UNIVALENCE CONDITIONS OF GENERAL INTEGRAL OPERATOR

B. A. Frasin and D. Breaz

Abstract. In this paper, we obtain new univalence conditions for the integral operator

$$
I_{\xi}^{\alpha_{i}, \beta_{i}}\left(f_{1}, \ldots, f_{n}\right)(z)=\left[\xi \int_{0}^{z} t^{\xi-1}\left(f_{1}^{\prime}(t)\right)^{\alpha_{1}}\left(\frac{f_{1}(t)}{t}\right)^{\beta_{1}} \cdots\left(f_{n}^{\prime}(t)\right)^{\alpha_{n}}\left(\frac{f_{n}(t)}{t}\right)^{\beta_{n}} d t\right]^{\frac{1}{\xi}}
$$

of analytic functions defined in the open unit disc.

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}
$$

which are analytic in the open unit $\operatorname{disc} \mathcal{U}=\{z:|z|<1\}$. Further, by \mathcal{S} we shall denote the class of all functions in \mathcal{A} which are univalent in \mathcal{U}.

Very recently, Frasin [13] introduced and studied the following general integral operator

Definition 1.1. Let $\alpha_{i}, \beta_{i} \in \mathbb{C}$ for all $i=1, \ldots, n, n \in \mathbb{N}$. We let $I_{\xi}^{\alpha_{i}, \beta_{i}}$: $\mathcal{A}^{n} \rightarrow \mathcal{A}$ to be the integral operator defined by
$I_{\xi}^{\alpha_{i}, \beta_{i}}\left(f_{1}, \ldots, f_{n}\right)(z)=\left[\xi \int_{0}^{z} t^{\xi-1}\left(f_{1}^{\prime}(t)\right)^{\alpha_{1}}\left(\frac{f_{1}(t)}{t}\right)^{\beta_{1}} \cdots\left(f_{n}^{\prime}(t)\right)^{\alpha_{n}}\left(\frac{f_{n}(t)}{t}\right)^{\beta_{n}} d t\right]^{\frac{1}{\xi}}$,
where $\xi \in \mathbb{C} \backslash\{0\}$ and $f_{i} \in A$ for all $i=1, \ldots, n$.
Here and throughout in the sequel every many-valued function is taken with the principal branch.

[^0]REMARK 1.2. Note that the integral operator $I_{\xi}^{\alpha_{i}, \beta_{i}}\left(f_{1}, \ldots, f_{n}\right)(z)$ generalizes the following operators introduced and studied by several authors:
(1) For $\xi=1$, we obtain the integral operator

$$
I^{\alpha_{i}, \beta_{i}}\left(f_{1}, \ldots, f_{n}\right)(z)=\int_{0}^{z}\left(f_{1}^{\prime}(t)\right)^{\alpha_{1}}\left(\frac{f_{1}(t)}{t}\right)^{\beta_{1}} \cdots\left(f_{n}^{\prime}(t)\right)^{\alpha_{n}}\left(\frac{f_{n}(t)}{t}\right)^{\beta_{n}} d t
$$

introduced and studied by Frasin [14].
(2) For $\xi=1$ and $\alpha_{i}=0$ for all $i=1, \ldots, n$, we obtain the integral operator

$$
F_{n}(z)=\int_{0}^{z}\left(\frac{f_{1}(t)}{t}\right)^{\beta_{1}} \ldots\left(\frac{f_{n}(t)}{t}\right)^{\beta_{n}} d t
$$

introduced and studied by Breaz and Breaz [3].
(3) For $\xi=1$ and $\beta_{i}=0$ for all $i=1, \ldots, n$, we obtain the integral operator

$$
F_{\alpha_{1}, \ldots, \alpha_{n}}(z)=\int_{0}^{z}\left(f_{1}^{\prime}(t)\right)^{\alpha_{1}} \cdots\left(f_{n}^{\prime}(t)\right)^{\alpha_{n}} d t
$$

introduced and studied by Breaz et al. [6].
(4) For $\xi=1, n=1, \alpha_{1}=\alpha, \beta_{1}=\beta$ and $f_{1}=f$, we obtain the integral operator

$$
F_{\alpha, \beta}(z)=\int_{0}^{z}\left(f^{\prime}(t)\right)^{\alpha}\left(\frac{f(t)}{t}\right)^{\beta} d t \quad(\alpha, \beta \in \mathbb{R})
$$

studied in [9] (see also [10]).
(5) For $\xi=1, n=1, \alpha_{1}=0, \beta_{1}=\beta$ and $f_{1}=f$, we obtain the integral operator

$$
F_{\beta}(z)=\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\beta} d t
$$

studied in [7]. In particular, for $\beta=1$, we obtain Alexander integral operator introduced in [1]

$$
I(z)=\int_{0}^{z} \frac{f(t)}{t} d t
$$

(6) For $\xi=1, n=1, \beta_{1}=0, \alpha_{1}=\alpha$ and $f_{1}=f$, we obtain the integral operator

$$
G_{\alpha}(z)=\int_{0}^{z}\left(f^{\prime}(t)\right)^{\alpha} d t
$$

studied in [21] (see also [25]).
Many authors studied the problem of integral operators which preserve the class \mathcal{S} (see, for example, $[2,4,5,7,8,12,19,22,23,24,27])$.

In particular, Pfaltzgraff [25] and Kim and Merkes [16], have obtained the following univalence conditions for the functions $\int_{0}^{z}\left(f^{\prime}(t)\right)^{\alpha} d t$ and $\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\alpha} d t$, respectively.

Theorem 1.3. [25] If $f \in \mathcal{A}$ and $\alpha \in \mathbb{C}$ with $|\alpha| \leq 1 / 4$, then the function $\int_{0}^{z}\left(f^{\prime}(t)\right)^{\alpha} d t$ is in the class \mathcal{S}.

Theorem 1.4. [16] If $f \in \mathcal{A}$ and $\alpha \in \mathbb{C}$ with $|\alpha| \leq 1 / 4$, then the function $\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\alpha} d t$ is in the class \mathcal{S}.

In the present paper, we obtain univalence conditions for the integral operator $I_{\xi}^{\alpha_{i}, \beta_{i}}\left(f_{1}, \ldots, f_{n}\right)(z)$ defined by (1.1).

In order to derive our main results, we have to recall here the following lemmas.
Lemma 1.5. [18] If $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<\frac{5}{4}\left|\frac{z f^{\prime}(z)}{f(z)}\right| \quad(z \in \mathcal{U}) \tag{1.2}
\end{equation*}
$$

then f is univalent and starlike in \mathcal{U}.
Lemma 1.6. [15, 26] If $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right|<\frac{1}{2} \quad(z \in \mathcal{U}) \tag{1.3}
\end{equation*}
$$

then $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1(z \in \mathcal{U})$.
Lemma 1.7. [11] If $f \in \mathcal{S}$ then

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}\right|<\frac{1+|z|}{1-|z|} \quad(z \in \mathcal{U}) \tag{1.4}
\end{equation*}
$$

Lemma 1.8. [20] Let $\delta \in \mathbb{C}$ with $\operatorname{Re}(\delta)>0$. If $f \in \mathcal{A}$ satisfies

$$
\frac{1-|z|^{2 \operatorname{Re}(\delta)}}{\operatorname{Re}(\delta)}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1
$$

for all $z \in \mathcal{U}$, then, for any complex number ξ, with $\operatorname{Re}(\xi) \geq \operatorname{Re}(\delta)$, the integral operator

$$
F_{\xi}(z)=\left\{\xi \int_{0}^{z} t^{\xi-1} f^{\prime}(t) d t\right\}^{\frac{1}{\xi}}
$$

is in the class \mathcal{S}.

2. Main results

We begin by proving the following theorem.
Theorem 2.1. Let $\alpha_{i}, \beta_{i} \in \mathbb{C}$ for all $i=1, \ldots, n$ and each $f_{i} \in \mathcal{A}$ satisfies the condition (1.2). If

$$
\sum_{i=1}^{n}\left(29\left|\alpha_{i}\right|+16\left|\beta_{i}\right|\right) \leq \begin{cases}4 \operatorname{Re} \delta, & \text { if } \operatorname{Re} \delta \in(0,1) \tag{2.1}\\ 4, & \text { if } \operatorname{Re} \delta \in[1, \infty)\end{cases}
$$

then, for any complex number ξ, with $\operatorname{Re}(\xi) \geq \operatorname{Re}(\delta)>0$, the integral operator $I_{\xi}^{\alpha_{i}, \beta_{i}}\left(f_{1}, \ldots, f_{n}\right)(z)$ defined by (1.1) is in the class \mathcal{S}.

Proof. Define a regular function $h(z)$ by

$$
h(z)=\int_{0}^{z} \prod_{i=1}^{n}\left(f_{i}^{\prime}(t)\right)^{\alpha_{i}}\left(\frac{f_{i}(t)}{t}\right)^{\beta_{i}} d t
$$

Then it is easy to see that

$$
\begin{equation*}
h^{\prime}(z)=\prod_{i=1}^{n}\left(f_{i}^{\prime}(z)\right)^{\alpha_{i}}\left(\frac{f_{i}(z)}{z}\right)^{\beta_{i}} \tag{2.2}
\end{equation*}
$$

and $h(0)=h^{\prime}(0)-1=0$. Differentiating both sides of (2.2) logarithmically, we obtain

$$
\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}=\sum_{i=1}^{n} \alpha_{i}\left(\frac{z f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}\right)+\sum_{i=1}^{n} \beta_{i}\left(\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-1\right)
$$

and so

$$
\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}=\sum_{i=1}^{n} \alpha_{i}\left(\frac{z f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}+1\right)-\sum_{i=1}^{n} \alpha_{i}+\sum_{i=1}^{n} \beta_{i}\left(\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-1\right)
$$

From Lemma 1.5, it follows that

$$
\begin{align*}
\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| & \leq \frac{5}{4} \sum_{i=1}^{n}\left|\alpha_{i}\right|\left|\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}\right|+\sum_{i=1}^{n}\left|\beta_{i}\right|\left|\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-1\right|+\sum_{i=1}^{n}\left|\alpha_{i}\right| \\
& \leq \frac{5}{4} \sum_{i=1}^{n}\left|\alpha_{i}\right|\left[\left|\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-1\right|+1\right]+\sum_{i=1}^{n}\left|\beta_{i}\right|\left|\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-1\right|+\sum_{i=1}^{n}\left|\alpha_{i}\right| \\
& \leq \sum_{i=1}^{n}\left[\left(\frac{5}{4}\left|\alpha_{i}\right|+\left|\beta_{i}\right|\right)\left|\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-1\right|\right]+\frac{9}{4} \sum_{i=1}^{n}\left|\alpha_{i}\right| \\
& \leq \sum_{i=1}^{n}\left[\left(\frac{5}{4}\left|\alpha_{i}\right|+\left|\beta_{i}\right|\right)\left(\left|\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}\right|+1\right)\right]+\frac{9}{4} \sum_{i=1}^{n}\left|\alpha_{i}\right| . \tag{2.3}
\end{align*}
$$

Multiplying both sides of (2.3) by $\frac{1-|z|^{2 \operatorname{Re} \delta}}{\operatorname{Re} \delta}$, from (1.4), we get

$$
\begin{align*}
& \frac{1-|z|^{2 \operatorname{Re} \delta}}{\operatorname{Re} \delta}\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \\
& \quad \leq \frac{1-|z|^{2 \operatorname{Re} \delta}}{\operatorname{Re} \delta} \sum_{i=1}^{n}\left(\frac{5}{4}\left|\alpha_{i}\right|+\left|\beta_{i}\right|\right)\left(\frac{2}{1-|z|}\right)+\frac{9\left(1-|z|^{2 \operatorname{Re} \delta}\right) \sum_{i=1}^{n}\left|\alpha_{i}\right|}{4 \operatorname{Re} \delta} . \tag{2.4}
\end{align*}
$$

Suppose that $\operatorname{Re} \delta \in(0,1)$. Define a function $\Phi:(0,1) \rightarrow \mathbb{R}$ by

$$
\Phi(x)=1-a^{2 x} \quad(0<a<1)
$$

Then Φ is an increasing function and consequently for $|z|=a ; z \in \mathcal{U}$, we obtain

$$
\begin{equation*}
1-|z|^{2 \operatorname{Re} \delta}<1-|z|^{2} \tag{2.5}
\end{equation*}
$$

for all $z \in \mathcal{U}$.

We thus find from (2.4) and (2.5) that

$$
\begin{aligned}
\frac{1-|z|^{2 \operatorname{Re} \delta}}{\operatorname{Re} \delta}\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \leq & \frac{\sum_{i=1}^{n}\left(5\left|\alpha_{i}\right|+4\left|\beta_{i}\right|\right)}{\operatorname{Re} \delta}+\frac{9 \sum_{i=1}^{n}\left|\alpha_{i}\right|}{4 \operatorname{Re} \delta} \\
& =\frac{\sum_{i=1}^{n}\left(29\left|\alpha_{i}\right|+16\left|\beta_{i}\right|\right)}{4 \operatorname{Re} \delta}
\end{aligned}
$$

for all $z \in \mathcal{U}$.
Using the hypothesis (2.1) for $\operatorname{Re} \delta \in(0,1)$, we readily get

$$
\frac{1-|z|^{2 \operatorname{Re} \delta}}{\operatorname{Re} \delta}\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \leq 1
$$

Now if $\operatorname{Re} \delta \in[1, \infty)$, we define a function $\Psi:[1, \infty) \rightarrow \mathbb{R}$ by

$$
\Psi(x)=\frac{1-a^{2 x}}{x} \quad(0<a<1)
$$

We observe that the function Ψ is decreasing and consequently for $|z|=a ; z \in \mathcal{U}$, we have

$$
\begin{equation*}
\frac{1-|z|^{2 \operatorname{Re} \delta}}{\operatorname{Re} \delta} \leq 1-|z|^{2} \tag{2.6}
\end{equation*}
$$

for all $z \in \mathcal{U}$. It follows from (2.4) and (2.6) that

$$
\frac{1-|z|^{2 \operatorname{Re} \delta}}{\operatorname{Re} \delta}\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \leq \sum_{i=1}^{n}\left(\frac{29}{4}\left|\alpha_{i}\right|+4\left|\beta_{i}\right|\right)
$$

Using once again the hypothesis (2.1) when $\operatorname{Re} \delta \in[1, \infty)$, we easily get

$$
\frac{1-|z|^{2 \operatorname{Re} \delta}}{\operatorname{Re} \delta}\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \leq 1
$$

Finally by applying Lemma 1.8 , we conclude that the integral operator $I_{\xi}^{\alpha_{i}, \beta_{i}}\left(f_{1}, \ldots, f_{n}\right)(z)$ defined by (1.2) is in the class S.

Letting $n=1, \alpha_{1}=\alpha, \beta_{1}=\beta$ and $f_{1}=f$ in Theorem 2.1, we have

Corollary 2.2. Let $\alpha, \beta \in \mathbb{C}$ and $f \in \mathcal{A}$ satisfy the condition (1.2). If

$$
29|\alpha|+16|\beta| \leq \begin{cases}4 \operatorname{Re} \delta, & \text { if } \operatorname{Re} \delta \in(0,1) \\ 4, & \text { if } \operatorname{Re} \delta \in[1, \infty)\end{cases}
$$

then, for any complex number ξ, with $\operatorname{Re}(\xi) \geq \operatorname{Re}(\delta)>0$, the integral operator

$$
I_{\xi}^{\alpha, \beta}(z)=\left[\xi \int_{0}^{z} t^{\xi-\beta-1}\left(f^{\prime}(t)\right)^{\alpha}(f(t))^{\beta} d t\right]^{\frac{1}{\xi}}
$$

is in the class \mathcal{S}.

Letting $\beta=0$ in Corollary 2.2, we have
Corollary 2.3. Let $\alpha \in \mathbb{C}$ and $f \in \mathcal{A}$ satisfy the condition (1.2). If

$$
|\alpha| \leq \begin{cases}\frac{4 \operatorname{Re} \delta}{29}, & \text { if } \operatorname{Re} \delta \in(0,1) \\ \frac{4}{29}, & \text { if } \operatorname{Re} \delta \in[1, \infty),\end{cases}
$$

then, for any complex number ξ, with $\operatorname{Re}(\xi) \geq \operatorname{Re}(\delta)>0$, the integral operator

$$
I_{\xi}^{\alpha}(z)=\left[\xi \int_{0}^{z} t^{\xi-1}\left(f^{\prime}(t)\right)^{\alpha} d t\right]^{\frac{1}{\xi}}
$$

is in the class \mathcal{S}.
Letting $\alpha=0$ in Corollary 2.2, we have
Corollary 2.4. Let $\beta \in \mathbb{C}$ and $f \in \mathcal{A}$ satisfy the condition (1.2). If

$$
|\beta| \leq \begin{cases}\frac{\operatorname{Re} \delta}{4}, & \text { if } \operatorname{Re} \delta \in(0,1) \\ \frac{1}{4}, & \text { if } \operatorname{Re} \delta \in[1, \infty),\end{cases}
$$

then, for any complex number ξ, with $\operatorname{Re}(\xi) \geq \operatorname{Re}(\delta)>0$, the integral operator

$$
I_{\xi}^{\beta}(z)=\left[\xi \int_{0}^{z} t^{\xi-1}\left(\frac{f(t)}{t}\right)^{\beta} d t\right]^{\frac{1}{\xi}}
$$

is in the class \mathcal{S}.
Letting $\xi=\delta=1$ in Corollary 2.3, we have
Corollary 2.5. If $f \in \mathcal{A}$ and $\alpha \in \mathbb{C}$ with $|\alpha| \leq 4 / 29 \approx 0.137$, then the function $\int_{0}^{z}\left(f^{\prime}(t)\right)^{\alpha} d t$ is in the class \mathcal{S}.

Remark 2.6. If we let $\xi=\delta=1$ in Corollary 2.4, then we have Theorem 1.4.
Next, we obtain the following univalence condition for the integral operator $I_{\xi}^{\alpha_{i}, \beta_{i}}\left(f_{1}, \ldots, f_{n}\right)(z)$ defined by (1.1) when $\beta_{i}=1-\alpha_{i}$ for all $i=1, \ldots, n$.

Theorem 2.7. Let $\alpha_{i}, \beta_{i} \in \mathbb{C}$ for all $i=1, \ldots, n$ and each $f_{i} \in \mathcal{A}$ satisfy the condition (1.3). If $\operatorname{Re} \delta \geq n, n \in \mathbb{N}, \delta \in \mathbb{C}$ with

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\alpha_{i}\right| \leq 2 \operatorname{Re} \delta-2 n \tag{2.7}
\end{equation*}
$$

then, for any complex number ξ, with $\operatorname{Re}(\xi) \geq \operatorname{Re}(\delta)>0$, the integral operator

$$
\begin{equation*}
I_{\xi}^{\alpha_{i}}\left(f_{1}, \ldots, f_{n}\right)(z)=\left[\xi \int_{0}^{z} t^{\xi-1} \prod_{i=1}^{n}\left(t \frac{f_{i}^{\prime}(t)}{f_{i}(t)}\right)^{\alpha_{i}}\left(\frac{f_{i}(t)}{t}\right) d t\right]^{\frac{1}{\xi}} \tag{2.8}
\end{equation*}
$$

is in the class \mathcal{S}.

Proof. Define a regular function $G(z)$ by

$$
\begin{equation*}
G(z)=\int_{0}^{z} \prod_{i=1}^{n}\left(f_{i}^{\prime}(t)\right)^{\alpha_{i}}\left(\frac{f_{i}(t)}{t}\right)^{1-\alpha_{i}} d t \tag{2.9}
\end{equation*}
$$

. Then it follows from (2.9) that

$$
\begin{equation*}
\frac{z G^{\prime \prime}(z)}{G^{\prime}(z)}=\sum_{i=1}^{n} \alpha_{i}\left(1+\frac{z f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}-\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}\right)+\sum_{i=1}^{n}\left(\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-1\right) \tag{2.10}
\end{equation*}
$$

Using Lemma 1.6, from (2.10), we have

$$
\begin{equation*}
\left|\frac{z G^{\prime \prime}(z)}{G^{\prime}(z)}\right| \leq \frac{1}{2} \sum_{i=1}^{n}\left|\alpha_{i}\right|+n \tag{2.11}
\end{equation*}
$$

Multiply both sides of (2.11) by $\frac{1-|z|^{2 \operatorname{Re} \delta}}{\operatorname{Re} \delta}$, we obtain

$$
\begin{aligned}
\frac{1-|z|^{2 \operatorname{Re} \delta}}{\operatorname{Re} \delta}\left|\frac{z G^{\prime \prime}(z)}{G^{\prime}(z)}\right| & \leq \frac{1-|z|^{2 \operatorname{Re} \delta}}{\operatorname{Re} \delta}\left(\frac{1}{2} \sum_{i=1}^{n}\left|\alpha_{i}\right|+n\right) \\
& \leq \frac{1}{2 \operatorname{Re} \delta}\left(\sum_{i=1}^{n}\left|\alpha_{i}\right|+2 n\right)
\end{aligned}
$$

which, in the light of the hypothesis (2.7) yields

$$
\frac{1-|z|^{2 \operatorname{Re} \delta}}{\operatorname{Re} \delta}\left|\frac{z G^{\prime \prime}(z)}{G^{\prime}(z)}\right| \leq 1
$$

Finally by applying Lemma 1.8 , we conclude that the integral operator $I_{\xi}^{\alpha_{i}}\left(f_{1}, \ldots, f_{n}\right)(z)$ defined by (2.8) is in the class \mathcal{S}.

Letting $n=1, \alpha_{1}=\alpha$ and $f_{1}=f$ in Theorem 2.7, we have
Corollary 2.8. Let $f \in \mathcal{A}$ satisfies the condition (1.3), $\alpha, \delta \in \mathbb{C}$ and $\operatorname{Re} \delta \geq$ 1. If

$$
|\alpha| \leq 2 \operatorname{Re} \delta-2
$$

then, for any complex number ξ, with $\operatorname{Re}(\xi) \geq \operatorname{Re}(\delta)$, the integral operator

$$
I_{\xi}^{\alpha}(z)=\left[\xi \int_{0}^{z} t^{\xi+\alpha-2}\left(f^{\prime}(t)\right)^{\alpha}(f(t))^{1-\alpha} d t\right]^{\frac{1}{\xi}}
$$

is in the class \mathcal{S}.
Letting $\alpha=0$ in Corollary 2.8, we have
Corollary 2.9. Let $f \in \mathcal{A}$ satisfies the condition (1.3). If $\delta \in \mathbb{C}, \operatorname{Re} \delta \geq 1$ then, for any complex number ξ, with $\operatorname{Re}(\xi) \geq \operatorname{Re}(\delta)$, the integral operator

$$
I_{\xi}(z)=\left[\xi \int_{0}^{z} t^{\xi-2} f(t) d t\right]^{\frac{1}{\xi}}
$$

is in the class \mathcal{S}.

Letting $\alpha=1$ in Corollary 2.8, we have
Corollary 2.10. Let $f \in \mathcal{A}$ satisfies the condition (1.3). If $\delta \in \mathbb{C}, \operatorname{Re} \delta \geq 3 / 2$ then, for any complex number ξ, with $\operatorname{Re}(\xi) \geq \operatorname{Re}(\delta)$, the integral operator

$$
F_{\xi}(z)=\left[\xi \int_{0}^{z} t^{\xi-1} f^{\prime}(t) d t\right]^{\frac{1}{\xi}}
$$

is in the class \mathcal{S}.
Acknowledgement. The authors would like to thank the referee for his/her helpful comments and suggestions.

REFERENCES

[1] W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. 17 (1915), 12-22.
[2] Á. Baricz, B.A. Frasin, Univalence of integral operators involving Bessel functions, Appl. Math. Lett. 23 (2010), 371-376.
[3] D. Breaz, N. Breaz, Two integral operators, Studia Univ. Babes-Bolyai, Math., Cluj-Napoca 3 (2002), 13-21.
[4] D. Breaz, N. Breaz, Univalence conditions for certain integral operators, Studia Univ. BabesBolyai, Math. 47:2 (2002), 9-15.
[5] D. Breaz, V. Pescar, Univalence conditions for some general integral operators, Banach J. Math. Anal. 1 (2008), 53-58.
[6] D. Breaz, S.Owa, N. Breaz, A new integral univalent operator, Acta Univ. Apul. 16 (2008), 11-16.
[7] E. Deniz, H. Orhan, An extension of the univalence criterion for a family of integral operators, Ann. Univ. Mariae Curie-Sklodowska Sect. A 64 (2010), 29-35.
[8] E. Deniz, H Orhan, H.M. Srivastava, Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessel functions, Taiwansese J. Math. 15 (2011), 883-917.
[9] M. Dorf, J. Szynal, Linear invariance and integral operators of univalent functions, Demonstratio Math. 38 (2005), 47-57.
[10] A.W. Goodman, Univalent Functions, Vol. II, Mariner Pub. Co., Inc., Tampa, Florida, 1983.
[11] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenshaften. Bd. 259, Springer-Verlag, New York, 1983.
[12] B.A. Frasin, Univalence of two general integral operator, Filomat 23:3 (2009), 223-229.
[13] B.A. Frasin, Order of convexity and univalency of general integral operator, J. Franklin Inst. 348 (2011), 1013-1019.
[14] B.A. Frasin, New general integral operator, Comp. Math. Appl. 62 (2011), 4272-4276.
[15] H. Irmak, Ö. F. Çetin, Some theorems involving inequalities on p-valent functions, Turk. J. Math. 23 (1999), 453-459.
[16] Y.J. Kim, E.P. Merkes, On an integral of powers of a spirallike function, Kyungpook Math. J. 12 (1972), 249-252.
[17] S.S. Miller, P.T. Mocanu, M.O. Reade, Starlike integral operators, Pacific J. Math. 79 (1978), 157-168.
[18] M. Obradović, S. Owa, A criterion for starlikeness, Math. Nachr. 140 (1989), 97-102.
[19] G.I. Oros, G. Oros, D. Breaz, Sufficient conditions for univalence of an integral operator, J. Ineq. Appl., Vol. 2008, Article ID 127645, 7 pages.
[20] N. Pascu, An improvement of Backer's univalence criterion, Proc. Commemorative Session Simion Stoilow, Brasov, (1987), 43-48.
[21] N. Pascu, V. Pescar, On the integral operators of Kim-Merkis and Pfaltzgraff, Mathematica $32(55)(1990), 185-192$.
[22] V. Pescar, Univalence of certain integral operators, Acta Univ. Apul. 12 (2006), 43-48.
[23] V. Pescar, On some integral classes of integral operators, General Math. 16 (2008), 11-17.
[24] V. Pescar, Univalence conditions for certain integral operators, JIPAM 7:4, Article 147.
[25] J.A. Pfaltzgraff, Univalence of the integral of $f^{\prime}(z)^{\lambda}$, Bull. London Math. Soc. 7 (1975), 254-256.
[26] S. Ponnusamy, S. Rajasekaran, New sufficient conditions for starlike and univalent functions, Soochow J. Math. 21 (1995), 193-201.
[27] H.M. Srivastava, E. Deniz, H. Orhan, Some general univalence criteria for a family of integral operators, Appl. Math. Comp. 215 (2010), 3696-370.
(received 23.08.2011; in revised form 21.02.2012; available online 10.06.2012)
B.A. Frasin, Faculty of Science, Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan
E-mail: bafrasin@yahoo.com
D. Breaz, Department of Mathematics "1 Decembrie 1918". University of Alba Iulia 510009 Alba Iulia, Romania
E-mail: dbreaz@uab.ro

[^0]: 2010 Mathematics Subject Classification: 30C45
 Keywords and phrases: Analytic function; univalent function; integral operator.

