SIGNED TOTAL DISTANCE k-DOMATIC NUMBERS OF GRAPHS

S. M. Sheikholeslami and L. Volkmann

Abstract. In this paper we initiate the study of signed total distance k-domatic numbers in graphs and we present its sharp upper bounds.

1. Introduction

In this paper, k is a positive integer, and G is a finite simple graph without isolated vertices and with vertex set V = V(G) and edge set E = E(G). For a vertex $v \in V(G)$, the open k-neighborhood $N_{k,G}(v)$ is the set $\{u \in V(G) \mid u \neq v$ and $d(u,v) \leq k\}$. The open k-neighborhood $N_{k,G}(S)$ of a set $S \subseteq V$ is the set $\bigcup_{v \in S} N_{k,G}(v)$. The k-degree of a vertex v is defined as $\deg_{k,G}(v) = |N_{k,G}(v)|$. The minimum and maximum k-degree of a graph G are denoted by $\delta_k(G)$ and $\Delta_k(G)$, respectively. If $\delta_k(G) = \Delta_k(G)$, then the graph G is called distance-k-regular. The k-th power G^k of a graph G is the graph with vertex set V(G) where two different vertices u and v are adjacent if and only if the distance d(u,v) is at most k in G. Now we observe that $N_{k,G}(v) = N_{1,G^k}(v) = N_{G^k}(v)$, $\deg_{k,G}(v) = \deg_{1,G^k}(v) =$ $\deg_{G^k}(v)$, $\delta_k(G) = \delta_1(G^k) = \delta(G^k)$ and $\Delta_k(G) = \Delta_1(G^k) = \Delta(G^k)$. If k = 1, then we also write $\deg_G(v)$, $N_G(v)$, $\delta(G)$ for $\deg_{1,G}(v)$, $N_{1,G}(v)$, $\delta_1(G)$ etc. Consult [7] for the notation and terminology which are not defined here.

For a real-valued function $f: V(G) \longrightarrow \mathbb{R}$, the weight of f is $w(f) = \sum_{v \in V} f(v)$. For $S \subseteq V$, we define $f(S) = \sum_{v \in S} f(v)$. So w(f) = f(V). A signed total distance k-dominating function (STDkD function) is a function $f: V(G) \rightarrow \{-1, 1\}$ satisfying $\sum_{u \in N_{k,G}(v)} f(u) \ge 1$ for every $v \in V(G)$. The minimum of the values of $\sum_{v \in V(G)} f(v)$ taken over all signed total distance k-dominating functions f is called the signed total distance k-domination number and is denoted by $\gamma_{k,s}^t(G)$. Then the function assigning +1 to every vertex of G is a STDkD function, called the function ϵ , of weight n. Thus $\gamma_{k,s}^t(G) \le n$ for every graph of order n. Moreover, the weight of every STDkD function different from ϵ

²⁰¹⁰ Mathematics Subject Classification: 05C69

Keywords and phrases: Signed total distance k-domination number; signed total distance k-domination function; signed total distance k-domination number.

³⁸⁷

is at most n-2 and more generally, $\gamma_{k,s}^t(G) \equiv n \pmod{2}$. Hence $\gamma_{k,s}^t(G) = n$ if and only if ϵ is the unique STDkD function of G. In the special case when k = 1, $\gamma_{k,s}^t(G)$ is the signed total domination number $\gamma_s^t(G)$ investigated in [8] and has been studied by several authors (see for example [2]). The signed total distance 2-domination number of graphs was introduced by Zelinka [9]. By these definitions, we easily obtain

$$\gamma_{k,s}^t(G) = \gamma_s^t(G^k). \tag{1}$$

A set $\{f_1, f_2, \ldots, f_d\}$ of signed total distance k-dominating functions on Gwith the property that $\sum_{i=1}^d f_i(v) \leq 1$ for each $v \in V(G)$, is called a signed total distance k-dominating family on G. The maximum number of functions in a signed total distance k-dominating family on G is the signed total distance k-domatic number of G, denoted by $d_{k,s}^t(G)$. The signed total distance k-domatic number is well-defined and $d_{k,s}^t(G) \geq 1$ for all graphs G, since the set consisting of any one STDkD function, for instance the function ϵ , forms a STDkD family of G. A $d_{k,s}^t-family$ of a graph G is a STDkD family containing $d_{k,s}^t(G)$ STDkD functions. The signed total distance 1-domatic number $d_{1,s}^t(G)$ is the usual signed total domatic number $d_s^t(G)$ which was introduced by Henning in [3] and has been studied by several authors (see for example [5]). Obviously,

$$d_{k,s}^t(G) = d_s^t(G^k).$$

$$\tag{2}$$

OBSERVATION 1. Let G be a graph of order n without isolated vertices. If $\gamma_{k,s}^t(G) = n$, then ϵ is the unique STDkD function of G and so $d_{k,s}^t(G) = 1$.

We first study basic properties and sharp upper bounds for the signed total distance k-domatic number of a graph. Some of them generalize the result obtained for the signed total domatic number.

In this paper we make use of the following results.

PROPOSITION A. Let G be a graph of order n and minimum degree $\delta(G) \geq 1$. Then $\gamma_s^t(G) = n$ if and only if for each $v \in V(G)$, there exists a vertex $u \in N_G(v)$ such that $\deg_G(u) = 1$ or $\deg_G(u) = 2$.

Proof. Assume that $\gamma_s^t(G) = n$ and there exists a vertex v every neighbor of which has degree at least 3. Then the function f that assigns to v the value -1 and to all other vertices the value 1 is a signed total dominating function of G. This leads to the contradiction $\gamma_s^t(G) \leq n-2$. Hence at least one neighbor of v is of degree 1 or 2. On the other hand, if every vertex of v has a neighbor of degree 1 or 2, then ϵ is the unique signed total dominating function of G, and so $\gamma_s^t(G) = n$.

The special case of Proposition A that G is a tree can be found in [2], the proof is almost the same.

PROPOSITION B. [3] The signed total domatic number $d_s^t(G)$ of a graph G, without isolated vertex, is an odd integer.

PROPOSITION C. [3] If G is a graph without isolated vertices, then $1 \leq d_s^t(G) \leq \delta(G)$.

388

PROPOSITION D. [4, 6] Let G be a graph with $\delta(G) \ge 1$, and let v be a vertex of even degree $\deg_G(v) = 2t$ with an integer $t \ge 1$. Then $d_s^t(G) \le t$ when t is odd and $d_s^t(G) \le t - 1$ when t is even.

PROPOSITION E. [3] Let $k \ge 1$ be an integer, and let K_n be the complete graph of order n. For $n \ge 2$, we have

$$\gamma_{k,s}^t(K_n) = \gamma_s^t(K_n) = \begin{cases} 3 & \text{if } n \equiv 1 \pmod{2} \\ 2 & \text{otherwise.} \end{cases}$$
(3)

PROPOSITION F. [3] If K_n is the complete graph of order $n \ge 2$, then

$$d_s^t(K_n) = \begin{cases} \lfloor \frac{n+1}{3} \rfloor - \lceil \frac{n}{3} \rceil + \lfloor \frac{n}{3} \rfloor & \text{if } n \text{ is odd,} \\ \frac{n}{2} - \lceil \frac{n+2}{4} \rceil + \lfloor \frac{n+2}{4} \rfloor & \text{if } n \text{ is even.} \end{cases}$$
(4)

Since $N_{k,K_n}(v) = N_{K_n}(v)$ for each vertex $v \in V(K_n)$ and each positive integer k, each signed total dominating function of K_n is a signed total distance k-dominating function of K_n and vice versa. Using Proposition F, we obtain

$$d_{k,s}^t(K_n) = d_s^t(K_n) = \begin{cases} \lfloor \frac{n+1}{3} \rfloor - \lceil \frac{n}{3} \rceil + \lfloor \frac{n}{3} \rfloor & \text{if } n \text{ is odd,} \\ \frac{n}{2} - \lceil \frac{n+2}{4} \rceil + \lfloor \frac{n+2}{4} \rfloor & \text{if } n \text{ is even.} \end{cases}$$

More generally, the following result is valid.

OBSERVATION 2. Let $k \ge 1$ be an integer, and let G be a graph of order n without isolated vertices. If diam $(G) \le k$, then $\gamma_{k,s}^t(G) = \gamma_s^t(K_n)$ and $d_{k,s}^t(G) = d_s^t(K_n)$.

The next result is immediate by Observation 2, Propositions E and F.

COROLLARY 3. If $k \geq 2$ is an integer, and G is a graph of order n with diam (G) = 2 and $\delta(G) \geq 1$, then

$$\gamma_{k,s}^t(G) = \begin{cases} 3 & \text{if } n \text{ is odd} \\ 2 & \text{if } n \text{ is even,} \end{cases}$$

and

$$d_{k,s}^t(G) = \begin{cases} \lfloor \frac{n+1}{3} \rfloor - \lceil \frac{n}{3} \rceil + \lfloor \frac{n}{3} \rfloor & \text{if } n \text{ is odd,} \\ \frac{n}{2} - \lceil \frac{n+2}{4} \rceil + \lfloor \frac{n+2}{4} \rfloor & \text{if } n \text{ is even.} \end{cases}$$

COROLLARY 4. Let $k \geq 2$ be an integer, and let G be a graph of order nwith $\delta(G) \geq 1$. If diam $(G) \neq 3$, then $\gamma_{k,s}^t(G) = \gamma_s^t(K_n)$ and $d_{k,s}^t(G) = d_s^t(K_n)$ or $\gamma_{k,s}^t(\overline{G}) = \gamma_s^t(K_n)$ and $d_{k,s}^t(\overline{G}) = d_s^t(K_n)$.

Proof. If diam $(G) \leq 2$, then it follows from Observation 2 that $\gamma_{k,s}^t(G) = \gamma_s^t(K_n)$ and $d_{k,s}^t(G) = d_s^t(K_n)$. If diam $(G) \geq 3$, then the hypothesis diam $(G) \neq 3$ implies that diam $(G) \geq 4$. Now, according to a result of Bondy and Murty [1, page 14], we deduce that diam $(\overline{G}) \leq 2$. Applying again Observation 2, we obtain $\gamma_{k,s}^t(\overline{G}) = \gamma_s^t(K_n)$ and $d_{k,s}^t(\overline{G}) = d_s^t(K_n)$.

COROLLARY 5. If $k \geq 3$ is an integer and G a graph of order n with $\delta(G) \geq 1$, then $\gamma_{k,s}^t(G) = \gamma_s^t(K_n)$ and $d_{k,s}^t(G) = d_s^t(K_n)$ or $\gamma_{k,s}^t(\overline{G}) = \gamma_s^t(K_n)$ and $d_{k,s}^t(\overline{G}) = d_s^t(K_n)$.

PROPOSITION 6. Let $k \ge 1$ be an integer, and let G be a graph of order n and minimum degree $\delta(G) \ge 1$.

If k = 1, then $\gamma_{k,s}^t(G) = n$ if and only if for each $v \in V(G)$, there exists a vertex $u \in N_G(v)$ such that $\deg_G(u) = 1$ or $\deg_G(u) = 2$.

If $k \geq 2$, then $\gamma_{k,s}^t(G) = n$ if and only if all components of G are of order 2 or 3.

Proof. In the case k = 1, Proposition A implies the desired result.

Assume now that $k \ge 2$. If all components of G are of order 2 or 3, then it is easy to see that ϵ is the unique STDkD function of G and thus $\gamma_{k,s}^t(G) = n$.

Conversely, assume that $\gamma_{k,s}^t(G) = n$. Suppose to the contrary that G has a component G_1 of order $n(G_1) \geq 4$. If diam $(G_1) \geq 3$, then assume that $x_1x_2...x_m$ is a longest path in G_1 . It is straightforward to verify that the function $f: V(G) \to \{-1, 1\}$ defined by $f(x_1) = -1$ and f(x) = 1 otherwise is a signed total distance k-dominating function of G which is a contradiction. If diam $(G_1) \leq 2$, then Proposition E, Observation 2 and Corollary 3 show that $\gamma_{k,s}^t(G_1) \leq 3 < 4 \leq n(G_1)$ and consequently $\gamma_{k,s}^t(G) < n$. This contradiction completes the proof. \blacksquare

2. Basic properties of the signed total distance k-domatic number

In this section we present basic properties of $d_{k,s}^t(G)$ and sharp bounds on the signed total distance k-domatic number of a graph.

PROPOSITION 7. Let G be a graph with $\delta(G) \geq 1$. The signed total distance k-domatic number of G is an odd integer.

Proof. According to the identity (2), we have $d_{k,s}^t(G) = d_s^t(G^k)$. In view of Proposition B, $d_s^t(G^k)$ is odd and thus $d_{k,s}^t(G)$ is odd, and the proof is complete.

THEOREM 8. If G is a graph with $\delta(G) \ge 1$, then $1 \le d_{k,s}^t(G) \le \delta_k(G).$

Moreover, if $d_{k,s}^t(G) = \delta_k(G)$, then for each function of any $d_{k,s}^t$ -family $\{f_1, f_2, \dots, f_d\}$ and for all vertices v of minimum k-degree $\delta_k(G)$, $\sum_{u \in N_{k,G}(v)} f_i(u) = 1$ and $\sum_{i=1}^d f_i(u) = 1$ for every $u \in N_{k,G}(v)$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a STDkD family of G such that $d = d_{k,s}^t(G)$, and let v be a vertex of minimum k-degree $\delta_k(G)$. Then $|N_{k,G}(v)| = \delta_k(G)$ and

$$1 \le d = \sum_{i=1}^{d} 1 \le \sum_{i=1}^{d} \sum_{u \in N_{k,G}(v)} f_i(u)$$
$$= \sum_{u \in N_{k,G}(v)} \sum_{i=1}^{d} f_i(u) \le \sum_{u \in N_{k,G}(v)} 1 = \delta_k(G)$$

If $d_{k,s}^t(G) = \delta_k(G)$, then the two inequalities occurring in the proof become equalities, which gives the two properties given in the statement.

THEOREM 9. Let $k \ge 1$ be an integer, and let G be a graph with $\delta(G) \ge 1$. If G contains a vertex v of even k-degree $\deg_{k,G}(v) = 2t$ with an integer $t \ge 1$, then $d_{k,s}^t(G) \le t$ when t is odd and $d_{k,s}^t(G) \le t - 1$ when t is even.

Proof. Since $\deg_{k,G}(v) = \deg_{G^k}(v) = 2t$, Proposition D and (2) imply that $d_{k,s}^t(G) = d_s^t(G^k) \le t$ when t is odd and $d_{k,s}^t(G) = d_s^t(G^k) \le t - 1$ when t is even.

Restricting our attention to graphs G of even minimum k-degree, Theorem 9 leads to a considerable improvement of the upper bound of $d_{k,s}^t(G)$ given in Theorem 8.

COROLLARY 10. If $k \ge 1$ is an integer, and G is a graph of even minimum kdegree $\delta_k(G) \ge 1$, then $d_{k,s}^t(G) \le \delta_k(G)/2$ when $\delta_k(G) \equiv 2 \pmod{4}$ and $d_{k,s}^t(G) \le \delta_k(G)/2 - 1$ when $\delta_k(G) \equiv 0 \pmod{4}$.

THEOREM 11. Let G be a graph of order n with signed total distance k-domination number $\gamma_{k,s}^t(G)$ and signed total distance k-domatic number $d_{k,s}^t(G)$. Then

$$\gamma_{k,s}^t(G) \cdot d_{k,s}^t(G) \le n.$$

Moreover, if $\gamma_{k,s}^t(G) \cdot d_{k,s}^t(G) = n$, then for each STDkD family $\{f_1, f_2, \dots, f_d\}$ on G with $d = d_{k,s}^t(G)$, each function f_i is a $\gamma_{k,s}^t$ -function and $\sum_{i=1}^d f_i(v) = 1$ for all $v \in V$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a STDkD family on G such that $d = d_{k,s}^t(G)$ and let $v \in V$. Then

$$d \cdot \gamma_{k,s}^t(G) = \sum_{i=1}^d \gamma_{k,s}^t(G) \le \sum_{i=1}^d \sum_{v \in V} f_i(v)$$
$$= \sum_{v \in V} \sum_{i=1}^d f_i(v) \le \sum_{v \in V} 1 = n.$$

If $\gamma_{k,s}^t(G) \cdot d_{k,s}^t(G) = n$, then the two inequalities occurring in the proof become equalities. Hence for the $d_{k,s}^t$ -family $\{f_1, f_2, \cdots, f_d\}$ on G and for each i, $\sum_{v \in V} f_i(v) = \gamma_{k,s}^t(G)$, thus each function f_i is a $\gamma_{k,s}^t$ -function, and $\sum_{i=1}^d f_i(v) = 1$ for all v.

The next corollary is a consequence of Theorem 11 and Proposition 7, and it improves Observation 1.

COROLLARY 12. If $\gamma_{k,s}^t(G) > \frac{n}{3}$, then $d_{k,s}^t(G) = 1$.

The upper bound on the product $\gamma_{k,s}^t(G) \cdot d_{k,s}^t(G)$ leads to a bound on the sum.

THEOREM 13. If G is a graph of order n with minimum degree $\delta(G) \ge 1$, then $\gamma_{k,s}^t(G) + d_{k,s}^t(G) \le n+1$,

with equality if and only if $d_{k,s}^t(G) = 1$ and $\gamma_{k,s}^t(G) = n$.

Proof. According to Theorem 11, we obtain

$$\gamma_{k,s}^t(G) + d_{k,s}^t(G) \le \frac{n}{d_{k,s}^t(G)} + d_{k,s}^t(G).$$
(6)

In view of Theorem 8, we have $1 \leq d_{k,s}^t(G) \leq n$. Using theses inequalities, and the fact that the function g(x) = x + n/x is decreasing for $1 \leq x \leq \sqrt{n}$ and increasing for $\sqrt{n} \leq x \leq n$ inequality (6) leads to

$$\gamma_{k,s}^t(G) + d_{k,s}^t(G) \le \frac{n}{d_{k,s}^t(G)} + d_{k,s}^t(G) \le \max\{g(1), g(n)\} = n + 1,$$

and the desired bound is proved.

If $d_{k,s}^t(G) = 1$ and $\gamma_{k,s}^t(G) = n$, then obviously $\gamma_{k,s}^t(G) + d_{k,s}^t(G) = n + 1$.

Conversely, assume that $\gamma_{k,s}^t(G) + d_{k,s}^t(G) = n + 1$. In view of Theorem 8, we observe that $d_{k,s}^t(G) \leq \delta_k(G) \leq n - 1$. If n = 2, then we deduce that $d_{k,s}^t(G) = 1$. If we assume in the case $n \geq 3$ that $2 \leq d_{k,s}^t(G)$, then we obtain as above that

$$\begin{split} \gamma_{k,s}^t(G) + d_{k,s}^t(G) &\leq \frac{n}{d_{k,s}^t(G)} + d_{k,s}^t(G) \leq \max\{g(2), g(n-1)\} \\ &= \max\left\{\frac{n}{2} + 2, \frac{n}{n-1} + n - 1\right\} < n+1, \end{split}$$

a contradiction to the assumption $\gamma_{k,s}^t(G) + d_{k,s}^t(G) = n + 1$. It follows that $d_{k,s}^t(G) = 1$ in each case and hence $\gamma_{k,s}^t(G) = n$. This completes the proof.

COROLLARY 14. Let $k \ge 1$ be an integer, and let G be a graph of order n and minimum degree $\delta(G) \ge 1$.

If k = 1, then $\gamma_{k,s}^t(G) + d_{k,s}^t(G) = n+1$ if and only if for each $v \in V(G)$, there exists a vertex $u \in N_G(v)$ such that $\deg_G(u) = 1$ or $\deg_G(u) = 2$.

If $k \geq 2$, then $\gamma_{k,s}^t(G) + d_{k,s}^t(G) = n+1$ if and only if all components of G are of order 2 or 3.

Proof. If k = 1 and for each $v \in V(G)$, there exists a vertex $u \in N_G(v)$ such that $\deg_G(u) = 1$ or $\deg_G(u) = 2$, then Proposition A yields $\gamma_{k,s}^t(G) = n$. Thus, by Observation 1, $d_{k,s}^t(G) = 1$ and so $\gamma_{k,s}^t(G) + d_{k,s}^t(G) = n + 1$. If $k \ge 2$ and all components of G are of order 2 or 3, then it follows from Proposition 6 that $\gamma_{k,s}^t(G) = n$ and therefore $\gamma_{k,s}^t(G) + d_{k,s}^t(G) = n + 1$.

Conversely, assume that $\gamma_{k,s}^t(G) + d_{k,s}^t(G) = n + 1$. Theorem 13 implies that $d_{k,s}^t(G) = 1$ and hence $\gamma_{k,s}^t(G) = n$. Now Proposition 6 leads to the desired result, and the proof is complete.

If $2 \leq d_{k,s}^t(G)$, then Theorem 13 shows that $\gamma_{k,s}^t(G) + d_{k,s}^t(G) \leq n$. In the next corollary we will improve this bound slightly.

COROLLARY 15. Let G be a graph of order $n \ge 3$ with $\delta(G) \ge 1$. If $2 \le d_{k,s}^t(G)$, then

$$\gamma_{k,s}^t(G) + d_{k,s}^t(G) \le n - 1.$$

392

Proof. Since $d_{k,s}^t(G) \geq 2$, Theorem 13 implies that $\gamma_{k,s}^t(G) + d_{k,s}^t(G) \leq n$. Now suppose to the contrary that $\gamma_{k,s}^t(G) + d_{k,s}^t(G) = n$. It follows from Theorem 7 that $d_{k,s}^t(G)$ is odd, a contradiction to the fact that, as seen in the introduction, $\gamma_{k,s}^t(G) \equiv n \pmod{2}$.

COROLLARY 16. Let G be a graph of order n with $\delta(G) \ge 1$, and let $k \ge 1$ be an integer. If $\min\{\gamma_{k,s}^t(G), d_{k,s}^t(G)\} \ge a$, with $2 \le a \le \sqrt{n}$, then

$$\gamma_{k,s}^t(G) + d_{k,s}^t(G) \le a + \frac{n}{a}.$$

Proof. Since $\min\{\gamma_{k,s}^t(G), d_{k,s}^t(G)\} \ge a \ge 2$, it follows from Theorem 11 that $a \le d_{k,s}^t(G) \le \frac{n}{a}$. Applying the inequality (6), we obtain

$$\gamma_{k,s}^{t}(G) + d_{k,s}^{t}(G) \le d_{k,s}^{t}(G) + \frac{n}{d_{k,s}^{t}(G)}$$

The bound results from the facts that the function g(x) = x + n/x is decreasing for $1 \le x \le \sqrt{n}$ and increasing for $\sqrt{n} \le x \le n$.

REFERENCES

- J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, The Macmillan Press Ltd., London and Basingstoke, 1976.
- [2] M.A. Henning, Signed total domination in graphs, Discrete Math. 278 (2004), 109–125.
- [3] M.A. Henning, On the signed total domatic number of a graph, Ars Combin. 79 (2006), 277–288.
- [4] A. Khodkar, S.M. Sheikholeslami, Signed total k-domatic numbers of graphs, J. Korean Math. Soc. 48 (2011), 551–563.
- [5] G. Mei, Sh. Er-fang, Signed total domatic number of a graph, J. Shanghai Univ. (Engl. Ed.) 12 (2008), 31–34.
- [6] L. Volkmann, Upper bounds on the signed total domatic number of graphs, Discrete Appl. Math. 159 (2011), 832–837.
- [7] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.
- [8] B. Zelinka, Signed total domination number of a graph, Czechoslovak Math. J. 51 (2001), 225–229.
- [9] B. Zelinka, Signed 2-domination in caterpillars, Math. Bohem. 129 (2004), 393–398.

(received 16.08.2011; in revised form 04.04.2012; available online 10.06.2012)

S.M. Sheikholeslami, Department of Mathematics, Azarbaijan University of Tarbiat Moallem Tabriz, I.R. Iran

E-mail: s.m.sheikholeslami@azaruniv.edu

L. Volkmann, Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany *E-mail*: volkm@math2.rwth-aachen.de