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DECOMPOSITION OF AN INTEGER AS A SUM
OF TWO CUBES TO A FIXED MODULUS

David Tsirekidze and Ala Avoyan

Abstract. The representation of any integer as the sum of two cubes to a fixed modulus
is always possible if and only if the modulus is not divisible by seven or nine. For a positive
non-prime power there is given an inductive way to find its remainders that can be represented
as the sum of two cubes to a fixed modulus N . Moreover, it is possible to find the components of
this representation.

1. Introduction

Any odd prime number p can be written as the sum of two squares if and only
if it is of the form p = 4k+1, where k ∈ N . Generally, number n can be represented
as a sum of two squares if and only if in the prime factorization of n, every prime
of the form 4k + 3 has even exponent [2]. There is no such nice characterization
for the sum of two cubes. In this paper we give an inductive method which allows
to find the representation of a non-prime integer as a sum of two cubes to a given
modulus.

Definition 1.1. For N ≥ 2 let

δ(N) =
#{n ∈ {1, . . . , N} : n ≡ x3 + y3 (mod N) has a solution}

N
.

Broughan [1] proved the following theorem.

Theorem 1.1. 1. If 7 | N and 9 - N then δ(N) = 5/7;
2. If 7 - N and 9 | N then δ(N) = 5/9;
3. If 7 | N and 9 | N then δ(N) = 25/63;
4. If 7 - N and 9 - N then δ(N) = 1.

In the last case δ(N) = 1, and therefore, in this case any integer can be
represented as a sum of two cubes to a fixed modulus N .
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By Theorem 1.1, for all N we can compute the number of its residues that can
be decomposed as a sum of two cubes. In this paper we introduce the way to find
these remainders and also their decompositions as a sum of two cubes to a fixed
modulus N in case when we know the factorization of this number.

2. Main results

Theorem 2.1. Let us consider an equation n ≡ u3 +v3 (mod N), n ∈ [0, N−
1]. Then it has solution in integers in the following congruences:

1. 7 | N , 9 - N and n ≡ 0, 1, 2, 5, 6 (mod 7);
2. 7 - N , 9 | N and n ≡ 0, 1, 2, 7, 8 (mod 9);
3. 7 | N , 9 | N and n ≡ 0, 1, 2, 7, 8, 9, 16, 19, 20, 26, 27, 28, 29, 34, 35, 36, 37, 43,

44, 47, 54, 55, 56, 61, 62 (mod 63);
4. 7 - N , 9 - N and ∀n ∈ [0, N − 1].

Proof. For simplicity, we prove only the first case of the theorem. One can
easily verify that cube of any integer number can have the following remainders
modulo 7: 0, 1, 6. Therefore, the sum of two cubes can have remainders 0, 1, 2, 5,
6 modulo 7. The number of positive integers with these remainders is (5/7) ·N in
the interval [0, N − 1]. There is no other number n for which the equation has a
solution. Hence, from Theorem 1.1 the first case of Theorem 2.1 is proved. Other
two cases can be proved analogously.

Definition 2.1. Let us denote the set of all values of n ∈ [0, N − 1] for which
n ≡ u3 + v3 (mod N) by A(N).

Theorem 2.2. If (N,M) = 1, then δ (MN) = δ(M) · δ(N).

Proof. Suppose

m ≡ u3 + v3 (mod M), m ∈ [0, M − 1] (1)

n ≡ x3 + y3 (mod N). (2)
Let X be such that M | X and N | X − 1. By the Chinese Remainder Theorem
such an X always exists.

Let us construct X∗, A and B in the following manner

X∗ ≡ X · n− (X − 1) ·m (mod MN) (3)

A = X · x− (X − 1) · u (4)

B = X · y − (X − 1) · v. (5)

We claim that X∗ ≡ A3 + B3 (mod MN).
Indeed,

X∗ − (A3 + B3)

≡ X · n− (X − 1) ·m− (X3 · x3 − (X − 1)3 · u3 + X3 · y3 − (X − 1)3 · v3)

≡ X · n− (X − 1) ·m− (X3(x3 + y3)− (X − 1)3(u3 + v3))

≡ X · (n−X2(x3 + y3)) + (X − 1) · ((X − 1)2(u3 + v3)−m) (mod MN).
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Because,

n−X2(x3 + y3) ≡ (x3 + y3)(1−X)(1 + X) ≡ 0 (mod N) and X ≡ 0 (mod M)

and (N, M) = 1, we obtain

X · (n−X2(x3 + y3)) ≡ 0 (mod MN).

Similarly,

(X − 1)2(u3 + v3)−m ≡ (u3 + v3) · ((X − 1)2 − 1) ≡ 0 (mod M)

and X − 1 ≡ 0 (mod N)

which implies, as (N, M) = 1

(X − 1) · ((X − 1)2(u3 + v3)−m) ≡ 0 (mod MN).

Finally,

X∗ − (A3 + B3) ≡ X · (n−X2(x3 + y3)) + (X − 1) · ((X − 1)2(u3 + v3)−m)

≡ 0 (mod MN).

For any m ∈ A(M) and any n ∈ A(N), there exists an X∗ ∈ A(MN). Obvi-
ously, X∗ ≡ n (mod N) and X∗ ≡ m (mod M). Thus, for different pairs (m1, n1)
and (m2, n2) we cannot obtain the same X∗ (by Chinese Remainder Theorem).

Now take any element X∗ from the set A(MN), X∗ ≡ A3 + B3 (mod MN).
Suppose the pairs (x, y), (u, v) are the solutions of the following Diophantine equa-
tion [3]:

A = X · x− (X − 1) · u,

B = X · y − (X − 1) · v.

If we define

m ≡ (u3 + v3) (mod M) and n ≡ (x3 + y3) (mod N),

then X∗ ≡ A3 + B3 (mod MN). Therefore, there is one-to-one correspondence
between the elements of the set A(MN) and pairs of elements from the sets A(M)
and A(N). Hence, we have proved that δ(MN) = δ(M) · δ(N)

Remark 2.1. Let us assume we are given any number K and suppose we
know the representation of any element in each set A(1), A(2), . . . , A(K − 1) as a
sum of two cubes to a fixed modulus. And our task is to find the representation
of the elements of A(K). Let K be a non-prime power number and K = M · N ,
where (M,N) = 1 and N, M > 1. Suppose m ∈ A(M), n ∈ A(N) and (1),(2) hold.
Solve Diophantine equation M · q −N · l = 1, let X = Mq and construct X∗, A, B
according to (3),(4),(5). As it was shown above

X∗ ≡ A3 + B3 (mod K).

Therefore X∗ ∈ A(K) and (6) is a representation for X∗ as a sum of two cubes to
a fixed modulus K.
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3. Conclusion

This paper is an attempt to explicitly find the way to solve the equation n ≡
a3 + b3 (mod K). Using inductive method that is given in this paper it is possible
to construct the set A(K) and represent any element of this set as a sum of two
cubes to a fixed non-prime modulus K.
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