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ON SOME NEW CHARACTERIZATIONS OF NEAR
PARACOMPACTNESS AND ASSOCIATED RESULTS

M. N. Mukherjee and Dhananjoy Mandal

Abstract. Near paracompactness is a concept, in Set Topology, which is weaker than
paracompactness; in this paper, several characterizations of this concept have been enunciated
and proved. In the process, several tools have been utilized. The main theorem uses the selection
theory of Michael.

1. Introduction and preliminary results

Singal and Arya [14] introduced, in 1969, the concept of near paracompactness;
this concept is weaker than paracompactness and has its own meaningful facets.
Many men of topology, since 1969, have studied this concept from different angles.
Papers like [6, 9, 10 12] and many others have studied this concept by use of the
own techniques of the authors.

The present paper can very well be considered as a continuation of the valuable
investigations done so far; but it can very well demand its own originality in the
methodology used for its development.

For a topological space (X, τ), the semiregularization topology τs [2] is a known
concept; it is well known that the base B for τs is given by B = {intclU : U ∈ τ}
(‘int’ and ‘cl’ stand for the ‘interior’ and ‘closure’ respectively in the space (X, τ)).
In building the proofs of most of the results in the paper, we have been aware that
near paracompactness of a topological space (X, τ) is simply the paracompactness
of (X, τs).

The characterization of near paracompactness has been the motif although;
the notions of cushioned refinement, locally starring and partition of unity have
appeared with relevance. However, the most striking characterization has come via
the use of the theory of selections due to Michael [8].

Besides characterizations via several appliances, a few properties of near para-
compactness have also been demonstrated.
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In what follows, by a space X we will mean a topological space (X, τ) endowed
with a topology τ (say). A subset A of a space X is called regular open if A =
intclA; the complements of such sets are called regular closed. We shall sometime
write A∗ for intclA. For a space (X, τ), RO(X) and RC(X) will represent respec-
tively the collections of all regular open and regular closed sets in X. Since intcl :
P (X) → P (X), where P (X) denotes the power set of X, is an idempotent operator,
we have RO(X) = { intclA : A ⊆ X}. For a space (X, τ), the semiregularization
space X endowed with the topology τs, will be denoted by (X)s. A subset A of X
is called δ-open [16] if A ∈ τs (i.e., if and only if A is open in (X)s); the complement
of a δ-open set is called a δ-closed set. We shall need the following lemma often in
the sequel.

Lemma 1.1. If A, B are open sets in a space (X, τ), then A ∩ B 6= φ ⇔
A∗ ∩B∗ 6= φ, and hence (X, τ) is T2 if and only if (X)s is T2.

For any open cover C of a space (X, τ) let us write C# = {A∗ : A ∈ C}. Now,
since for any open set A in X, A ⊆ A∗ holds, it is easy to see that C# is also a
cover of X, and also that C# ⊆ RO(X).

Lemma 1.2. Suppose A and B are two open covers of a space X with B ⊆
RO(X). If A is a locally finite refinement of B, then A# is an (X)s-locally finite
refinement of B.

Proof. Obviously A# is a cover of X and also A# is a refinement of B. The
local finiteness of A# follows in view of Lemma 1.1.

Definition 1.3. [3] Suppose B ⊆ P (X) and A ⊆ X. We define St(A,B) =⋃{B ∈ B : A ∩ B 6= φ}, called the star of the set A with respect to the family B.
For any open cover B of X, we set the notation B∗ = {St(B,B) : B ∈ B}.

Lemma 1.4. Suppose U is an open set in X and A is a family of open subsets
of X. If B ∈ RO(X) and St(U,A) ⊆ B, then St(U∗,A#) ⊆ B.

Proof. Let C = {A : U ∩ A 6= φ, A ∈ A} and D = {A∗ : U ∩ A∗ 6= φ,A ∈ A}.
Then St(U,A) =

⋃ C and St(U∗, A#) =
⋃D. Now, A ∈ C ⇔ U ∩ A 6= φ ⇔

U∗ ∩ A∗ 6= φ (by Lemma 1.1) ⇔ A∗ ∈ D. Thus D = {A∗ : A ∈ C}. Therefore, for
each A ∈ C and B ∈ RO(X) which satisfies St(U,A) ⊆ B we can easily get that
A∗ ⊆ B. Hence,

⋃{A∗ : A ∈ C} ⊆ B and this implies that St(U∗,A#) ⊆ B.

Lemma 1.5. Suppose U is an open set in X and A is a family of open subsets
of X. If B ∈ RO(X) and St(U,A) ⊆ B, then St(U,A#) ⊆ B.

Proof. Follows from Lemma 1.4 and the fact that U ⊆ U∗, for any open set U
in X.

2. Near paracompactness and almost regularity

We begin with the well known definition of a paracompact space: A space X is
called paracompact if every open cover of X has a locally finite open refinement. E.
Michael [7] proved the following characterizations of regular paracompact spaces.
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Theorem 2.1. For a regular space X, the following are equivalent:

(a) X is paracompact.

(b) Every open cover of X has a σ-locally finite open refinement (i.e., each
open cover of X has an open refinement that can be decomposed into countably
many locally finite families).

(c) Every open cover of X has a locally finite closed refinement.

(d) Every open cover of X has a locally finite refinement consisting of sets not
necessarily closed or open.

In [13] Singal and Arya introduced the notion of almost regularity and in
[14] the same authors initiated the idea of near paracompactness as a generalized
concept of paracompactness. In the latter paper they proved some characterizations
similar to those obtained by E. Michael in [7], for almost regular spaces.

Definition 2.2. [13] A space X is called almost regular if for any A ∈ RC(X)
and any x ∈ X \ A, there exist disjoint open sets U and V in X such that x ∈ U
and A ⊆ V .

Definition 2.3. [14] A space X is called nearly paracompact if every regular
open cover of X has a locally finite open refinement.

In the next two results we observe that almost regularity and near paracom-
pactness of a space X are nothing but the regularity and paracompactness respec-
tively of (X)s.

Theorem 2.4. A space X is almost regular if and only if (X)s is regular.

Proof. First assume that X is almost regular. Now, RC(X) is a base for the
closed sets in (X)s. Thus to show that (X)s is regular, it is sufficient to prove that
any member A of RC(X) and any point x ∈ X \A are strongly separated by open
sets of (X)s. Now by almost regularity of X, there exist disjoint open sets U , V in
X such that x ∈ U and A ⊆ V . Then x ∈ U ⊆ U∗, A ⊆ V ⊆ V ∗ and in view of
Lemma 1.1, U∗ ∩ V ∗ = φ. This shows that U∗ and V ∗ strongly separate x and A,
where U∗, V ∗ are open in (X)s.

The converse is clear.

Note 2.5. It is not difficult to show that a space X is almost regular if and
only if (X)s is so. Thus using Corollary 3.1 of [13] one can arrive at the result in
Theorem 2.4 above.

Theorem 2.6. A space X is nearly paracompact if and only if (X)s is para-
compact.

Proof. The proof follows immediately from the fact that for a locally finite open
refinement B of a regular open cover A, B# is an (X)s-locally finite refinement of
A ( by Lemma 1.2 ) with B# ⊆ RO(X).
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We now give the following characterizations of near paracompactness for almost
regular spaces. These results or similar versions are obtained also by Singal and
Arya in [14]. However, we give much simpler proofs as direct consequences of
Theorems 2.1, 2.4 and 2.6.

Theorem 2.7. For an almost regular space X, the following are equivalent:

(a) X is nearly paracompact.

(b) Every regular open cover of X has a σ-locally finite open refinement.

(c) Every regular open cover of X has an (X)s-locally finite δ-closed refinement.

(d) Every regular open cover of X has an (X)s-locally finite refinement con-
sisting of sets of any type.

Proof. Since X is almost regular, (X)s is regular and hence Theorem 2.1 can
be applied for the space (X)s.

(a) ⇔ (b): ‘(a) ⇒ (b)’ is obvious; we only prove (b) ⇒ (a).

Let A be a regular open cover of X. Then by (b), there exists a σ-locally finite
open refinement B of A. Let B =

⋃∞
n=1Bn, where each Bn is a locally finite family.

Then B#
n is an (X)s-locally finite family, for all n ∈ N (= the set of naturals )

and hence B# =
⋃∞

n=1B#
n becomes a σ-locally finite open refinement in (X)s for

the cover A. Thus by Theorem 2.1, (X)s becomes paracompact and therefore by
Theorem 2.6, X is nearly paracompact.

(a) ⇒ (c) ⇒ (d): If X is nearly paracompact, then (X)s is paracompact. Then
by Theorem 2.1, ‘(a) ⇒ (c)’ follows. The implication ‘(c) ⇒ (d)’ is obvious.

(d) ⇒ (a): If (d) is true, then by Theorem 2.1, (X)s is paracompact and hence
X is nearly paracompact.

3. Cushioned refinement, locally starring and near paracompactness

Definition 3.1. [11] Suppose A and B are two covers of X by means of
subsets of X. Then A is called a cushioned refinement of B if there exists a mapping
ϕ : A → B such that for each subfamily A0 of A, cl(

⋃{A : A ∈ A0}) ⊆
⋃{ϕ(A) :

A ∈ A0}. A is called a σ-cushioned refinement of B if A can be decomposed into
countably many families, each of which is a cushioned refinement of B.

Let us recall the following well known result (see Nagata [11]).

Theorem 3.2. A Hausdorff space X is paracompact if and only if every open
cover of X has a σ-cushioned open refinement.

We now have the following analogous characterization for nearly paracompact
spaces:

Theorem 3.3. A Hausdorff space X is nearly paracompact if and only if every
regular open cover of X has a σ-cushioned open refinement.
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Proof. Since X is Hausdorff, so is (X)s (by Lemma 1.1). Thus X is nearly
paracompact ⇔ (X)s is paracompact ⇒ every regular open cover of X has a σ-
cushioned (X)s-open (and hence open) refinement (by Theorem 3.2 ), this is due
to the fact that RO(X) makes an open base for the topology of (X)s and that
clA=(X)s-cl(A) (the closure of A in the space (X)s) for every open set A in X.

The converse follows similarly by using the fact that for any collection {Uα :
α ∈ Λ} of open sets, the closure in (X)s of

⋃
α∈Λ intcl Uα equals the closure (in X)

of (
⋃

α∈Λ Uα).

Definition 3.4. [3] Let A be a cover of X by means of subsets of X. A
sequence {An : n ∈ N} of open covers of X is called a locally starring for A, if for
each x ∈ X, there exist an open neighbourhood V of x and an n ∈ N such that
St(V,An) ⊆ A, for some A ∈ A.

The following characterization of paracompactness was proved by Arhangel’skii
and can be found in [3].

Theorem 3.5. A Hausdorff space X is paracompact if and only if for each
open cover A of X, there is a sequence {An : n ∈ N} of open covers of X that is
locally starring for A.

An analogue of the above theorem for near paracompactness goes as follows:

Theorem 3.6. A Hausdorff space X is nearly paracompact if and only if for
every regular open cover A of X, there is a sequence {An : n ∈ N} of open covers
of X that is locally starring for A.

Proof. First let X be nearly paracompact and let A ⊆ RO(X) be a cover of
X. In view of Theorem 2.6 and Lemma 1.1, it follows that (X)s is paracompact
and T2 and hence, by Theorem 3.5, there exists a sequence {An : n ∈ N} of δ-open
covers of X that is locally starring for A. Since δ-open sets are open in X, the
necessity follows.

Conversely, let A ⊆ RO(X) be a cover of X. By hypothesis, there is a sequence
{An : n ∈ N} of open covers of X that is locally starring for A. Then {A#

n : n ∈ N}
is also a sequence of open covers of X with A#

n ⊆ RO(X), for all n ∈ N. We claim
that {A#

n : n ∈ N} is (X)s-locally starring for A. For, let x ∈ X be arbitrary. Since
{An : n ∈ N} is locally starring for A, there exist an open neighbourhood V of x in
X and an n ∈ N such that St(V,An) ⊆ A, for some A ∈ A. Since A ∈ RO(X), by
Lemma 1.4, it follows that St(V ∗,A#

n ) ⊆ A, where V ∗ is an open neighbourhood
of x in (X)s. Therefore, {A#

n : n ∈ N} is (X)s-locally starring for A. Since RO(X)
is an open base for the topology of (X)s, by Theorem 3.5 it follows that (X)s is
paracompact and hence in view of Theorem 2.6, X becomes nearly paracompact.

4. Near paracompactness via partition of unity and selection theory

In [4] there is a nice characterization of paracompactness by using the concept
of partition of unity which states that a space X is paracompact and T2 if and only if
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it is T1 and every open cover of X has a locally finite partition of unity subordinate
to it. To make things clear we recall the following well known definition.

Definition 4.1. [4] A family {fα : α ∈ Λ} of continuous maps over a space
X with entries in [0, 1] is called a partition of unity, if

∑
α∈Λ fα(x) = 1, where∑

α∈Λ fα(x) = sup {∑α∈Λ0
fα(x) : Λ0 is a finite subset of Λ}. If {fα : α ∈ Λ} is

a partition of unity, it is easy to see that {f−1
α ((0, 1]) : α ∈ Λ} is an open cover of

X. If, in addition, this open cover is locally finite, then we say that the partition
of unity is locally finite. If {f−1

α ((0, 1]) : α ∈ Λ} refines a cover A of X, then we
say that the partition of unity is subordinate to the cover A.

Our intention now is to characterize a nearly paracompact space in terms of
partition of unity. For that we recall the following two results which may be found
in [4].

Theorem 4.2. If an open cover A of a space X has a partition of unity
subordinate to it, then A has a locally finite open refinement.

Theorem 4.3. If X is paracompact and Hausdorff, then every open cover of
X has a locally finite partition of unity subordinate to it.

Theorem 4.4. A Hausdorff space X is nearly paracompact if and only if every
regular open cover of X has a locally finite partition of unity subordinate to it.

Proof. The sufficiency follows by use of Theorem 4.3.

Conversely, let A ⊆ RO(X) be a cover of X. Since X is nearly paracompact
and Hausdorff, in view of Theorem 2.6 and Lemma 1.1 it follows that (X)s is
paracompact and Hausdorff. Then by Theorem 4.3, there exists a family {fα : α ∈
Λ} of continuous maps defined over (X)s with values in [0, 1], which is a partition
of unity with the property that {f−1

α ((0, 1]) : α ∈ Λ} is locally finite and refines A.
Since the topology of X is finer than that of (X)s, the identity map i : X → (X)s

is continuous. Thus each iofα is a continuous map from X to [0, 1] and hence the
theorem is proved.

Finally we are going to prove the desired characterization of near paracom-
pactness using the theory of selections, first initiated by E. Michael [8]. Before that
we need the following definition.

Definition 4.5. [8] Let X and Y be two topological spaces and B a family of
some nonempty subsets of Y . Any mapping ψ : X → B is called a carrier of X
into B. A carrier ψ : X → B is called lower semicontinuous (l.s.c. in short), if for
any open set V in Y , the set ψ−(V ) = {x ∈ X : ψ(x) ∩ V 6= φ} is open in X. A
continuous map f : X → Y is called a continuous selection (or simply a selection)
for ψ, if f(x) ∈ ψ(x), for all x ∈ X.

The following is a well known characterization of paracompactness due to E.
Michael [8].
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Theorem 4.6. A T1 space X is paracompact and T2 if and only if for every
Banach space Y and every l.s.c. carrier ψ : X → Conv(Y ), there exists a continuous
selection f : X → Y for ψ, where Conv(Y ) is the family of all non-void closed
convex subsets of Y .

We shall try to get an analogous version of Theorem 4.6 for nearly paracompact
spaces. For that we set the following definition:

Definition 4.7. A carrier ψ : X → B is called strongly l.s.c., if for any open
set V in Y , the set ψ−(V ) = {x ∈ X : ψ(x) ∩ V 6= φ} is δ-open in X.

Remark 4.8. Obviously, any strongly l.s.c. carrier is an l.s.c. carrier; that
the converse is false is shown by the following example.

Example 4.9. Let R be the set of real numbers. Let τ1 and τ2 respectively
denote the co-countable and the co-finite topologies on R. Let X = (R, τ1) and
Y = (R, τ2). Let B be the family of all singletons of Y . Then the carrier ψ : X → B
defined by ψ(x) = {x}, for all x ∈ X, is l.s.c. but not strongly l.s.c.

Remark 4.10. From the very definition of a strongly l.s.c. carrier, it follows
that if ψ : X → B is a strongly l.s.c. carrier, then ψ : (X)s → B is an l.s.c. carrier
and conversely.

The following is a necessary and sufficient condition for a carrier to be strongly
an l.s.c. carrier.

Lemma 4.11. A carrier ψ : X → B is strongly l.s.c. if and only if for every
x ∈ X, y ∈ ψ(x) and every open neighbourhood V of y in Y , there exists a δ-open
neighbourhood U of x in X such that (z ∈ U ⇒ ψ(z) ∩ V 6= φ).

Proof. Suppose ψ is a strongly l.s.c. carrier, x ∈ X, y ∈ ψ(x) and V is an open
neighbourhood of y in Y . Since ψ is strongly l.s.c., ψ−(V ) is δ-open in X. Let U =
ψ−(V ). Since y ∈ ψ(x) and y ∈ V , we have ψ(x)∩V 6= φ ⇒ x ∈ ψ−(V ) = U . Thus
U is a δ-open neighbourhood of x in X. Now, z ∈ U ⇒ z ∈ ψ−(V ) ⇒ ψ(z)∩V 6= φ.

Conversely, assume that the given condition is satisfied by a carrier ψ : X → B
and V is an open set in Y . To show that ψ−(V ) is δ-open in X, let x ∈ ψ−(V ).
Then ψ(x) ∩ V 6= φ. Thus we can choose some y ∈ ψ(x) ∩ V . Therefore, y ∈ ψ(x)
and V is an open neighbourhood of y in Y . By hypothesis, there exists a δ-open
neighbourhood U of x in X such that z ∈ U ⇒ ψ(z) ∩ V 6= φ ⇒ z ∈ ψ−(V ). Thus
x ∈ U ⊆ ψ−(V ), where U is a δ-open set in X. Since x ∈ ψ−(V ) is arbitrary, it
follows that ψ−(V ) is δ-open in X and hence ψ becomes strongly l.s.c..

We are now in a position to give our final characterization of near paracom-
pactness, one part of which is simple and we shall prove it first.

Theorem 4.12. If X is a T2, nearly paracompact space and Conv(Y ) is the
collection of all nonempty closed, convex subsets of a Banach space Y , then any
strongly l.s.c. carrier ψ : X → Conv(Y ) has a continuous selection f : X → Y .

Proof. Since X is nearly paracompact and T2, by Theorem 2.6 and Lemma
1.1 it follows that (X)s is paracompact and T2. Then by Theorem 4.6 and Remark
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4.10, there is a continuous selection f : (X)s → Y for ψ. Since the topology of X is
finer than that of (X)s, f when regarded as a map from X to Y , is also continuous
and hence the theorem is proved.

We now prove the converse part of the above result:

Theorem 4.13. If for every Banach space Y and every strongly l.s.c. carrier
ψ : X → Conv(Y ), there is a continuous selection f : X → Y for ψ, then X is
nearly paracompact.

Proof. Let U be a regular open cover of X. Let Y = l1(U), where l1(U) consists
of all real-valued functions y defined over U satisfying Σ{|y(U)| : U ∈ U} < ∞,
where as usual, Σ{|y(U)| : U ∈ U} = sup{ΣU∈U0 |y(U)| : U0 is a finite subset of
U }. Then Y is a vector space over the field of real numbers, where the relevant
compositions are defined pointwise. Define ‖.‖ : Y → R by ‖y‖ = Σ{|y(U)| : U ∈
U}, for all y ∈ Y . It is easy to verify that ‖.‖ defines a norm on Y under which Y
becomes a Banach space. Let

C = {y ∈ Y : y(U) ≥ 0, ∀U ∈ U and Σ{|y(U)| : U ∈ U} = 1}.
We show that C is a closed and convex subset of Y . Since the convexity of C is
clear, we only prove that C is a closed subset of Y . From the definition of C, it
follows that C = A

⋂{y ∈ Y : ‖y‖ = 1}, where A = {y : y(U) ≥ 0,∀U ∈ U}. Since
‖.‖ : Y → R is continuous, {y ∈ Y : ‖y‖ = 1} is closed in Y . So, it is sufficient to
show that A is closed in Y . Let z be a limit point of A. We claim that z(U) = 0,
∀U ∈ U . If not, there is some U ∈ U such that z(U) < 0, i.e., z(U) = −ε, for some
ε > 0. Now, for any y ∈ A, we have ‖z−y‖ ≥ |z(U)−y(U)| = |−ε−y(U)| = ε+y(U)
≥ ε which implies that z is not a limit point of A, a contradiction. Thus, z(U) = 0,
for all U ∈ U and hence z ∈ A. Therefore, A and hence C becomes closed in Y .
For each x ∈ X, let C(x) = {y ∈ Y : y(U) = 0 if x /∈ U , where U ∈ U}. We
also show that C(x) is a closed and convex subset of Y , for each x ∈ X. The
convexity being again obvious, we only show that C(x) is closed in Y . Let z be a
limit point of C(x). We shall show that z ∈ C(x). For that, let U ∈ U be such
that x /∈ U . If we can show that z(U) = 0, then we are done. In order to prove
that z(U) = 0, it is sufficient to show that |z(U)| < 1/n, for all n ∈ N. So, let
n ∈ N be arbitrary. Since z is a limit point of C(x), there is some yn ∈ C(x) such
that ‖z − yn‖ < 1/n, i.e., |z(U) − yn(U)| < 1/n. Since yn ∈ C(x) and x /∈ U ,
we have yn(U) = 0 and hence |z(U)| < 1/n. Thus, C(x) is closed in Y , for each
x ∈ X. Since the intersection of two closed and convex subsets is again closed
and convex, it follows that C ∩ C(x) is a closed and convex subset of Y , for each
x ∈ X. We now show that C ∩ C(x) 6= φ, for each x ∈ X. For each U0 ∈ U ,
define yU0 : U → R by yU0(U0) = 1 and yU0(U) = 0, for all U ∈ U with U 6= U0.
Then yU0 ∈ C, for all U0 ∈ U . Let x ∈ X be arbitrary. Since U is a cover of X,
there is some U0 ∈ U such that x ∈ U0 and hence it is easy to see that yU0 ∈ C(x).
Therefore, yU0 ∈ C ∩ C(x). Thus, C ∩ C(x) 6= φ, for each x ∈ X and hence
C ∩ C(x) ∈ Conv(Y ), ∀x ∈ X. Let us consider the carrier ψ : X → Conv(Y )
defined by ψ(x) = C ∩ C(x), ∀x ∈ X. We first show that for any y ∈ C and any
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ε > 0, there exist y′ ∈ C and U1, U2, . . . , Uk ∈ U satisfying

‖y − y′‖ < ε, y(Ui) > 0 (i = 1, 2, . . . , k) and y′(U) = 0, if U 6= Ui (i = 1, 2, . . . , k)
(∗)

To prove this, let y ∈ C and ε > 0. Since y ∈ C, we have y(U) ≥ 0, for all
U ∈ U and

∑{y(U) : U ∈ U} = 1. So we can choose U1, U2, . . . , Uk ∈ U such
that y(U1) + y(U2) + · · · + y(Uk) > 1 − ε/2 with y(Ui) > 0 ( i= 1, 2, . . . ,k). Let
δ = y(U1) + y(U2) + · · · + y(Uk). Then δ ≤ 1 and 2(1 − δ) < ε. Let us define
y′ : U → R as follows : y′(U) = 0, if U 6= Ui (i = 1, 2, . . . , k); y′(Ui) = y(Ui)
(i = 2, 3, . . . , k) and y′(U1) = y(U1) + 1 − δ. Since y(U) ≥ 0, for all U ∈ U and
δ ≤ 1, it follows that y′(U) ≥ 0, ∀U ∈ U . Also,

∑
{y′(U) : U ∈ U} = y′(U1) + y′(U2) + · · ·+ y′(Uk)

= y(U1) + 1− δ + y(U2) + · · ·+ y(Uk)

= y(U1) + y(U2) + · · ·+ y(Uk) + 1− δ

= δ + 1− δ = 1.

Hence y′ ∈ C. Now,

‖y − y′‖ =
∑

{|y(U)− y′(U)| : U ∈ U}]]
= |y(U1)− y′(U1)|+

∑
k
j=2|y(Uj)− y′(Uj)|

+
∑

{y(U) : U 6= Ui, i = 1, 2, . . . , k}
= (1− δ) + 0 + (1− δ)

= 2(1− δ) < ε.

This shows that y′ is the desired member of C.
To show that ψ is strongly l.s.c., let x ∈ X, y ∈ ψ(x) and Sε(y) be an ε-

neighbourhood of y in Y , where ε > 0. Since ψ(x) = C ∩ C(x), we have y ∈ C.
So, we can choose y′ ∈ C and U1, U2, . . . , Uk ∈ U satisfying the conditions of

(∗). Since y(Ui) > 0 (i = 1, 2, . . . , k) and y ∈ ψ(x) ⊆ C(x), it follows that x ∈ Ui

for i = 1, 2, . . . , k. Let U0 = U1∩U2∩· · ·∩Uk. Then U0 is a δ-open neighbourhood
of x in X. Let z ∈ U0 be arbitrary. If we can show that ψ(z) ∩ Sε(y) 6= φ, then by
Lemma 4.11, it will follow that ψ is strongly l.s.c. We claim that y′ ∈ C(z). For,
let U ∈ U be such that z /∈ U . Since z ∈ U0, U 6= Ui (i = 1, 2, . . . , k) and hence by
(∗) y′(U) = 0 i.e., y′ ∈ C(z). Since y′ ∈ C as well, we have y′ ∈ C ∩ C(z) = ψ(z).
Also, by (∗), ‖y − y′‖ < ε i.e., y′ ∈ Sε(y). Therefore, y′ ∈ ψ(z) ∩ Sε(y) and hence
ψ(z)∩Sε(y) 6= φ. Thus ψ becomes strongly l.s.c. So, there is a continuous selection
f : X → Y for ψ.

For each U ∈ U , we define fU : X → R by the rule fU (x) = (f(x))(U), for
all x ∈ X. To show that fU is continuous for each U ∈ U , we first show that for
each U ∈ U , the map TU : Y → R defined by TU (y) = y(U), for all y ∈ Y , is
continuous. It is easy to see that TU is a linear functional on Y , for each U ∈ U .
Now, for any y ∈ Y , we have |TU (y)| = |y(U)| ≤ ‖y‖. Since TU is linear, it
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follows that TU is continuous, for each U ∈ U . Since f : X → Y is continuous and
TU : Y → R is continuous, it follows that TUof : X → R is continuous, for each
U ∈ U . But, for any x ∈ X, we have (TUof)(x) = TU (f(x)) = (f(x))(U) = fU (x),
i.e., TUof = fU . Thus, fU is continuous, for each U ∈ U . Finally, we show that
{fU : U ∈ U} is a partition of unity subordinate to U . Since f is a selection for ψ,
f(x) ∈ ψ(x) ⊆ C, for all x ∈ X. Therefore, we have (f(x))(U) ≥ 0, for all U ∈ U
and

∑{(f(x))(U) : U ∈ U} = 1 i.e., fU (x) ≥ 0, for all U ∈ U and
∑{fU (x) : U ∈

U} = 1. Thus, {fU : U ∈ U} is a partition of unity. To show that this partition
of unity is subordinate to U , we must show that {f−U ((0, 1]) : U ∈ U} refines U .
For that, let x ∈ f−U ((0, 1]), where U ∈ U . Then fU (x) > 0 i.e.,(f(x))(U) > 0.
Since f(x) ∈ ψ(x) ⊆ C(x), it follows that x ∈ U . Therefore, f−U ((0, 1]) ⊆ U , for all
U ∈ U . Thus {fU : U ∈ U} is a partition of unity subordinate to U and hence, by
Theorem 4.2, U has a locally finite open refinement. Therefore, X becomes nearly
paracompact.

Combining the last two theorems, we have the following characterization of
nearly paracompact spaces.

Theorem 4.14. A Hausdorff space X is nearly paracompact if and only if for
every Banach space Y and every strongly l.s.c. carrier ψ : X → Conv(Y ), there is
a continuous selection f : X → Y for ψ.

5. Some properties of nearly paracompact spaces

In this section we wish to obtain some properties of nearly paracompact spaces,
especially with regard to the concepts of near compactness and near Lindelöfness,
the latter concepts being introduced by Singal and Mathur in [15] and Singal and
Arya in [14] respectively.

Definition 5.1. [15] A space X is called nearly compact if every regular open
cover of X has a finite subcover.

Remark 5.2. It is clear that a space X is nearly compact if and only if (X)s

is compact.

The following theorem was proved in [14]; however, we supply here a very short
and alternative proof.

Theorem 5.3. The product of a nearly paracompact space X with a nearly
compact space Y is nearly paracompact.

Proof. If X is nearly paracompact and Y is nearly compact, then (X)s is
paracompact and (Y )s is compact. Therefore, (X)s×(Y )s is paracompact (see [3]).
But (X)s × (Y )s = (X × Y )s (see [5]). Thus X × Y is nearly paracompact.

Definition 5.4. [3] A space X is called σ-compact, if it is equal to a union
of countably many compact subsets of it.
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Theorem 5.5. If X is Hausdorff and nearly paracompact, and Y is an almost
regular σ-compact space, then X × Y is nearly paracompact.

Proof. Since X is Hausdorff and nearly paracompact, (X)s is Hausdorff and
paracompact. Since Y is almost regular, by Theorem 2.4, (Y )s is regular. Also,
since Y is σ-compact and the topology of (Y )s is weaker than that of Y , (Y )s

is σ-compact. Thus (X)s × (Y )s = (X × Y )s is paracompact and hence X × Y
becomes nearly paracompact.

Definition 5.6. A space X is called almost separable if there exists a count-
able subset D of X such that A ∩D 6= φ, ∀A ∈ RO(X) \ {φ}.

Remark 5.7. Obviously, a separable space is almost separable; but the con-
verse is false. For, if X is an uncountable set which is endowed with the topology
of countable complements, then X is almost separable but it is not separable.

Definition 5.8. [14] A space X is called nearly Lindelöf, if every regular open
cover of X has a countable subcover.

Remark 5.9. Obviously, a Lindelöf space is nearly Lindelöf but the converse
is false. For, take any uncountable cardinal number α and consider a set X with
|X| = 2α. Let τ = {A ⊆ X : |X \A| ≤ α}⋃{φ}. Then τ defines a topology on X,
and X endowed with this topology is nearly Lindelöf but not Lindelöf.

Remark 5.10. It is easy to see that X is almost separable ( nearly Lindelöf
) if and only if (X)s is separable ( resp. Lindelöf ).

Theorem 5.11. An almost separable, nearly paracompact space is nearly Lin-
delöf.

Proof. Since X is almost separable and nearly paracompact, by Remark 5.10
and earlier result, (X)s is separable and paracompact, and hence (X)s is Lindelöf.
Thus X is nearly Lindelöf.

Theorem 5.12. An almost regular, nearly Lindelöf space is nearly paracom-
pact.

Proof. If X is almost regular and nearly Lindelöf, then (X)s is regular and
Lindelöf and hence (X)s is paracompact. Thus X is nearly paracompact.

Theorem 5.13. A nearly paracompact, countably compact space X is nearly
compact.

Proof. As X is nearly paracompact, (X)s is paracompact. Since X is countably
compact and the topology of (X)s is weaker than that of X, it follows that (X)s is
also countably compact. Thus (X)s is paracompact and countably compact which
implies that (X)s is compact (see [3]). Hence X becomes nearly compact.
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