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MAJORIZATION PROBLEM FOR A SUBCLASS OF p-VALENTLY
ANALYTIC FUNCTIONS DEFINED BY THE WRIGHT

GENERALIZED HYPERGEOMETRIC FUNCTION

S. P. Goyal and Sanjay Kumar Bansal

Abstract. In this paper we investigate the majorization problem for a subclass of p-valently
analytic functions involving the Wright generalized hypergeometric function. Some useful conse-
quences of the main result are mentioned and relevance with some of the earlier results are also
pointed out.

1. Introduction

Let f and g be analytic functions in the open unit disk

U = {z : z ∈ C, 0 ≤ |z| < 1} .

We say that f(z) is majorized by g(z) in U [16] and write f(z) ¿ g(z) (z ∈ U), if
there exists a function ϕ, analytic in U such that

|ϕ(z)| ≤ 1 and f(z) = ϕ(z)g(z) (z ∈ U). (1.1)

Note that majorization is closely related to the concept of quasi-subordination
between analytic functions [22].

Further, f is said to be subordinate to g in U, if there exists a Schwarz function
w(z) which is analytic in U, with w(0) = 0 and |w(z)| < 1 (z ∈ U) such that
f(z) = g(w(z)) (z ∈ U). We denote this subordination by

f(z) ≺ g(z) (z ∈ U).

In particular, if f(z) is univalent in U, we have the following equivalence (see [18])

f(z) ≺ g(z) (z ∈ U) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).
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2. The class Sq
p,l,s [α1, A1, A, B; γ]

Let Ap denote the class of functions of the form

f(z) = zp +
∞∑

k=p+1

akzk, (p ∈ N), (2.1)

which are analytic and multivalent in the open unit disk U. In particular if p = 1,
then A1 = A.

For the functions fj ∈ Ap given by

fj(z) = zp +
∞∑

k=p+1

ak,jz
k, (j = 1, 2; p ∈ N),

we define the Hadamard product (or convolution) of f1 and f2 by

(f1 ∗ f2)(z) = zp +
∞∑

k=p+1

ak,1ak,2z
k = (f2 ∗ f1)(z).

Let l, s ∈ N. For positive real parameters αi, Ai; βj , Bj (i = 1, . . . , l; j = 1, . . . , s),
with

1 +
s∑

j=1

Bj −
l∑

i=1

Ai ≥ 0,

the Fox-Wright function lψs is defined by (see [24])

lψs[(αj , Aj)1,l; (βj , Bj)1,s; z] =
∞∑

n=0

∏l
j=1 Γ(αj + nAj)zn

∏s
j=1 Γ(βj + nBj)n!

(z ∈ U).

In particular, when Ai = Bj = 1 (i = 1, . . . , l; j = 1, . . . , s), we have the following
relationship:

lFs(α1, . . . , αl; β1, . . . , βs; z) = Ω lψs[(α1, 1)1,l; (βj , 1)1,s; z] (l ≤ s + 1; z ∈ U),

where

Ω :=
Γ(β1) . . . Γ(βs)
Γ(α1) . . . (αl)

.

The Fox-Wright generalized hypergeometric function has been used in many papers
on geometric function theory [see e.g. [3–5,8,9]).

Corresponding to the function φp defined by

φp[(αj , Aj)1,l; (βj , Bj)1,s; z] = Ωzp
lψs[(αj , Aj)1,l; (βj , Bj)1,s; z] (z ∈ U),

Dziok and Raina [8] considered a linear operator

θp[(α1, A1), . . . , (αl, Al); (β1, B1), . . . , (βs, Bs)] : Ap −→ Ap

defined by the following Hadamard product

θp,l,s(α1, A1)f(z) := φp[(αj , Aj)1,l; (bj , βj)1,s; z] ∗ f(z).

If f ∈ Ap is given by the equation (2.1), then we have

θp,l,s(α1, A1)f(z) = zp + Ω
∞∑

n=1

∏l
j=1 Γ(αj + nAj)∏s

j=1 Γ(βj + nBj)n!
an+pz

n+p (z ∈ U).
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In particular, for Ai = Bj = 1(i = 1, . . . , l; j = 1, . . . , s), we get the linear operator

Hp,l,s(α1, . . . , αl; β1, . . . , βs)f(z) = Hp,l,s(α1)f(z)

= zp +
∞∑

n=1

Πl
j=1(αj)n

Πs
j=1(βj)nn!

an+pz
n+p (z ∈ U),

studied by Dziok and Srivastava [10]. It should be remarked that the linear operator
Hp,l,s(α1) is a generalization of many other linear operators considered earlier. In
particular, for f(z) ∈ Ap, we have the following observations:

(i) Hp,2,1(a, 1; c)f(z) = Lp(a; c)f(z) (a ∈ R; c ∈ R \ Z−0 ), where Lp(a; c) is the
linear operator studied earlier by Saitoh [21]. It yields another operator L(a, c)f(z)
introduced by Carlson and Shaffer [6] for p=1.

(ii) Hp,2,1(n + p, 1; 1)f(z) = Dn+p−1f(z) (n ∈ N; n > −p), the linear operator
studied by Goel and Sohi [11]. In the case p = 1, we get Dnf(z), the well-known
Ruscheweyh derivative [20] of f(z) ∈ A.

(iii) Hp,2,1(c, λ + p; a)f(z) = Iλ
p (a, c)f(z) (a, n ∈ N \Z−0 , λ > −p), where Iλ

p is
the linear operator studied earlier by Cho, Kwon and Srivastava [7].

(iv) Hp,2,1(1, p + 1; n + p)f(z) = In,pf(z) (n ∈ Z; n > −p), where In,p− is the
extended integral operator considerd by Liu and Noor [15].

(v) Hp,2,1(p + 1, 1; p + 1− λ)f(z) = Ωλ,p
z f(z) (−∞ < λ < p + 1), where Ωλ,p

z is
the extended fractional differintegral operator studied by Patel and Mishra [19].

It is easy to verify the following three-term recurrence relation for the operator
θp,l,s:

z (θp,l,s(α1, A1)f(z))(q+1) =
α1

A1
(θp,l,s(α1 + 1, A1)f(z))(q)

−
(

α1

A1
− p + q

)
(θp,l,s(α1, A1)f(z))(q) (p ∈ N, q ∈ N ∪ {0}, p > q). (2.2)

Using of the operator θp,l,s{(α1, A1)}, we now introduce the following subclass of
functions f ∈ Ap:

Definition 1. A function f(z) ∈ Ap is said to be in the class
Sq

p,l,s [α1, A1, A, B; γ] of p-valently analytic functions of complex order γ 6= 0 in U
if and only if

z(θp,l,s(α1, A1)f(z))(q+1)

(θp,l,s(α1, A1)f(z))(q)
− p + q ≺ γ

(A−B)z
1 + Bz

, (2.3)

(z ∈ U,−1 ≤ B < A ≤ 1, αi, Ai, Bj , βj > 0, (i = 1, . . . , l; j = 1, . . . , s), p ∈ N, q ∈
N0, p > q and γ ∈ C∗ = C− {0}).

Also, T q
p,l,s(α1, A1; γ) = Sq

p,l,s(α1, A1, 1,−1; γ), where T q
p,l,s(α1, A1; γ) denote

the class of functions f ∈ Ap satisfying the following inequality.

Re
{

1
γ

(
z(θp,l,s(α1, A1)f(z))(q+1)

(θp,l,s(α1, A1)f(z))(q)
− p + q

)}
> −1.
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Obviously we have the following relationships:
(i) T q

p,1,0(1; γ) = Sq
p(γ);

(ii) T 0
1,1,0(1; γ) = S(γ)(γ ∈ C∗) (see [17] and [23]);

(iii) T 0
1,1,0(1; 1− α) = S∗(α)(0 ≤ α < 1).

Further we observe that:
(i) For q = 0, l = s + 1, α1 = β1 = p,A1 = B1 = 1, αi = Ai = βj = Bj = 1

(i = 2, 3, . . . , s + 1; j = 2, 3, . . . , s), our class T q
p,l,s (α1, A1, ; γ) reduces to the class

Sp(γ) (γ ∈ C∗) of p-valently starlike functions of order γ in U, where

Sp(γ) =
{

f(z) ∈ Ap : Re
(

1 +
1
γ

(
zf ′(z)
f(z)

− p

))
> 0, p ∈ N, γ ∈ C∗

}
.

(ii) For q = 0, l = s+1, α1 = p+1, β1 = p,A1 = B1 = 1, αi = Ai = βj = Bj = 1
(i = 2, 3, . . . , s + 1; j = 2, 3, . . . , s), T q

p,l,s (α1, A1, ; γ) reduces to the class Kp(γ)
(γ ∈ C∗) of p-valently convex functions of order γ in U, where

Kp(γ) =
{

f(z) ∈ Ap : Re
(

1 +
1
γ

(
1 +

zf ′′(z)
f ′(z)

− p

))
> 0, p ∈ N, γ ∈ C∗

}
.

We shall require the following lemma

Lemma 1. [1] Let γ ∈ C∗ and f ∈ Kq
p(γ). Then

Kq
p(γ) ⊂ Sq

p(
1
2
γ) (γ ∈ C∗).

Altintas et al. [1] investigated the majorization problem for the class S(γ)(γ ∈
C∗). Macgregor [16] investigated the same problem for the class S∗ ≡ S∗(0), while
Goyal and Goswami [14] and Goyal, Bansal and Goswami [13], Goswami and Wang
[12] have investigated the majorization problem for certain subclasses of analytic
functions defined by derivatives and Saitoh operators. In this paper we investigate
majorization problem for the class Sq

p,l,s [α1, A1, A,B; γ] which is an extension of
all the aforementioned and related subclasses. We also give some special cases of
our main result.

3. Majorization problem for the class Sq
p,l,s [α1, A1, A, B; γ]

We shall assume throughout the paper that −1 ≤ B < A ≤ 1, γ ∈ C∗; p ∈ N
and q ∈ N0, αi, Ai, βj , Bj > 0, (i = 1, . . . , l; j = 1, . . . , s) and p > q.

Theorem 1. Let the function f ∈ Ap and suppose that g ∈ Sq
p,l,s [α1, A1, A, B; γ]

and α1
A1

> |γ(A−B) + α1
A1

B|. If

(θp,l,s(α1, A1)f(z))(q) ¿ (θp,l,s(α1, A1)g(z))(q) (z ∈ U), (3.1)

then

|(θp,l,s(α1 + 1, A1)f(z))(q)| ≤ |(θp,l,s(α1 + 1, A1)g(z))(q)| for |z| ≤ r0,
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where r0 = r0(γ, α1, A1, A, B) is the smallest positive root of the equation

r3|α1

A1
B +γ(A−B)|− (

α1

A1
+2|B|)r2−

[
|γ(A−B) +

α1

A1
B|+ 2

]
r+

α1

A1
= 0. (3.2)

Proof. Since g ∈ Sq
p,l,s [α1, A1, A, B; γ], we find from (2.3) that

z(θp,l,s(α1, A1)g(z))(q+1)

(θp,l,s(α1, A1)g(z))(q)
− p + q =

γ(A−B)ω(z)
1 + Bω(z)

, (3.3)

where ω(z) = c1z+c2z
2+. . . , ω ∈ P,P denotes the well known class of the bounded

analytic functions in U (see [18]) and satisfies the conditions

ω(0) = 0, and |ω(z)| ≤ |z| (z ∈ U). (3.4)

Using (2.2) and (3.4) in (3.3), we get

| (θp,l,s(α1, A1)g(z))(q) | ≤
α1
A1

[1 + |B||z|]
α1
A1
− | α1

A1
B + (A−B)γ||z| | (θp,l,s(α1 + 1, A1)g(z))(q) |,

(3.5)
provided that α1

A1
> | α1

A1
B + γ(A−B)| and z ∈ U.

Next, since (θp,l,s(α1, A1)f(z))(q) is majorized by (θp,l,s(α1, A1)g(z))(q) in the
unit disk U, we have from (1.1) that

(θp,l,s(α1, A1)f(z))(q) = ϕ(z) (θp,l,s(α1, A1)g(z))(q) , (3.6)

where |φ(z)| ≤ 1.
Differentiating (3.6) with respect to ‘z’ and multiplying by ‘z’, we get

z(θp,l,s(α1, A1)f(z))(q+1)

= zϕ′(z) (θp,l,s(α1, A1)g(z))(q) + zϕ(z)(θp,l,s(α1, A1)g(z))(q+1),

which on using (2.2) once again, yields

(θp,l,s(α1 + 1, A1)f(z))(q)

=
A1

α1
zϕ′(z) (θp,l,s(α1, A1)g(z))(q) + ϕ(z) (θp,l,s(α1 + 1, A1)g(z))(q) . (3.7)

Thus, noting that ϕ ∈ P satisfies the inequality (see, e.g. Nehari [18])

|ϕ′(z)| ≤ 1− |ϕ(z)|2
1− |z|2 (z ∈ U), (3.8)

and making use of (3.5) and (3.8) in (3.7), we get

| (θp,l,s(α1 + 1, A1)f(z))(q) | ≤
[
|ϕ(z)|+

(
1− |ϕ(z)|2

1− |z|2
)

(
|z|(1 + |B||z|)

α1
A1
− | α1

A1
B + (A−B)γ||z|

)]
| (θp,l,s(α1 + 1, A1)g(z))(q) |,



408 S.P. Goyal, S.K. Bansal

which upon setting |z| = r and |ϕ(z)| = ρ (0 ≤ ρ ≤ 1) leads to the inequality

| (θp,l,s(α1 + 1, A1)f(z))(q) |

≤ υ(ρ)
(1− r2)[ α1

A1
− | α1

A1
B + (A−B)γ|r] | (θp,l,s(α1 + 1, A1)g(z))(q) |,

where

υ(ρ) = −r(1 + |B|r)ρ2 + (1− r2)ρ
[

α1

A1
− |α1

A1
B + (A−B)γ)|r

]
+ r(1 + |B|r).

takes its maximum value at ρ = 1 with r0 = r0(γ, α1, A1, A,B) is the smallest
positive root of the equation (3.2). Furthermore, if 0 ≤ σ ≤ r0, then the function
χ(ρ) defined by

χ(ρ) = −σ(1 + |B|σ)ρ2

+ (1− σ2)
[ α1

A1
− |α1

A1
B + (A−B)γ)|σ

]
+ σ(1 + |B|σ) (3.9)

is an increasing function on the interval 0 ≤ ρ ≤ 1, so that

χ(ρ) ≤ χ(1) = (1− σ2)
[ α1

A1
− |α1

A1
B + (A−B)γ)|σ

]
(0 ≤ ρ ≤ 1; 0 ≤ σ ≤ r0).

Hence, upon setting ρ = 1 in (3.9), we conclude that (3.1) of Theorem 1 holds
true for |z| ≤ r0 = r0(γ, α1, A1, A, B) where r0(γ, α1, A1, A, B) is the smallest
positive root of the equation (3.2). In fact, as one can see easily, in any case,
either

∣∣∣ α1
A1

B + (A−B)γ
∣∣∣ 6= 0, or if it is equal to zero, (3.2) has a unique root in

the interval (0, 1) and this is the smallest positive root of equation (3.2). This
completes the proof of the theorem.

4. Special cases

Setting Ai = Bj = 1, (i = 1, . . . , l; j = 1, . . . , s) in Theorem 1, we get the
following result:

Corollary 1. Let the function f ∈ Ap and suppose that g ∈ Sq
p,l,s (α1, A,B; γ)

and α1 > |γ(A−B)− α1B|. If (Hp,l,s(α1)f(z))(q) ¿ (Hp,l,s(α1)g(z))(q), z ∈ U,
then

|(Hp,l,s(α1 + 1)f(z))(q)| ≤ |(Hp,l,s(α1 + 1)g(z))(q)| for |z| ≤ r1,

where r1 = r1(γ, α1, A, B) is the smallest positive root of the equation

r3
1|γ(A−B) + α1B| − (α1 + 2|B|)r2

1 −
[
|γ(A−B) + α1B|+ 2

]
r1 + α1 = 0.

Setting A = 1 and B = −1, in Theorem 1, we get

Corollary 2. Let the function f ∈ Ap and suppose that g ∈ T q
p,l,s (α1, A1, γ)

and α1
A1

>
∣∣∣2γ − α1

A1

∣∣∣. If (θp,l,s(α1, A1)f(z))(q) ¿ (θp,l,s(α1, A1)g(z))(q) in U, then

|(θp,l,s(α1 + 1, A1)f(z))(q)| ≤ |(θp,l,s(α1 + 1, A1)g(z))(q)|for|z| ≤ r2, (4.1)
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where

r2 = r2 (γ, α1, A1) =





k−
√

k2−4
α1
A1

∣∣2γ− α1
A1

∣∣
2
∣∣2γ− α1

A1

∣∣ , if 2γ 6= α1
A1

,

α1
α1+2A1

, if 2γ = α1
A1

(k = 2 + α1
A1

+ |2γ − α1
A1
|; γ ∈ C∗).

Remark 1. The expression under the square root in (4.1) is positive, since

k2 − 4
α1

A1

∣∣∣∣2γ − α1

A1

∣∣∣∣ =
(

α1

A1
−

∣∣∣∣2γ − α1

A1

∣∣∣∣
)2

+ 4 +
4α1

A1
+ 4

∣∣∣∣2γ − α1

A1

∣∣∣∣

>

(
α1

A1
−

∣∣∣∣2γ − α1

A1

∣∣∣∣
)2

+ 4 + 8
∣∣∣∣2γ − α1

A1

∣∣∣∣ > 0.

Further, putting l = s+1, α1 = β1 = p, A1 = B1 = 1, αi = Ai = βj = Bj = 1,
(i = 2, . . . , s + 1; j = 2, . . . , s), in Corollary 2, we get

Corollary 3. [1] Let the function f ∈ Ap and suppose that g ∈ Sq
p. If

(f(z))(q) ¿ (g(z))(q) in U, then

|(f(z))(q+1)| ≤ |(g(z))(q+1)| for |z| ≤ r3,

where

r3 = r3(γ, p, q) =
k −

√
k2 − 4p|2γ − p + q|
2|2γ − p + q| (4.2)

(k = 2 + p− q + |2γ − p + q|; and p ∈ N, q ∈ N0, γ ∈ C∗).
Putting q = 0 in Corollary 3, we obtain

Corollary 4. Let the function f ∈ Ap and suppose that g ∈ Sp(γ). If
f(z) ¿ g(z) in U, then

|f ′(z)| ≤ |g′(z)| for |z| ≤ r4,

where

r4 = r4(γ, p) =
k −

√
k2 − 4p|2γ − p|
2|2γ − p| (4.3)

(k = 2 + p + |2γ − p|; and p ∈ N, γ ∈ C∗).
Putting q = 0, l = s + 1, β1 = p, α1 = p + 1, A1 = B1 = 1, αi = Ai = Bj =

βj = 1 (i = 2, 3, . . . , s + 1; j = 2, 3, . . . , s) in Corollary 2, with the aid of Lemma 1,
we get the following result.

Corollary 5. Let the function f ∈ Ap and suppose that g ∈ Kp(γ). If
f(z) ¿ g(z) in U, then

|f ′(z)| ≤ |g′(z)|for|z| ≤ r5,

where

r5 = r5(γ, p) =
k −

√
k2 − 4p|γ − p|
2|γ − p| (4.4)

(k = 2 + p + |γ − p|; and p ∈ N, γ ∈ C∗).
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Further, putting l = 2, s = 1, α1 = α, α2 = 1, β1 = β, A1 = A2 = B1 = 1 in
Corollary 2, we get

Corollary 6. Let the function f ∈ Ap and suppose that g ∈ T q
p,2,1(α1, 1, β; γ)

and α ≥ |2γ − α|. If (Lp(α, β)f(z))(q) ¿ (Lp(α, β)g(z))(q) in U, then

|(Lp(α + 1, β)f(z))(q)| ≤ |(Lp(α + 1, β)g(z))(q)|for|z| ≤ r6,

where

r6 = r6(γ, α) =

{
k−
√

k2−4α|2γ−α|
2|2γ−α| , if 2γ 6= α,

α
α+2 , if 2γ = α

(4.5)

(k = 2 + α + |2γ − α| and γ ∈ C \ {0}).
This is a known result obtained recently by Goyal, Bansal and Goswami [13].
Further, putting α = 1, we get a known result obtained by Altinas et al. [2],

which contains another known result obtained by MacGregor [16], when γ = 1.
Also, putting α = p + 1 and β = p − λ + 1 in Corollary 6, we get a known result
obtained by Goyal and Goswami [14].

Remark 2. In view of Remark 1 mentioned with Corollary 1, it can be
proved easily that the expressions under the square roots occurring in (4.2)–(4.5)
are positive.
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