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CERTAIN SUFFICIENT CONDITIONS FOR A SUBCLASS OF
ANALYTIC FUNCTIONS ASSOCIATED WITH HOHLOV OPERATOR

S. Sivasubramanian, Thomas Rosy and K. Muthunagai

Abstract. Making use of the Hohlov operator, we obtain inclusion relations between the
classes of certain normalized analytic functions. Relevant connections of our work with the earlier
works are pointed out.

1. Introduction

Let A be the class of functions f normalized by

f(z) = z +
∞∑

n=2

anzn, (1.1)

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}.
As usual, we denote by S the subclass of A consisting of functions which are also
univalent in U.

A function f ∈ A is said to be starlike of order α (0 ≤ α < 1), if and only if

<
(

zf ′(z)
f(z)

)
> α (z ∈ U).

This function class is denoted by S∗(α). We also write S∗(0) =: S∗, where S∗
denotes the class of functions f ∈ A that are starlike in U with respect to the
origin.

A function f ∈ A is said to be convex of order α (0 ≤ α < 1) if and only if

<
(

1 +
zf ′′(z)
f ′(z)

)
> α (z ∈ U).
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This class is denoted by K(α). Further, K = K(0), the well-known standard class
of convex functions. It is an established fact that

f ∈ K(α) ⇐⇒ zf ′ ∈ S∗(α).

Let M(λ, α) be a subclass of A consisting of functions of the form that satisfy
the condition

<
(

z(zf ′(z))′

(1− λ)zf ′(z) + λz(zf ′(z))′

)
> α, z ∈ ∆

for some α and λ where 0 ≤ α < 1 and 0 ≤ λ < 1. That is, M(λ, α) be a subclass
of S consisting of functions of the form that satisfy the condition

<
(

f ′(z) + zf ′′(z)
f ′(z) + λzf ′′(z)

)
> α, z ∈ ∆

The class M(λ, α) was introduced by Altintas and Owa [1] and also investigated
very recently by Mostafa [12].

A function f ∈ A is said to be in the class UCV of uniformly convex functions
in U if and only if it has the property that, for every circular arc δ contained in
the unit disk U, with center ζ also in U, the image curve f(δ) is a convex arc. The
function class UCV was introduced by Goodman [7].

Furthermore, we denote by k−UCV and k−ST , (0 ≤ k < ∞), two interesting
subclasses of S consisting respectively of functions which are k-uniformly convex
and k-starlike in U. Namely, we have for 0 ≤ k < ∞

k − UCV :=
{

f ∈ S : <
(

1 +
zf ′′(z)
f ′(z)

)
> k

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ , (z ∈ U)
}

and

k − ST :=
{

f ∈ S : <
(

zf ′(z)
f(z)

)
> k

∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ , (z ∈ U)

}
.

The class k − UCV was introduced by Kanas and Wísniowska [10], where its geo-
metric definition and connections with the conic domains were considered. The
class k −ST was investigated in [11]. In fact, it is related to the class k −UCV by
means of the well-known Alexander equivalence between the usual classes of con-
vex and starlike functions (see also the work of Kanas and Srivastava [9] for further
developments involving each of the classes k − UCV and k − ST ). In particular,
when k = 1, we obtain

k − UCV ≡ UCV and k − ST = SP,

where UCV and SP are the familiar classes of uniformly convex functions and
parabolic starlike functions in U respectively (see for details, [7]). Indeed, by making
use of a certain fractional calculus operator, Srivastava and Mishra [17] presented
a systematic and unified study of the classes UCV and SP.
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Let us denote (see [10,11])

P1(k) =





8(arccos k)2

π2(1− k2)
for 0 ≤ k < 1

8
π2

for k = 1

π2

4
√

t(1 + t)(k2 − 1)K2(t)
for k > 1

(1.2)

where t ∈ (0, 1) is determined by k = cosh(πK′(t)/[4K(t)]), K is the Legendre’s
complete elliptic integral of the first kind

K(t) =
∫ 1

0

dx√
(1− x2)(1− t2x2)

and K′(t) = K(
√

1− t2) is the complementary integral of K(t). Let Ωk be a domain
such that 1 ∈ Ωk and

∂Ωk =
{
w = u + iv : u2 = k2(u− 1)2 + k2v2

}
, 0 ≤ k < ∞.

The domain Ωk is elliptic for k > 1, hyperbolic when 0 < k < 1, parabolic when
k = 1, and a right half-plane when k = 0. If p is an analytic function with p(0) = 1
which maps the unit disc U conformally onto the region Ωk, then P1(k) = p′(0).
P1(k) is strictly decreasing function of the variable k and it values are included in
the interval (0, 2].

Let f ∈ A be of the form (1.1). If f ∈ k − UCV, then the following coefficient
inequalities hold true (cf. [10]):

|an| ≤ (P1(k))n−1

n!
, n ∈M \ {1}. (1.3)

Similarly, if f of the form (1.1) belongs to the class k − ST , then (cf. [11])

|an| ≤ (P1(k))n−1

(n− 1)!
, n ∈M \ {1}.

A function f ∈ A is said to be in the class Rτ (A,B), (τ ∈ C\{0}, −1 ≤ B <
A ≤ 1), if it satisfies the inequality

∣∣∣∣
f ′(z)− 1

(A−B)τ −B[f ′(z)− 1]

∣∣∣∣ < 1 (z ∈ U).

The class Rτ (A, B) was introduced earlier by Dixit and Pal [5]. Two of the many
interesting subclasses of the class Rτ (A,B) are worthy of mention here. First of
all, by setting

τ = eiη cos η (−π/2 < η < π/2), A = 1− 2β (0 ≤ β < 1) and B = −1,

the class Rτ (A,B) reduces essentially to the class Rη(β) introduced and studied
by Ponnusamy and Rønning [14], where

Rη(β) =
{
f ∈ A : <(eiη(f ′(z)− β)) > 0 (z ∈ U;−π/2 < η < π/2, 0 ≤ β < 1)

}
.



376 S. Sivasubramanian, T. Rosy, K. Muthunagai

Secondly, if we put

τ = 1, A = β and B = −β (0 < β ≤ 1),

we obtain the class of functions f ∈ A satisfying the inequality
∣∣∣∣
f ′(z)− 1
f ′(z) + 1

∣∣∣∣ < β (z ∈ U; 0 < β ≤ 1)

which was studied by (among others) Padmanabhan [13] and Caplinger and Causey
[3], (see also the works [6, 15, 16, 18]).

The Gaussian hypergeometric function F (a, b; c; z) given by

2F1(a, b; c; z) = F (a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n(1)n
zn (z ∈ U)

is the solution of the homogenous hypergeometric differential equation

z(1− z)w′′(z) + [c− (a + b + 1)z]w′(z)− abw(z) = 0

and has rich applications in various fields such as conformal mappings, quasi con-
formal theory, continued fractions and so on.

By the Gauss Summation Theorem, we get

F (a, b; c; 1) =
∞∑

n=0

(a)n (b)n

(c)n(1)n
=

Γ(c− a− b)Γ(c)
Γ(c− a)Γ(c− b)

for <(c− a− b) > 0.

Here, a, b, c are complex numbers such that c 6= 0,−1,−2,−3, . . . , (a)0 = 1 for
a 6= 0, and for each positive integer n, (a)n = a(a + 1)(a + 2) . . . (a + n− 1) is the
Pochhammer symbol. In the case of c = −k, k = 0, 1, 2, . . . , F (a, b; c; z) is defined if
a = −j or b = −j where j ≤ k. In this situation, F (a, b; c; z) becomes a polynomial
of degree j with respect to z. Results regarding F (a, b; c; z) when <(c − a − b)
is positive, zero or negative are abundant in the literature. In particular when
<(c−a−b) > 0, the function is bounded. The hypergeometric function F (a, b; c; z)
has been studied extensively by various authors and play an important role in
Geometric Function Theory. It is useful in unifying various functions by giving
appropriate values to the parameters a, b and c. We refer to [4, 6, 15, 16] and
references therein for some important results.

For functions f ∈ A given by (1.1) and g ∈ A given by g(z) = z +
∑∞

n=2 bnzn,
we define the Hadamard product (or convolution) of f and g by

(f ∗ g)(z) = z +
∞∑

n=2
anbnzn, z ∈ U.

For f ∈ A, we recall the operator Ia,b,c(f) of Hohlov [8] which maps A into itself
defined by means of Hadamard product as

Ia,b,c(f)(z) = zF (a, b; c; z) ∗ f(z).
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Therefore, for a function f defined by (1.1), we have

Ia,b,c(f)(z) = z +
∞∑

n=2

(a)n−1(b)n−1

(c)n−1(1)n−1
anzn.

Using the integral representation,

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1 dt

(1− tz)a
, <(c) > <(b) > 0,

we can write

[Ia,b,c(f)](z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1 f(tz)
t

dt ∗ z

(1− tz)a
.

When f(z) equals the convex function z
1−z , then the operator Ia,b,c(f) in this case

becomes zF (a, b; c; z). If a = 1, b = 1 + δ, c = 2 + δ with <(δ) > −1 then the
convolution operator Ia,b,c(f) turns into Bernardi operator

Bf (z) = [Ia,b,c(f)](z) =
1 + δ

zδ

∫ 1

0

tδ−1f(t) dt.

Indeed, I1,1,2(f) and I1,2,3(f) are known as Alexander and Libera operators, re-
spectively.

To prove the main results, we need the following Lemmas.

Lemma 1. [1] A function f ∈ A belongs to the class M(λ, α) if
∞∑

n=2
n(n− λαn− α + λα)|an| ≤ 1− α. (1.4)

Lemma 2. [5] If f ∈ Rτ (A,B) is of form (1.1) then

|an| ≤ (A−B)
|τ |
n

, n ∈M \ {1}. (1.5)

The result is sharp.

In this paper, we estimate certain inclusion relations involving the classes k −
UCV, k − ST and M(λ, α).

2. Main results

In this paper, we will study the action of the hypergeometric function on the
classes k − UCV, k − ST .

Theorem 1. Let a, b ∈ C \ {0}. Also, let c be a real number such that
c > |a|+ |b|+ 1. If f ∈ Rτ (A,B), and if the inequality

Γ(c)Γ(c− |a| − |b| − 1)
Γ(c− |a|)Γ(c− |b|) [(1− λα)|ab|+ (1− α)(c− |a| − |b| − 1)]

≤ (1− α)
(

1
(A−B)|τ | + 1

)
(2.1)

is satisfied, then Ia, b, c(f) ∈ M(λ, α).
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Proof. Let f be of the form (1.1) belong to the class Rτ (A,B). By virtue of
Lemma 1, it suffices to show that

∞∑
n=2

n(n− λαn− α + λα)
∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1
an

∣∣∣∣ ≤ 1− α.

Taking into account the inequality (1.5) and the relation |(a)n−1| ≤ (|a|)n−1, we
deduce that
∞∑

n=2
(n− λαn− α + λα)

∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1
an

∣∣∣∣

≤ (A−B)|τ |(1− λα)
∞∑

n=2
n

∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1

∣∣∣∣

+ (A−B)|τ |α(λ− 1)
∞∑

n=2

(|a|)n−1(|b|)n−1

(c)n−1(1)n

≤ (A−B)|τ |
{

(1− λα)
∞∑

n=2

(|a|)n−1(|b|)n−1

(c)n−1(1)n−2
+ (1− α)

∞∑
n=2

(|a|)n−1(|b|)n−1

(c)n−1(1)n−1

}

= (A−B)|τ |
{

(1− λα)
|ab|
c

F (1 + |a|, 1 + |b|, 1 + c; 1)

+ (1− α) (F (|a|, |b|, c; 1)− 1)
}

where we use the relation
(a)n = a(a + 1)n−1. (2.2)

The proof now follows by an application of Gauss summation theorem and (2.1).

For the choice of |b| = |a|, we have the following corollary.

Corollary 1. Let a ∈ C \ {0}. Also, let c be a real number such that
c > 2|a|+ 1. If f ∈ Rτ (A,B), and if the inequality

Γ(c)Γ(c− 2|a| − 1)
(Γ(c− |a|))2

[
(1− λα)|a|2 + (1− α)(c− 2|a| − 1)

]

≤ (1− α)
(

1
(A−B)|τ | + 1

)

is satisfied, then Ia,|a|,c(f) ∈ M(λ, α).

In the special case when b = 1, Theorem 1 immediately yields a result con-
cerning the Carlson-Shaffer operator L(a, c)(f) := Ia, 1, c(f) (see [4]).

Corollary 2. Let a ∈ C \ {0}. Also, let c be a real number such that
c > |a|+ 1. If f ∈ Rτ (A,B), and if the inequality

Γ(c)Γ(c− |a| − 2)
Γ(c− |a|)Γ(c− 1)

[(1− λα)|a|+ (1− α)(c− |a| − 2)] ≤ (1− α)
(

1
(A−B)|τ | + 1

)

is satisfied, then L(a, c)(f) ∈ M(λ, α).
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Theorem 2. Let a, b ∈ C \ {0}. Also, let c be a real number and P1 = P1(k)
be given by (1.2). If, for some k (0 ≤ k < ∞), f ∈ k − UCV, and the inequality

(1− λα)
|ab|P1

c
3F2(1 + |a|, 1 + |b|, 1 + P1; 1 + c, 2; 1)

+ α(λ− 1) 3F2(|a|, |b|, P1; c, 1; 1) ≤ 1− αλ (2.3)

is satisfied, then Ia, b, c(f) ∈ M(λ, α).

Proof. Let f be given by (1.1). By (1.4), to show Ia, b, c(f) ∈ M(λ, α), it is
sufficient to prove that

∞∑
n=2

n(n− λαn− α + λα)
∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1
an

∣∣∣∣ ≤ 1− α.

We will repeat the method of proving used in the proof of Theorem 1. Applying
the estimates for the coefficients given by (1.3), and making use of the relations
(2.2) and |(a)n| ≤ (|a|)n, we get

∞∑
n=2

n(n− λαn− α + λα)
∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1
an

∣∣∣∣

≤
∞∑

n=2
[n(1− λα) + α(λ− 1)]

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1

= (1− λα)
∞∑

n=2

|ab|P1

c

(1 + |a|)n−2(1 + |b|)n−2(1 + P1)n−2

(1 + c)n−2(1)n−2(2)n−2

+ α(λ− 1)
∞∑

n=2

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1

= (1− λα)
|ab|P1

c 3
F2(1 + |a|, 1 + |b|, 1 + P1; 1 + c, 2; 1)

+ α(λ− 1) [3F2(|a|, |b|, P1; c, 1; 1)− 1]
≤ 1− α,

provided the condition (2.3) is satisfied.

For the choices of |b| = |a| and b = 1, we can deduce further corollaries of
Theorem 2 as follows.

Corollary 3. Let a ∈ C \ {0}. Suppose that |b| = |a|. Also, let c be a real
number and P1 = P1(k) be given by (1.2). If f ∈ k−UCV for some k (0 ≤ k < ∞)
and the inequality

(1− λα)
|a|2P1

c
3F2(1 + |a|, 1 + |a|, 1 + P1; 1 + c, 2; 1)

+ α(λ− 1) 3F2(|a|, |a|, P1; c, 1; 1) ≤ 1− αλ

is satisfied, then Ia, |a|, c(f) ∈ M(λ, α).
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Corollary 4. Let a ∈ C \ {0}. Also, let c be a real number and P1 = P1(k)
be given by (1.2). If f ∈ k − UCV for some k (0 ≤ k < ∞) and the inequality

(1− λα)
|a|P1

c
3F2(1 + |a|, 2, 1 + P1; 1 + c, 2; 1)

+ α(λ− 1) 3F2(|a|, 1, P1; c, 1; 1) ≤ 1− αλ

is satisfied, then L(a, c)(f) ∈ M(λ, α).

Theorem 3. Let a, b ∈ C \ {0}. Also, let c be a real number and P1 = P1(k)
be given by (1.2). If f ∈ k − ST , for some k (0 ≤ k < ∞), and the inequality

(1− λα)
|ab|P1

c
3F2(1 + |a|, 1 + |b|, 1 + P1; 1 + c, 1; 1)

+ (2− α− λα)
|ab|P1

c
3F2(1 + |a|, 1 + |b|, 1 + P1; 1 + c, 2; 1)

+ (1− α)3F2(|a|, |b|, P1; c, 1; 1) ≤ 2(1− α) (2.4)
is satisfied, then Ia, b, c(f) ∈ M(λ, α).

Proof. Let f be given by (1.1). We will repeat the method of proving used in
the proof of Theorem 1. Applying the estimates for the coefficients given by (1.4),
and making use of the relations (2.2) and |(a)n| ≤ (|a|)n, we get
∞∑

n=2
n(n− λαn− α + λα)

∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1
an

∣∣∣∣

≤
∞∑

n=2
n[n(1− λα) + α(λ− 1)]

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1

=
∞∑

n=2
(n− 1)[(n− 1)(1− λα) + (1− α)]

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1

+
∞∑

n=2
[(n− 1)(1− λα) + (1− α)]

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1

= (1− λα)
∞∑

n=2

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−2(1)n−2
+ (1− α)

∞∑
n=2

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−2

+ (1− λα)
∞∑

n=2

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−2
+ (1− α)

∞∑
n=2

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1

= (1− λα)
∞∑

n=2

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−2(1)n−2
+ (2− α− λα)×

×
∞∑

n=2

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−2
+ (1− α)

∞∑
n=2

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1

= (1− λα)
|ab|P1

c
3F2(1 + |a|, 1 + |b|, 1 + P1; 1 + c, 1; 1)

+ (2− α− λα)
|ab|P1

c
3F2(1 + |a|, 1 + |b|, 1 + P1; 1 + c, 2; 1)

+ (1− α) [ 3F2(|a|, |b|, P1; c, 1; 1)− 1]
≤ 1− α

provided the condition (2.4) is satisfied.



Certain sufficient conditions . . . 381

If |b| = |a| we can rewrite the Theorem 3 as follows.

Corollary 5. Let a, b ∈ C \ {0}. Suppose that |b| = |a|. Also, let c be a real
number and P1 = P1(k) be given by (1.2). If f ∈ k − ST for some k (0 ≤ k < ∞)
and the inequality

(1− λα)
|a|2P1

c
3F2(1 + |a|, 1 + |a|, 1 + P1; 1 + c, 1; 1)

+ (2− α− λα)
|a|2P1

c
3F2(1 + |a|, 1 + |a|, 1 + P1; 1 + c, 2; 1)

+ (1− α)3F2(|a|, |a|, P1; c, 1; 1) ≤ 2(1− α)

is satisfied, then Ia, |a|, c(f) ∈ M(λ, α).

In the special case when b = 1, Theorem 3 immediately yields a result con-
cerning the Carlson-Shaffer operator L(a, c)(f) = Ia, 1, c(f).

Corollary 6. Let a ∈ C \ {0}. Also, let c be a real number and P1 = P1(k)
be given by (1.2). If f ∈ k − UCV for some k (0 ≤ k < ∞) and the inequality

(1− λα)
|a|P1

c
3F2(1 + |a|, 2, 1 + P1; 1 + c, 1; 1)

+ (2− α− λα)
|a|P1

c
3F2(1 + |a|, 2, 1 + P1; 1 + c, 2; 1)

+ (1− α)3F2(|a|, 1, P1; c, 1; 1) ≤ 2(1− α)

is satisfied, then L(a, c)(f) ∈ M(λ, α).
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