SIGNED TOTAL DISTANCE k-DOMATIC NUMBERS OF GRAPHS

S. M. Sheikholeslami and L. Volkmann

Abstract

In this paper we initiate the study of signed total distance k-domatic numbers in graphs and we present its sharp upper bounds.

1. Introduction

In this paper, k is a positive integer, and G is a finite simple graph without isolated vertices and with vertex set $V=V(G)$ and edge set $E=E(G)$. For a vertex $v \in V(G)$, the open k-neighborhood $N_{k, G}(v)$ is the set $\{u \in V(G) \mid u \neq$ v and $d(u, v) \leq k\}$. The open k-neighborhood $N_{k, G}(S)$ of a set $S \subseteq V$ is the set $\bigcup_{v \in S} N_{k, G}(v)$. The k-degree of a vertex v is defined as $\operatorname{deg}_{k, G}(v)=\left|N_{k, G}(v)\right|$. The minimum and maximum k-degree of a graph G are denoted by $\delta_{k}(G)$ and $\Delta_{k}(G)$, respectively. If $\delta_{k}(G)=\Delta_{k}(G)$, then the graph G is called distance- k-regular. The k-th power G^{k} of a graph G is the graph with vertex set $V(G)$ where two different vertices u and v are adjacent if and only if the distance $d(u, v)$ is at most k in G. Now we observe that $N_{k, G}(v)=N_{1, G^{k}}(v)=N_{G^{k}}(v), \operatorname{deg}_{k, G}(v)=\operatorname{deg}_{1, G^{k}}(v)=$ $\operatorname{deg}_{G^{k}}(v), \delta_{k}(G)=\delta_{1}\left(G^{k}\right)=\delta\left(G^{k}\right)$ and $\Delta_{k}(G)=\Delta_{1}\left(G^{k}\right)=\Delta\left(G^{k}\right)$. If $k=1$, then we also write $\operatorname{deg}_{G}(v), N_{G}(v), \delta(G)$ for $\operatorname{deg}_{1, G}(v), N_{1, G}(v), \delta_{1}(G)$ etc. Consult [7] for the notation and terminology which are not defined here.

For a real-valued function $f: V(G) \longrightarrow \mathbb{R}$, the weight of f is $w(f)=$ $\sum_{v \in V} f(v)$. For $S \subseteq V$, we define $f(S)=\sum_{v \in S} f(v)$. So $w(f)=f(V)$. A signed total distance k-dominating function (STDkD function) is a function $f: V(G) \rightarrow\{-1,1\}$ satisfying $\sum_{u \in N_{k, G}(v)} f(u) \geq 1$ for every $v \in V(G)$. The minimum of the values of $\sum_{v \in V(G)} f(v)$ taken over all signed total distance k dominating functions f is called the signed total distance k-domination number and is denoted by $\gamma_{k, s}^{t}(G)$. Then the function assigning +1 to every vertex of G is a STDkD function, called the function ϵ, of weight n. Thus $\gamma_{k, s}^{t}(G) \leq n$ for every graph of order n. Moreover, the weight of every STDkD function different from ϵ

[^0]is at most $n-2$ and more generally, $\gamma_{k, s}^{t}(G) \equiv n(\bmod 2)$. Hence $\gamma_{k, s}^{t}(G)=n$ if and only if ϵ is the unique STDkD function of G. In the special case when $k=1$, $\gamma_{k, s}^{t}(G)$ is the signed total domination number $\gamma_{s}^{t}(G)$ investigated in [8] and has been studied by several authors (see for example [2]). The signed total distance 2-domination number of graphs was introduced by Zelinka [9]. By these definitions, we easily obtain
\[

$$
\begin{equation*}
\gamma_{k, s}^{t}(G)=\gamma_{s}^{t}\left(G^{k}\right) \tag{1}
\end{equation*}
$$

\]

A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of signed total distance k-dominating functions on G with the property that $\sum_{i=1}^{d} f_{i}(v) \leq 1$ for each $v \in V(G)$, is called a signed total distance k-dominating family on G. The maximum number of functions in a signed total distance k-dominating family on G is the signed total distance k-domatic number of G, denoted by $d_{k, s}^{t}(G)$. The signed total distance k-domatic number is well-defined and $d_{k, s}^{t}(G) \geq 1$ for all graphs G, since the set consisting of any one STDkD function, for instance the function ϵ, forms a STDkD family of G. A $d_{k, s^{-}}^{t}$ family of a graph G is a STDkD family containing $d_{k, s}^{t}(G)$ STDkD functions. The signed total distance 1-domatic number $d_{1, s}^{t}(G)$ is the usual signed total domatic number $d_{s}^{t}(G)$ which was introduced by Henning in [3] and has been studied by several authors (see for example [5]). Obviously,

$$
\begin{equation*}
d_{k, s}^{t}(G)=d_{s}^{t}\left(G^{k}\right) \tag{2}
\end{equation*}
$$

ObSERVATION 1. Let G be a graph of order n without isolated vertices. If $\gamma_{k, s}^{t}(G)=n$, then ϵ is the unique STDkD function of G and so $d_{k, s}^{t}(G)=1$.

We first study basic properties and sharp upper bounds for the signed total distance k-domatic number of a graph. Some of them generalize the result obtained for the signed total domatic number.

In this paper we make use of the following results.
Proposition A. Let G be a graph of order n and minimum degree $\delta(G) \geq 1$. Then $\gamma_{s}^{t}(G)=n$ if and only if for each $v \in V(G)$, there exists a vertex $u \in N_{G}(v)$ such that $\operatorname{deg}_{G}(u)=1$ or $\operatorname{deg}_{G}(u)=2$.

Proof. Assume that $\gamma_{s}^{t}(G)=n$ and there exists a vertex v every neighbor of which has degree at least 3 . Then the function f that assigns to v the value -1 and to all other vertices the value 1 is a signed total dominating function of G. This leads to the contradiction $\gamma_{s}^{t}(G) \leq n-2$. Hence at least one neighbor of v is of degree 1 or 2 . On the other hand, if every vertex of v has a neighbor of degree 1 or 2 , then ϵ is the unique signed total dominating function of G, and so $\gamma_{s}^{t}(G)=n$.

The special case of Proposition A that G is a tree can be found in [2], the proof is almost the same.

Proposition B. [3] The signed total domatic number $d_{s}^{t}(G)$ of a graph G, without isolated vertex, is an odd integer.

Proposition C. [3] If G is a graph without isolated vertices, then $1 \leq d_{s}^{t}(G) \leq$ $\delta(G)$.

Proposition D. [4, 6] Let G be a graph with $\delta(G) \geq 1$, and let v be a vertex of even degree $\operatorname{deg}_{G}(v)=2 t$ with an integer $t \geq 1$. Then $d_{s}^{t}(G) \leq t$ when t is odd and $d_{s}^{t}(G) \leq t-1$ when t is even.

Proposition E. [3] Let $k \geq 1$ be an integer, and let K_{n} be the complete graph of order n. For $n \geq 2$, we have

$$
\gamma_{k, s}^{t}\left(K_{n}\right)=\gamma_{s}^{t}\left(K_{n}\right)= \begin{cases}3 & \text { if } n \equiv 1(\bmod 2) \tag{3}\\ 2 & \text { otherwise }\end{cases}
$$

Proposition F. [3] If K_{n} is the complete graph of order $n \geq 2$, then

$$
d_{s}^{t}\left(K_{n}\right)= \begin{cases}\left\lfloor\frac{n+1}{3}\right\rfloor-\left\lceil\frac{n}{3}\right\rceil+\left\lfloor\frac{n}{3}\right\rfloor & \text { if } n \text { is odd } \tag{4}\\ \frac{n}{2}-\left\lceil\frac{n+2}{4}\right\rceil+\left\lfloor\frac{n+2}{4}\right\rfloor & \text { if } n \text { is even. }\end{cases}
$$

Since $N_{k, K_{n}}(v)=N_{K_{n}}(v)$ for each vertex $v \in V\left(K_{n}\right)$ and each positive integer k, each signed total dominating function of K_{n} is a signed total distance k-dominating function of K_{n} and vice versa. Using Proposition F, we obtain

$$
d_{k, s}^{t}\left(K_{n}\right)=d_{s}^{t}\left(K_{n}\right)= \begin{cases}\left\lfloor\frac{n+1}{3}\right\rfloor-\left\lceil\frac{n}{3}\right\rceil+\left\lfloor\frac{n}{3}\right\rfloor & \text { if } n \text { is odd, } \\ \frac{n}{2}-\left\lceil\frac{n+2}{4}\right\rceil+\left\lfloor\frac{n+2}{4}\right\rfloor & \text { if } n \text { is even. }\end{cases}
$$

More generally, the following result is valid.
Observation 2. Let $k \geq 1$ be an integer, and let G be a graph of order n without isolated vertices. If $\operatorname{diam}(G) \leq k$, then $\gamma_{k, s}^{t}(G)=\gamma_{s}^{t}\left(K_{n}\right)$ and $d_{k, s}^{t}(G)=$ $d_{s}^{t}\left(K_{n}\right)$.

The next result is immediate by Observation 2, Propositions E and F.
Corollary 3. If $k \geq 2$ is an integer, and G is a graph of order n with $\operatorname{diam}(G)=2$ and $\delta(G) \geq 1$, then

$$
\gamma_{k, s}^{t}(G)= \begin{cases}3 & \text { if } n \text { is odd } \\ 2 & \text { if } n \text { is even }\end{cases}
$$

and

$$
d_{k, s}^{t}(G)= \begin{cases}\left\lfloor\frac{n+1}{3}\right\rfloor-\left\lceil\frac{n}{3}\right\rceil+\left\lfloor\frac{n}{3}\right\rfloor & \text { if } n \text { is odd } \\ \frac{n}{2}-\left\lceil\frac{n+2}{4}\right\rceil+\left\lfloor\frac{n+2}{4}\right\rfloor & \text { if } n \text { is even. }\end{cases}
$$

Corollary 4. Let $k \geq 2$ be an integer, and let G be a graph of order n with $\delta(G) \geq 1$. If $\operatorname{diam}(G) \neq 3$, then $\gamma_{k, s}^{t}(G)=\gamma_{s}^{t}\left(K_{n}\right)$ and $d_{k, s}^{t}(G)=d_{s}^{t}\left(K_{n}\right)$ or $\gamma_{k, s}^{t}(\bar{G})=\gamma_{s}^{t}\left(K_{n}\right)$ and $d_{k, s}^{t}(\bar{G})=d_{s}^{t}\left(K_{n}\right)$.

Proof. If diam $(G) \leq 2$, then it follows from Observation 2 that $\gamma_{k, s}^{t}(G)=$ $\gamma_{s}^{t}\left(K_{n}\right)$ and $d_{k, s}^{t}(G)=d_{s}^{t}\left(K_{n}\right)$. If $\operatorname{diam}(G) \geq 3$, then the hypothesis $\operatorname{diam}(G) \neq 3$ implies that $\operatorname{diam}(G) \geq 4$. Now, according to a result of Bondy and Murty [1, page 14], we deduce that $\operatorname{diam}(\bar{G}) \leq 2$. Applying again Observation 2, we obtain $\gamma_{k, s}^{t}(\bar{G})=\gamma_{s}^{t}\left(K_{n}\right)$ and $d_{k, s}^{t}(\bar{G})=d_{s}^{t}\left(K_{n}\right)$.

Corollary 5. If $k \geq 3$ is an integer and G a graph of order n with $\delta(G) \geq 1$, then $\gamma_{k, s}^{t}(G)=\gamma_{s}^{t}\left(K_{n}\right)$ and $d_{k, s}^{t}(G)=d_{s}^{t}\left(K_{n}\right)$ or $\gamma_{k, s}^{t}(\bar{G})=\gamma_{s}^{t}\left(K_{n}\right)$ and $d_{k, s}^{t}(\bar{G})=$ $d_{s}^{t}\left(K_{n}\right)$.

Proposition 6. Let $k \geq 1$ be an integer, and let G be a graph of order n and minimum degree $\delta(G) \geq 1$.

If $k=1$, then $\gamma_{k, s}^{t}(G)=n$ if and only if for each $v \in V(G)$, there exists a vertex $u \in N_{G}(v)$ such that $\operatorname{deg}_{G}(u)=1$ or $\operatorname{deg}_{G}(u)=2$.

If $k \geq 2$, then $\gamma_{k, s}^{t}(G)=n$ if and only if all components of G are of order 2 or 3.

Proof. In the case $k=1$, Proposition A implies the desired result.
Assume now that $k \geq 2$. If all components of G are of order 2 or 3 , then it is easy to see that ϵ is the unique STDkD function of G and thus $\gamma_{k, s}^{t}(G)=n$.

Conversely, assume that $\gamma_{k, s}^{t}(G)=n$. Suppose to the contrary that G has a component G_{1} of order $n\left(G_{1}\right) \geq 4$. If $\operatorname{diam}\left(G_{1}\right) \geq 3$, then assume that $x_{1} x_{2} \ldots x_{m}$ is a longest path in G_{1}. It is straightforward to verify that the function $f: V(G) \rightarrow\{-1,1\}$ defined by $f\left(x_{1}\right)=-1$ and $f(x)=1$ otherwise is a signed total distance k-dominating function of G which is a contradiction. If $\operatorname{diam}\left(G_{1}\right) \leq 2$, then Proposition E, Observation 2 and Corollary 3 show that $\gamma_{k, s}^{t}\left(G_{1}\right) \leq 3<4 \leq n\left(G_{1}\right)$ and consequently $\gamma_{k, s}^{t}(G)<n$. This contradiction completes the proof.

2. Basic properties of the signed total distance \boldsymbol{k}-domatic number

In this section we present basic properties of $d_{k, s}^{t}(G)$ and sharp bounds on the signed total distance k-domatic number of a graph.

Proposition 7. Let G be a graph with $\delta(G) \geq 1$. The signed total distance k-domatic number of G is an odd integer.

Proof. According to the identity (2), we have $d_{k, s}^{t}(G)=d_{s}^{t}\left(G^{k}\right)$. In view of Proposition B, $d_{s}^{t}\left(G^{k}\right)$ is odd and thus $d_{k, s}^{t}(G)$ is odd, and the proof is complete.

Theorem 8. If G is a graph with $\delta(G) \geq 1$, then

$$
1 \leq d_{k, s}^{t}(G) \leq \delta_{k}(G)
$$

Moreover, if $d_{k, s}^{t}(G)=\delta_{k}(G)$, then for each function of any $d_{k, s}^{t}-$ family $\left\{f_{1}, f_{2}, \cdots, f_{d}\right\}$ and for all vertices v of minimum k-degree $\delta_{k}(G), \sum_{u \in N_{k, G}(v)} f_{i}(u)$ $=1$ and $\sum_{i=1}^{d} f_{i}(u)=1$ for every $u \in N_{k, G}(v)$.

Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a STDkD family of G such that $d=d_{k, s}^{t}(G)$, and let v be a vertex of minimum k-degree $\delta_{k}(G)$. Then $\left|N_{k, G}(v)\right|=\delta_{k}(G)$ and

$$
\begin{aligned}
1 \leq d & =\sum_{i=1}^{d} 1 \leq \sum_{i=1}^{d} \sum_{u \in N_{k, G}(v)} f_{i}(u) \\
& =\sum_{u \in N_{k, G}(v)} \sum_{i=1}^{d} f_{i}(u) \leq \sum_{u \in N_{k, G}(v)} 1=\delta_{k}(G) .
\end{aligned}
$$

If $d_{k, s}^{t}(G)=\delta_{k}(G)$, then the two inequalities occurring in the proof become equalities, which gives the two properties given in the statement.

THEOREM 9. Let $k \geq 1$ be an integer, and let G be a graph with $\delta(G) \geq 1$. If G contains a vertex v of even k-degree $\operatorname{deg}_{k, G}(v)=2 t$ with an integer $t \geq 1$, then $d_{k, s}^{t}(G) \leq t$ when t is odd and $d_{k, s}^{t}(G) \leq t-1$ when t is even.

Proof. Since $\operatorname{deg}_{k, G}(v)=\operatorname{deg}_{G^{k}}(v)=2 t$, Proposition D and (2) imply that $d_{k, s}^{t}(G)=d_{s}^{t}\left(G^{k}\right) \leq t$ when t is odd and $d_{k, s}^{t}(G)=d_{s}^{t}\left(G^{k}\right) \leq t-1$ when t is even.

Restricting our attention to graphs G of even minimum k-degree, Theorem 9 leads to a considerable improvement of the upper bound of $d_{k, s}^{t}(G)$ given in Theorem 8.

Corollary 10. If $k \geq 1$ is an integer, and G is a graph of even minimum k degree $\delta_{k}(G) \geq 1$, then $d_{k, s}^{t}(G) \leq \delta_{k}(G) / 2$ when $\delta_{k}(G) \equiv 2(\bmod 4)$ and $d_{k, s}^{t}(G) \leq$ $\delta_{k}(G) / 2-1$ when $\delta_{k}(G) \equiv 0(\bmod 4)$.

Theorem 11. Let G be a graph of order n with signed total distance k domination number $\gamma_{k, s}^{t}(G)$ and signed total distance k-domatic number $d_{k, s}^{t}(G)$. Then

$$
\gamma_{k, s}^{t}(G) \cdot d_{k, s}^{t}(G) \leq n
$$

Moreover, if $\gamma_{k, s}^{t}(G) \cdot d_{k, s}^{t}(G)=n$, then for each STDkD family $\left\{f_{1}, f_{2}, \cdots, f_{d}\right\}$ on G with $d=d_{k, s}^{t}(G)$, each function f_{i} is a $\gamma_{k, s}^{t}$-function and $\sum_{i=1}^{d} f_{i}(v)=1$ for all $v \in V$.

Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a STDkD family on G such that $d=d_{k, s}^{t}(G)$ and let $v \in V$. Then

$$
\begin{aligned}
d \cdot \gamma_{k, s}^{t}(G) & =\sum_{i=1}^{d} \gamma_{k, s}^{t}(G) \leq \sum_{i=1}^{d} \sum_{v \in V} f_{i}(v) \\
& =\sum_{v \in V} \sum_{i=1}^{d} f_{i}(v) \leq \sum_{v \in V} 1=n
\end{aligned}
$$

If $\gamma_{k, s}^{t}(G) \cdot d_{k, s}^{t}(G)=n$, then the two inequalities occurring in the proof become equalities. Hence for the $d_{k, s}^{t}$-family $\left\{f_{1}, f_{2}, \cdots, f_{d}\right\}$ on G and for each i, $\sum_{v \in V} f_{i}(v)=\gamma_{k, s}^{t}(G)$, thus each function f_{i} is a $\gamma_{k, s}^{t}$-function, and $\sum_{i=1}^{d} f_{i}(v)=1$ for all v.

The next corollary is a consequence of Theorem 11 and Proposition 7, and it improves Observation 1.

Corollary 12. If $\gamma_{k, s}^{t}(G)>\frac{n}{3}$, then $d_{k, s}^{t}(G)=1$.
The upper bound on the product $\gamma_{k, s}^{t}(G) \cdot d_{k, s}^{t}(G)$ leads to a bound on the sum.

THEOREM 13. If G is a graph of order n with minimum degree $\delta(G) \geq 1$, then

$$
\gamma_{k, s}^{t}(G)+d_{k, s}^{t}(G) \leq n+1
$$

with equality if and only if $d_{k, s}^{t}(G)=1$ and $\gamma_{k, s}^{t}(G)=n$.

Proof. According to Theorem 11, we obtain

$$
\begin{equation*}
\gamma_{k, s}^{t}(G)+d_{k, s}^{t}(G) \leq \frac{n}{d_{k, s}^{t}(G)}+d_{k, s}^{t}(G) \tag{6}
\end{equation*}
$$

In view of Theorem 8 , we have $1 \leq d_{k, s}^{t}(G) \leq n$. Using theses inequalities, and the fact that the function $g(x)=x+n / x$ is decreasing for $1 \leq x \leq \sqrt{n}$ and increasing for $\sqrt{n} \leq x \leq n$ inequality (6) leads to

$$
\gamma_{k, s}^{t}(G)+d_{k, s}^{t}(G) \leq \frac{n}{d_{k, s}^{t}(G)}+d_{k, s}^{t}(G) \leq \max \{g(1), g(n)\}=n+1
$$

and the desired bound is proved.
If $d_{k, s}^{t}(G)=1$ and $\gamma_{k, s}^{t}(G)=n$, then obviously $\gamma_{k, s}^{t}(G)+d_{k, s}^{t}(G)=n+1$.
Conversely, assume that $\gamma_{k, s}^{t}(G)+d_{k, s}^{t}(G)=n+1$. In view of Theorem 8, we observe that $d_{k, s}^{t}(G) \leq \delta_{k}(G) \leq n-1$. If $n=2$, then we deduce that $d_{k, s}^{t}(G)=1$. If we assume in the case $n \geq 3$ that $2 \leq d_{k, s}^{t}(G)$, then we obtain as above that

$$
\begin{aligned}
\gamma_{k, s}^{t}(G)+d_{k, s}^{t}(G) & \leq \frac{n}{d_{k, s}^{t}(G)}+d_{k, s}^{t}(G) \leq \max \{g(2), g(n-1)\} \\
& =\max \left\{\frac{n}{2}+2, \frac{n}{n-1}+n-1\right\}<n+1
\end{aligned}
$$

a contradiction to the assumption $\gamma_{k, s}^{t}(G)+d_{k, s}^{t}(G)=n+1$. It follows that $d_{k, s}^{t}(G)=1$ in each case and hence $\gamma_{k, s}^{t}(G)=n$. This completes the proof.

Corollary 14. Let $k \geq 1$ be an integer, and let G be a graph of order n and minimum degree $\delta(G) \geq 1$.

If $k=1$, then $\gamma_{k, s}^{t}(G)+d_{k, s}^{t}(G)=n+1$ if and only if for each $v \in V(G)$, there exists a vertex $u \in N_{G}(v)$ such that $\operatorname{deg}_{G}(u)=1$ or $\operatorname{deg}_{G}(u)=2$.

If $k \geq 2$, then $\gamma_{k, s}^{t}(G)+d_{k, s}^{t}(G)=n+1$ if and only if all components of G are of order 2 or 3.

Proof. If $k=1$ and for each $v \in V(G)$, there exists a vertex $u \in N_{G}(v)$ such that $\operatorname{deg}_{G}(u)=1$ or $\operatorname{deg}_{G}(u)=2$, then Proposition A yields $\gamma_{k, s}^{t}(G)=n$. Thus, by Observation 1, $d_{k, s}^{t}(G)=1$ and so $\gamma_{k, s}^{t}(G)+d_{k, s}^{t}(G)=n+1$. If $k \geq 2$ and all components of G are of order 2 or 3 , then it follows from Proposition 6 that $\gamma_{k, s}^{t}(G)=n$ and therefore $\gamma_{k, s}^{t}(G)+d_{k, s}^{t}(G)=n+1$.

Conversely, assume that $\gamma_{k, s}^{t}(G)+d_{k, s}^{t}(G)=n+1$. Theorem 13 implies that $d_{k, s}^{t}(G)=1$ and hence $\gamma_{k, s}^{t}(G)=n$. Now Proposition 6 leads to the desired result, and the proof is complete.

If $2 \leq d_{k, s}^{t}(G)$, then Theorem 13 shows that $\gamma_{k, s}^{t}(G)+d_{k, s}^{t}(G) \leq n$. In the next corollary we will improve this bound slightly.

Corollary 15. Let G be a graph of order $n \geq 3$ with $\delta(G) \geq 1$. If $2 \leq d_{k, s}^{t}(G)$, then

$$
\gamma_{k, s}^{t}(G)+d_{k, s}^{t}(G) \leq n-1
$$

Proof. Since $d_{k, s}^{t}(G) \geq 2$, Theorem 13 implies that $\gamma_{k, s}^{t}(G)+d_{k, s}^{t}(G) \leq n$. Now suppose to the contrary that $\gamma_{k, s}^{t}(G)+d_{k, s}^{t}(G)=n$. It follows from Theorem 7 that $d_{k, s}^{t}(G)$ is odd, a contradiction to the fact that, as seen in the introduction, $\gamma_{k, s}^{t}(G) \equiv n(\bmod 2)$.

Corollary 16. Let G be a graph of order n with $\delta(G) \geq 1$, and let $k \geq 1$ be an integer. If $\min \left\{\gamma_{k, s}^{t}(G), d_{k, s}^{t}(G)\right\} \geq a$, with $2 \leq a \leq \sqrt{n}$, then

$$
\gamma_{k, s}^{t}(G)+d_{k, s}^{t}(G) \leq a+\frac{n}{a}
$$

Proof. Since $\min \left\{\gamma_{k, s}^{t}(G), d_{k, s}^{t}(G)\right\} \geq a \geq 2$, it follows from Theorem 11 that $a \leq d_{k, s}^{t}(G) \leq \frac{n}{a}$. Applying the inequality (6), we obtain

$$
\gamma_{k, s}^{t}(G)+d_{k, s}^{t}(G) \leq d_{k, s}^{t}(G)+\frac{n}{d_{k, s}^{t}(G)}
$$

The bound results from the facts that the function $g(x)=x+n / x$ is decreasing for $1 \leq x \leq \sqrt{n}$ and increasing for $\sqrt{n} \leq x \leq n$.

REFERENCES

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, The Macmillan Press Ltd., London and Basingstoke, 1976.
[2] M.A. Henning, Signed total domination in graphs, Discrete Math. 278 (2004), 109-125.
[3] M.A. Henning, On the signed total domatic number of a graph, Ars Combin. 79 (2006), 277288.
[4] A. Khodkar, S.M. Sheikholeslami, Signed total k-domatic numbers of graphs, J. Korean Math. Soc. 48 (2011), 551-563.
[5] G. Mei, Sh. Er-fang, Signed total domatic number of a graph, J. Shanghai Univ. (Engl. Ed.) 12 (2008), 31-34.
[6] L. Volkmann, Upper bounds on the signed total domatic number of graphs, Discrete Appl. Math. 159 (2011), 832-837.
[7] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.
[8] B. Zelinka, Signed total domination number of a graph, Czechoslovak Math. J. 51 (2001), 225-229.
[9] B. Zelinka, Signed 2-domination in caterpillars, Math. Bohem. 129 (2004), 393-398.
(received 16.08.2011; in revised form 04.04.2012; available online 10.06.2012)
S.M. Sheikholeslami, Department of Mathematics, Azarbaijan University of Tarbiat Moallem Tabriz, I.R. Iran
E-mail: s.m.sheikholeslami@azaruniv.edu
L. Volkmann, Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany

E-mail: volkm@math2.rwth-aachen.de

[^0]: 2010 Mathematics Subject Classification: 05C69
 Keywords and phrases: Signed total distance k-domatic number; signed total distance k dominating function; signed total distance k-domination number.

