomposable in the sense that Ai is
not quasi-isomorphic to a direct sum of non-zero torsion-free groups. This is called
quasi-decomposition of A and Ai is called the strongly indecomposable component
of the decomposition.

Theorem 3.9. [7, Theorem 2.1] Let A be a torsion-free group of finite rank.
Any ring on A is nilpotent iff A has no strongly indecomposable component of field
type.

Remark 3.10. A is the additive group of a ring R with Q⊗R a field, i.e., A
is of field type, then A is homogeneous of idempotent type.

Theorem 3.11. Let A be a torsion-free group of rank three. Then any ring
on any torsion-free homomorphic image of A is nilpotent iff for any independent
set {x, y, z} of A, the rank one groups U, V,W are of non-idempotent type.

Proof. Let A be such that any ring on any its torsion-free homomorphic image
be nilpotent and {x, y, z} be any maximal independent set of A. Now U, V,W are
the homomorphic images of A with homomorphisms ϕ,ψ, η given by:

ϕ(αx + βy + γz) = α, ψ(αx + βy + γz) = β, η(αx + βy + γz) = γ

therefore U, V,W are rank one of non-idempotent type.
Conversely, let ϕ : A −→ T be an epimorphism, with T torsion-free and T

supports a ring which is not nilpotent.
If r(T ) = 1, choose 0 6= t ∈ T and a ∈ A with ϕ(a) = t. Then for any maximal

independent set x, y of kerϕ we have {a, x, y} is a maximal independent set of A
with rank one subgroups U,U0, V, V0,W,W0 such that U ∼= T . So t(U) = t(T ) is
idempotent.

If r(T ) = 2, by Theorem 3.9, T is of field type or T ∼ M ⊕ N where M is
a rank one group of field type. In the first case Theorem 5 of [1] says that we
can find independent elements t1, t2 ∈ T such that U ′, V ′ belonging to t1, t2 are of
idempotent type. In the second case, it is easy to construct a maximal independent
set {t1, t2} ⊂ T such that the rank one group U ′ belonging to t1 is of idempotent
type. So if we choose x, y ∈ A such that ϕ(x) = t1, ϕ(y) = t2 then {x, y} are
rationally independent and for any 0 6= z ∈ kerϕ, the set {x, y, z} is a maximal
independent set of A such that if U,U0, V, V0,W,W0 are rank one groups belonging
to x, y, z then U ∼= U ′, V ∼= V ′. Then at least one of U and V is of idempotent
type.

If r(T ) = 3, then A ∼= T . So by Theorem 3.9, A is of field type or it has a
strongly indecomposable component of field type. In the first case using Remark
3.10, for all independent set {x, y, z} in A we have U, V,W are of idempotent type.

In the second case if A has a strongly indecomposable component of rank one
and of field type then we have A ∼ B ⊕ C; r(B) = 1 and B is of field type. So
we could choose a maximal independent set {x, y, z} in A such that the rank one
group U belonging to x is of idempotent type.
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Moreover, if A contains a rank two strongly indecomposable component of
field type then the first part of the proof in case r(T ) = 2 is applied there and this
completes the proof.
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