DECOMPOSITION OF AN INTEGER AS A SUM OF TWO CUBES TO A FIXED MODULUS

David Tsirekidze and Ala Avoyan

Abstract

The representation of any integer as the sum of two cubes to a fixed modulus is always possible if and only if the modulus is not divisible by seven or nine. For a positive non-prime power there is given an inductive way to find its remainders that can be represented as the sum of two cubes to a fixed modulus N. Moreover, it is possible to find the components of this representation.

1. Introduction

Any odd prime number p can be written as the sum of two squares if and only if it is of the form $p=4 k+1$, where $k \in N$. Generally, number n can be represented as a sum of two squares if and only if in the prime factorization of n, every prime of the form $4 k+3$ has even exponent [2]. There is no such nice characterization for the sum of two cubes. In this paper we give an inductive method which allows to find the representation of a non-prime integer as a sum of two cubes to a given modulus.

Definition 1.1. For $N \geq 2$ let

$$
\delta(N)=\frac{\#\left\{n \in\{1, \ldots, N\}: n \equiv x^{3}+y^{3}(\bmod N) \text { has a solution }\right\}}{N}
$$

Broughan [1] proved the following theorem.
Theorem 1.1. 1. If $7 \mid N$ and $9 \nmid N$ then $\delta(N)=5 / 7$;
2. If $7 \nmid N$ and $9 \mid N$ then $\delta(N)=5 / 9$;
3. If $7 \mid N$ and $9 \mid N$ then $\delta(N)=25 / 63$;
4. If $7 \nmid N$ and $9 \nmid N$ then $\delta(N)=1$.

In the last case $\delta(N)=1$, and therefore, in this case any integer can be represented as a sum of two cubes to a fixed modulus N.

[^0]By Theorem 1.1, for all N we can compute the number of its residues that can be decomposed as a sum of two cubes. In this paper we introduce the way to find these remainders and also their decompositions as a sum of two cubes to a fixed modulus N in case when we know the factorization of this number.

2. Main results

Theorem 2.1. Let us consider an equation $n \equiv u^{3}+v^{3}(\bmod N), n \in[0, N-$ 1]. Then it has solution in integers in the following congruences:

1. $7 \mid N, 9 \nmid N$ and $n \equiv 0,1,2,5,6(\bmod 7)$;
2. $7 \nmid N, 9 \mid N$ and $n \equiv 0,1,2,7,8(\bmod 9)$;
3. $7|N, 9| N$ and $n \equiv 0,1,2,7,8,9,16,19,20,26,27,28,29,34,35,36,37,43$, $44,47,54,55,56,61,62(\bmod 63)$;

$$
\text { 4. } 7 \nmid N, 9 \nmid N \text { and } \forall n \in[0, N-1] \text {. }
$$

Proof. For simplicity, we prove only the first case of the theorem. One can easily verify that cube of any integer number can have the following remainders modulo 7: $0,1,6$. Therefore, the sum of two cubes can have remainders $0,1,2,5$, 6 modulo 7 . The number of positive integers with these remainders is $(5 / 7) \cdot N$ in the interval $[0, N-1]$. There is no other number n for which the equation has a solution. Hence, from Theorem 1.1 the first case of Theorem 2.1 is proved. Other two cases can be proved analogously.

Definition 2.1. Let us denote the set of all values of $n \in[0, N-1]$ for which $n \equiv u^{3}+v^{3}(\bmod N)$ by $A(N)$.

Theorem 2.2. If $(N, M)=1$, then $\delta(M N)=\delta(M) \cdot \delta(N)$.
Proof. Suppose

$$
\begin{gather*}
m \equiv u^{3}+v^{3}(\bmod M), \quad m \in[0, M-1] \tag{1}\\
n \equiv x^{3}+y^{3}(\bmod N) \tag{2}
\end{gather*}
$$

Let X be such that $M \mid X$ and $N \mid X-1$. By the Chinese Remainder Theorem such an X always exists.

Let us construct X^{*}, A and B in the following manner

$$
\begin{gather*}
X^{*} \equiv X \cdot n-(X-1) \cdot m(\bmod M N) \tag{3}\\
A=X \cdot x-(X-1) \cdot u \tag{4}\\
B=X \cdot y-(X-1) \cdot v \tag{5}
\end{gather*}
$$

We claim that $X^{*} \equiv A^{3}+B^{3}(\bmod M N)$.
Indeed,

$$
\begin{aligned}
X^{*} & -\left(A^{3}+B^{3}\right) \\
& \equiv X \cdot n-(X-1) \cdot m-\left(X^{3} \cdot x^{3}-(X-1)^{3} \cdot u^{3}+X^{3} \cdot y^{3}-(X-1)^{3} \cdot v^{3}\right) \\
& \equiv X \cdot n-(X-1) \cdot m-\left(X^{3}\left(x^{3}+y^{3}\right)-(X-1)^{3}\left(u^{3}+v^{3}\right)\right) \\
& \equiv X \cdot\left(n-X^{2}\left(x^{3}+y^{3}\right)\right)+(X-1) \cdot\left((X-1)^{2}\left(u^{3}+v^{3}\right)-m\right)(\bmod M N)
\end{aligned}
$$

Because,
$n-X^{2}\left(x^{3}+y^{3}\right) \equiv\left(x^{3}+y^{3}\right)(1-X)(1+X) \equiv 0 \quad(\bmod N)$ and $X \equiv 0 \quad(\bmod M)$
and $(N, M)=1$, we obtain

$$
X \cdot\left(n-X^{2}\left(x^{3}+y^{3}\right)\right) \equiv 0 \quad(\bmod M N) .
$$

Similarly,

$$
\begin{gathered}
(X-1)^{2}\left(u^{3}+v^{3}\right)-m \equiv\left(u^{3}+v^{3}\right) \cdot\left((X-1)^{2}-1\right) \equiv 0(\bmod M) \\
\text { and } X-1 \equiv 0(\bmod N)
\end{gathered}
$$

which implies, as $(N, M)=1$

$$
(X-1) \cdot\left((X-1)^{2}\left(u^{3}+v^{3}\right)-m\right) \equiv 0 \quad(\bmod M N) .
$$

Finally,

$$
\begin{aligned}
X^{*}-\left(A^{3}+B^{3}\right) & \equiv X \cdot\left(n-X^{2}\left(x^{3}+y^{3}\right)\right)+(X-1) \cdot\left((X-1)^{2}\left(u^{3}+v^{3}\right)-m\right) \\
& \equiv 0(\bmod M N) .
\end{aligned}
$$

For any $m \in A(M)$ and any $n \in A(N)$, there exists an $X^{*} \in A(M N)$. Obviously, $X^{*} \equiv n(\bmod N)$ and $X^{*} \equiv m(\bmod M)$. Thus, for different pairs $\left(m_{1}, n_{1}\right)$ and (m_{2}, n_{2}) we cannot obtain the same X^{*} (by Chinese Remainder Theorem).

Now take any element X^{*} from the set $A(M N), X^{*} \equiv A^{3}+B^{3}(\bmod M N)$. Suppose the pairs $(x, y),(u, v)$ are the solutions of the following Diophantine equation [3]:

$$
\begin{aligned}
& A=X \cdot x-(X-1) \cdot u, \\
& B=X \cdot y-(X-1) \cdot v .
\end{aligned}
$$

If we define

$$
m \equiv\left(u^{3}+v^{3}\right) \quad(\bmod M) \text { and } n \equiv\left(x^{3}+y^{3}\right) \quad(\bmod N),
$$

then $X^{*} \equiv A^{3}+B^{3}(\bmod M N)$. Therefore, there is one-to-one correspondence between the elements of the set $A(M N)$ and pairs of elements from the sets $A(M)$ and $A(N)$. Hence, we have proved that $\delta(M N)=\delta(M) \cdot \delta(N)$

Remark 2.1. Let us assume we are given any number K and suppose we know the representation of any element in each set $A(1), A(2), \ldots, A(K-1)$ as a sum of two cubes to a fixed modulus. And our task is to find the representation of the elements of $A(K)$. Let K be a non-prime power number and $K=M \cdot N$, where $(M, N)=1$ and $N, M>1$. Suppose $m \in A(M), n \in A(N)$ and (1),(2) hold. Solve Diophantine equation $M \cdot q-N \cdot l=1$, let $X=M q$ and construct X^{*}, A, B according to (3),(4),(5). As it was shown above

$$
X^{*} \equiv A^{3}+B^{3} \quad(\bmod K) .
$$

Therefore $X^{*} \in A(K)$ and (6) is a representation for X^{*} as a sum of two cubes to a fixed modulus K.

3. Conclusion

This paper is an attempt to explicitly find the way to solve the equation $n \equiv$ $a^{3}+b^{3}(\bmod K)$. Using inductive method that is given in this paper it is possible to construct the set $A(K)$ and represent any element of this set as a sum of two cubes to a fixed non-prime modulus K.

Acknowledgement. The authors thank the anonymous referee for valuable comments and suggestions. Also we are very grateful for Akaki Mamageishvili's helpful discussions.

REFERENCES

[1] K.A. Broughan, Characterizing the sum of two cubes, J. Integer Seq. 6 (2003), Article 03.4.6, 7 pages.
[2] E. Grosswald, Representation of Integers as Sums of Squares, Springer, New York, 1985.
[3] L.J. Mordell, Diophantine Equations, Academic Press, 1969.
(received 23.08.2011; in revised form 24.02.2012; available online 10.06.2012)
David Tsirekidze, Stanford University, USA
E-mail: david19@stanford.edu
Ala Avoyan, International School of Economics (ISET), Georgia
E-mail: a.avoyan@iset.ge

[^0]: 2010 Mathematics Subject Classification: 11A07, 11B50, 11D25
 Keywords and phrases: Sum of two cubes; Diophantine equation.

