# MAJORIZATION PROBLEM FOR A SUBCLASS OF $p$-VALENTLY ANALYTIC FUNCTIONS DEFINED BY THE WRIGHT GENERALIZED HYPERGEOMETRIC FUNCTION 

S. P. Goyal and Sanjay Kumar Bansal


#### Abstract

In this paper we investigate the majorization problem for a subclass of $p$-valently analytic functions involving the Wright generalized hypergeometric function. Some useful consequences of the main result are mentioned and relevance with some of the earlier results are also pointed out.


## 1. Introduction

Let $f$ and $g$ be analytic functions in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C}, 0 \leq|z|<1\}
$$

We say that $f(z)$ is majorized by $g(z)$ in $\mathbb{U}[16]$ and write $f(z) \ll g(z)(z \in \mathbb{U})$, if there exists a function $\varphi$, analytic in $\mathbb{U}$ such that

$$
\begin{equation*}
|\varphi(z)| \leq 1 \text { and } f(z)=\varphi(z) g(z)(z \in \mathbb{U}) \tag{1.1}
\end{equation*}
$$

Note that majorization is closely related to the concept of quasi-subordination between analytic functions [22].

Further, $f$ is said to be subordinate to $g$ in $\mathbb{U}$, if there exists a Schwarz function $w(z)$ which is analytic in $\mathbb{U}$, with $w(0)=0$ and $|w(z)|<1(z \in \mathbb{U})$ such that $f(z)=g(w(z))(z \in \mathbb{U})$. We denote this subordination by

$$
f(z) \prec g(z) \quad(z \in \mathbb{U})
$$

In particular, if $f(z)$ is univalent in $\mathbb{U}$, we have the following equivalence (see [18])

$$
f(z) \prec g(z)(z \in \mathbb{U}) \Longleftrightarrow f(0)=g(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U})
$$

[^0] function.

## 2. The class $S_{p, l, s}^{q}\left[\alpha_{1}, A_{1}, A, B ; \gamma\right]$

Let $\mathcal{A}_{p}$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}, \quad(p \in \mathbb{N}) \tag{2.1}
\end{equation*}
$$

which are analytic and multivalent in the open unit disk $\mathbb{U}$. In particular if $p=1$, then $\mathcal{A}_{1}=\mathcal{A}$.

For the functions $f_{j} \in \mathcal{A}_{p}$ given by

$$
f_{j}(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k, j} z^{k}, \quad(j=1,2 ; p \in \mathbb{N})
$$

we define the Hadamard product (or convolution) of $f_{1}$ and $f_{2}$ by

$$
\left(f_{1} * f_{2}\right)(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k, 1} a_{k, 2} z^{k}=\left(f_{2} * f_{1}\right)(z)
$$

Let $l, s \in \mathbb{N}$. For positive real parameters $\alpha_{i}, A_{i} ; \beta_{j}, B_{j}(i=1, \ldots, l ; j=1, \ldots, s)$, with

$$
1+\sum_{j=1}^{s} B_{j}-\sum_{i=1}^{l} A_{i} \geq 0
$$

the Fox-Wright function $l \psi_{s}$ is defined by (see [24])

$$
{ }_{l} \psi_{s}\left[\left(\alpha_{j}, A_{j}\right)_{1, l} ;\left(\beta_{j}, B_{j}\right)_{1, s} ; z\right]=\sum_{n=0}^{\infty} \frac{\prod_{j=1}^{l} \Gamma\left(\alpha_{j}+n A_{j}\right) z^{n}}{\prod_{j=1}^{s} \Gamma\left(\beta_{j}+n B_{j}\right) n!} \quad(z \in \mathbb{U})
$$

In particular, when $A_{i}=B_{j}=1(i=1, \ldots, l ; j=1, \ldots, s)$, we have the following relationship:

$$
{ }_{l} F_{s}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{s} ; z\right)=\Omega_{l} \psi_{s}\left[\left(\alpha_{1}, 1\right)_{1, l} ;\left(\beta_{j}, 1\right)_{1, s} ; z\right] \quad(l \leq s+1 ; z \in \mathbb{U})
$$

where

$$
\Omega:=\frac{\Gamma\left(\beta_{1}\right) \ldots \Gamma\left(\beta_{s}\right)}{\Gamma\left(\alpha_{1}\right) \ldots\left(\alpha_{l}\right)}
$$

The Fox-Wright generalized hypergeometric function has been used in many papers on geometric function theory [see e.g. $[3-5,8,9]$ ).

Corresponding to the function $\phi_{p}$ defined by

$$
\phi_{p}\left[\left(\alpha_{j}, A_{j}\right)_{1, l} ;\left(\beta_{j}, B_{j}\right)_{1, s} ; z\right]=\Omega z^{p}{ }_{l} \psi_{s}\left[\left(\alpha_{j}, A_{j}\right)_{1, l} ;\left(\beta_{j}, B_{j}\right)_{1, s} ; z\right] \quad(z \in \mathbb{U})
$$

Dziok and Raina [8] considered a linear operator

$$
\theta_{p}\left[\left(\alpha_{1}, A_{1}\right), \ldots,\left(\alpha_{l}, A_{l}\right) ;\left(\beta_{1}, B_{1}\right), \ldots,\left(\beta_{s}, B_{s}\right)\right]: \mathcal{A}_{p} \longrightarrow \mathcal{A}_{p}
$$

defined by the following Hadamard product

$$
\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) f(z):=\phi_{p}\left[\left(\alpha_{j}, A_{j}\right)_{1, l} ;\left(b_{j}, \beta_{j}\right)_{1, s} ; z\right] * f(z)
$$

If $f \in \mathcal{A}_{p}$ is given by the equation (2.1), then we have

$$
\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) f(z)=z^{p}+\Omega \sum_{n=1}^{\infty} \frac{\prod_{j=1}^{l} \Gamma\left(\alpha_{j}+n A_{j}\right)}{\prod_{j=1}^{s} \Gamma\left(\beta_{j}+n B_{j}\right) n!} a_{n+p} z^{n+p} \quad(z \in \mathbb{U})
$$

In particular, for $A_{i}=B_{j}=1(i=1, \ldots, l ; j=1, \ldots, s)$, we get the linear operator

$$
\begin{aligned}
\mathcal{H}_{p, l, s}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{s}\right) f(z) & =\mathcal{H}_{p, l, s}\left(\alpha_{1}\right) f(z) \\
& =z^{p}+\sum_{n=1}^{\infty} \frac{\Pi_{j=1}^{l}\left(\alpha_{j}\right)_{n}}{\Pi_{j=1}^{s}\left(\beta_{j}\right)_{n} n!} a_{n+p} z^{n+p} \quad(z \in \mathbb{U})
\end{aligned}
$$

studied by Dziok and Srivastava [10]. It should be remarked that the linear operator $H_{p, l, s}\left(\alpha_{1}\right)$ is a generalization of many other linear operators considered earlier. In particular, for $f(z) \in \mathcal{A}_{p}$, we have the following observations:
(i) $H_{p, 2,1}(a, 1 ; c) f(z)=L_{p}(a ; c) f(z)\left(a \in \mathbb{R} ; c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}\right)$, where $L_{p}(a ; c)$ is the linear operator studied earlier by Saitoh [21]. It yields another operator $L(a, c) f(z)$ introduced by Carlson and Shaffer [6] for $\mathrm{p}=1$.
(ii) $H_{p, 2,1}(n+p, 1 ; 1) f(z)=D^{n+p-1} f(z)(n \in \mathbb{N} ; n>-p)$, the linear operator studied by Goel and Sohi [11]. In the case $p=1$, we get $D^{n} f(z)$, the well-known Ruscheweyh derivative [20] of $f(z) \in \mathcal{A}$.
(iii) $H_{p, 2,1}(c, \lambda+p ; a) f(z)=I_{p}^{\lambda}(a, c) f(z)\left(a, n \in \mathbb{N} \backslash \mathbb{Z}_{0}^{-}, \lambda>-p\right)$, where $I_{p}^{\lambda}$ is the linear operator studied earlier by Cho, Kwon and Srivastava [7].
(iv) $H_{p, 2,1}(1, p+1 ; n+p) f(z)=I_{n, p} f(z)(n \in \mathbb{Z} ; n>-p)$, where $I_{n, p^{-}}$is the extended integral operator considerd by Liu and Noor [15].
(v) $H_{p, 2,1}(p+1,1 ; p+1-\lambda) f(z)=\Omega_{z}^{\lambda, p} f(z)(-\infty<\lambda<p+1)$, where $\Omega_{z}^{\lambda, p}$ is the extended fractional differintegral operator studied by Patel and Mishra [19].

It is easy to verify the following three-term recurrence relation for the operator $\theta_{p, l, s}$ :

$$
\begin{align*}
& z\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) f(z)\right)^{(q+1)}=\frac{\alpha_{1}}{A_{1}}\left(\theta_{p, l, s}\left(\alpha_{1}+1, A_{1}\right) f(z)\right)^{(q)} \\
& \quad-\left(\frac{\alpha_{1}}{A_{1}}-p+q\right)\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) f(z)\right)^{(q)} \quad(p \in \mathbb{N}, q \in \mathbb{N} \cup\{0\}, p>q) \tag{2.2}
\end{align*}
$$

Using of the operator $\theta_{p, l, s}\left\{\left(\alpha_{1}, A_{1}\right)\right\}$, we now introduce the following subclass of functions $f \in \mathcal{A}_{p}$ :

Definition 1. A function $f(z) \in \mathcal{A}_{p}$ is said to be in the class $S_{p, l, s}^{q}\left[\alpha_{1}, A_{1}, A, B ; \gamma\right]$ of p -valently analytic functions of complex order $\gamma \neq 0$ in $\mathbb{U}$ if and only if

$$
\begin{equation*}
\frac{z\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) f(z)\right)^{(q+1)}}{\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) f(z)\right)^{(q)}}-p+q \prec \gamma \frac{(A-B) z}{1+B z} \tag{2.3}
\end{equation*}
$$

$\left(z \in \mathbb{U},-1 \leq B<A \leq 1, \alpha_{i}, A_{i}, B_{j}, \beta_{j}>0,(i=1, \ldots, l ; j=1, \ldots, s), p \in \mathbb{N}, q \in\right.$ $\mathbb{N}_{0}, p>q$ and $\left.\gamma \in \mathbb{C}^{*}=\mathbb{C}-\{0\}\right)$.

Also, $T_{p, l, s}^{q}\left(\alpha_{1}, A_{1} ; \gamma\right)=S_{p, l, s}^{q}\left(\alpha_{1}, A_{1}, 1,-1 ; \gamma\right)$, where $T_{p, l, s}^{q}\left(\alpha_{1}, A_{1} ; \gamma\right)$ denote the class of functions $f \in \mathcal{A}_{p}$ satisfying the following inequality.

$$
\operatorname{Re}\left\{\frac{1}{\gamma}\left(\frac{z\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) f(z)\right)^{(q+1)}}{\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) f(z)\right)^{(q)}}-p+q\right)\right\}>-1
$$

Obviously we have the following relationships:
(i) $T_{p, 1,0}^{q}(1 ; \gamma)=S_{p}^{q}(\gamma)$;
(ii) $T_{1,1,0}^{0}(1 ; \gamma)=S(\gamma)\left(\gamma \in \mathbb{C}^{*}\right)$ (see [17] and [23]);
(iii) $T_{1,1,0}^{0}(1 ; 1-\alpha)=S^{*}(\alpha)(0 \leq \alpha<1)$.

Further we observe that:
(i) For $q=0, l=s+1, \alpha_{1}=\beta_{1}=p, A_{1}=B_{1}=1, \alpha_{i}=A_{i}=\beta_{j}=B_{j}=1$ $(i=2,3, \ldots, s+1 ; j=2,3, \ldots, s)$, our class $T_{p, l, s}^{q}\left(\alpha_{1}, A_{1}, ; \gamma\right)$ reduces to the class $S_{p}(\gamma)\left(\gamma \in \mathbb{C}^{*}\right)$ of p-valently starlike functions of order $\gamma$ in $\mathbb{U}$, where

$$
S_{p}(\gamma)=\left\{f(z) \in \mathcal{A}_{p}: \operatorname{Re}\left(1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{f(z)}-p\right)\right)>0, p \in \mathbb{N}, \gamma \in \mathbb{C}^{*}\right\}
$$

(ii) For $q=0, l=s+1, \alpha_{1}=p+1, \beta_{1}=p, A_{1}=B_{1}=1, \alpha_{i}=A_{i}=\beta_{j}=B_{j}=1$ $(i=2,3, \ldots, s+1 ; j=2,3, \ldots, s), T_{p, l, s}^{q}\left(\alpha_{1}, A_{1}, ; \gamma\right)$ reduces to the class $K_{p}(\gamma)$ $\left(\gamma \in \mathbb{C}^{*}\right)$ of p -valently convex functions of order $\gamma$ in $\mathbb{U}$, where

$$
K_{p}(\gamma)=\left\{f(z) \in \mathcal{A}_{p}: \operatorname{Re}\left(1+\frac{1}{\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right)\right)>0, p \in \mathbb{N}, \gamma \in \mathbb{C}^{*}\right\}
$$

We shall require the following lemma
Lemma 1. [1] Let $\gamma \in \mathbb{C}^{*}$ and $f \in K_{p}^{q}(\gamma)$. Then

$$
K_{p}^{q}(\gamma) \subset S_{p}^{q}\left(\frac{1}{2} \gamma\right) \quad\left(\gamma \in \mathbb{C}^{*}\right)
$$

Altintas et al. [1] investigated the majorization problem for the class $S(\gamma)(\gamma \in$ $\left.\mathbb{C}^{*}\right)$. Macgregor [16] investigated the same problem for the class $S^{*} \equiv S^{*}(0)$, while Goyal and Goswami [14] and Goyal, Bansal and Goswami [13], Goswami and Wang [12] have investigated the majorization problem for certain subclasses of analytic functions defined by derivatives and Saitoh operators. In this paper we investigate majorization problem for the class $S_{p, l, s}^{q}\left[\alpha_{1}, A_{1}, A, B ; \gamma\right]$ which is an extension of all the aforementioned and related subclasses. We also give some special cases of our main result.

## 3. Majorization problem for the class $S_{p, l, s}^{q}\left[\alpha_{1}, A_{1}, A, B ; \gamma\right]$

We shall assume throughout the paper that $-1 \leq B<A \leq 1, \gamma \in \mathbb{C}^{*} ; p \in \mathbb{N}$ and $q \in \mathbb{N}_{0}, \alpha_{i}, A_{i}, \beta_{j}, B_{j}>0,(i=1, \ldots, l ; j=1, \ldots, s)$ and $p>q$.

Theorem 1. Let the function $f \in \mathcal{A}_{p}$ and suppose that $g \in S_{p, l, s}^{q}\left[\alpha_{1}, A_{1}, A, B ; \gamma\right]$ and $\frac{\alpha_{1}}{A_{1}}>\left|\gamma(A-B)+\frac{\alpha_{1}}{A_{1}} B\right|$. If

$$
\begin{equation*}
\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) f(z)\right)^{(q)} \ll\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) g(z)\right)^{(q)} \quad(z \in \mathbb{U}) \tag{3.1}
\end{equation*}
$$

then

$$
\left|\left(\theta_{p, l, s}\left(\alpha_{1}+1, A_{1}\right) f(z)\right)^{(q)}\right| \leq\left|\left(\theta_{p, l, s}\left(\alpha_{1}+1, A_{1}\right) g(z)\right)^{(q)}\right| \text { for }|z| \leq r_{0}
$$

where $r_{0}=r_{0}\left(\gamma, \alpha_{1}, A_{1}, A, B\right)$ is the smallest positive root of the equation

$$
\begin{equation*}
r^{3}\left|\frac{\alpha_{1}}{A_{1}} B+\gamma(A-B)\right|-\left(\frac{\alpha_{1}}{A_{1}}+2|B|\right) r^{2}-\left[\left|\gamma(A-B)+\frac{\alpha_{1}}{A_{1}} B\right|+2\right] r+\frac{\alpha_{1}}{A_{1}}=0 \tag{3.2}
\end{equation*}
$$

Proof. Since $g \in S_{p, l, s}^{q}\left[\alpha_{1}, A_{1}, A, B ; \gamma\right]$, we find from (2.3) that

$$
\begin{equation*}
\frac{z\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) g(z)\right)^{(q+1)}}{\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) g(z)\right)^{(q)}}-p+q=\frac{\gamma(A-B) \omega(z)}{1+B \omega(z)} \tag{3.3}
\end{equation*}
$$

where $\omega(z)=c_{1} z+c_{2} z^{2}+\ldots, \omega \in \mathcal{P}, \mathcal{P}$ denotes the well known class of the bounded analytic functions in $\mathbb{U}$ (see [18]) and satisfies the conditions

$$
\begin{equation*}
\omega(0)=0, \text { and }|\omega(z)| \leq|z|(z \in \mathbb{U}) \tag{3.4}
\end{equation*}
$$

Using (2.2) and (3.4) in (3.3), we get

$$
\begin{equation*}
\left|\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) g(z)\right)^{(q)}\right| \leq \frac{\frac{\alpha_{1}}{A_{1}}[1+|B||z|]}{\frac{\alpha_{1}}{A_{1}}-\left|\frac{\alpha_{1}}{A_{1}} B+(A-B) \gamma\right||z|}\left|\left(\theta_{p, l, s}\left(\alpha_{1}+1, A_{1}\right) g(z)\right)^{(q)}\right| \tag{3.5}
\end{equation*}
$$

provided that $\frac{\alpha_{1}}{A_{1}}>\left|\frac{\alpha_{1}}{A_{1}} B+\gamma(A-B)\right|$ and $z \in \mathbb{U}$.
Next, since $\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) f(z)\right)^{(q)}$ is majorized by $\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) g(z)\right)^{(q)}$ in the unit disk $\mathbb{U}$, we have from (1.1) that

$$
\begin{equation*}
\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) f(z)\right)^{(q)}=\varphi(z)\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) g(z)\right)^{(q)} \tag{3.6}
\end{equation*}
$$

where $|\phi(z)| \leq 1$.
Differentiating (3.6) with respect to ' $z$ ' and multiplying by ' $z$ ', we get

$$
\begin{aligned}
& z\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) f(z)\right)^{(q+1)} \\
& \quad=z \varphi^{\prime}(z)\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) g(z)\right)^{(q)}+z \varphi(z)\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) g(z)\right)^{(q+1)}
\end{aligned}
$$

which on using (2.2) once again, yields

$$
\begin{align*}
& \left(\theta_{p, l, s}\left(\alpha_{1}+1, A_{1}\right) f(z)\right)^{(q)} \\
& \quad=\frac{A_{1}}{\alpha_{1}} z \varphi^{\prime}(z)\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) g(z)\right)^{(q)}+\varphi(z)\left(\theta_{p, l, s}\left(\alpha_{1}+1, A_{1}\right) g(z)\right)^{(q)} \tag{3.7}
\end{align*}
$$

Thus, noting that $\varphi \in \mathcal{P}$ satisfies the inequality (see, e.g. Nehari [18])

$$
\begin{equation*}
\left|\varphi^{\prime}(z)\right| \leq \frac{1-|\varphi(z)|^{2}}{1-|z|^{2}} \quad(z \in \mathbb{U}) \tag{3.8}
\end{equation*}
$$

and making use of (3.5) and (3.8) in (3.7), we get

$$
\begin{aligned}
& \left|\left(\theta_{p, l, s}\left(\alpha_{1}+1, A_{1}\right) f(z)\right)^{(q)}\right| \leq\left[|\varphi(z)|+\left(\frac{1-|\varphi(z)|^{2}}{1-|z|^{2}}\right)\right. \\
& \left.\left(\frac{|z|(1+|B||z|)}{\frac{\alpha_{1}}{A_{1}}-\left|\frac{\alpha_{1}}{A_{1}} B+(A-B) \gamma\right||z|}\right)\right]\left|\left(\theta_{p, l, s}\left(\alpha_{1}+1, A_{1}\right) g(z)\right)^{(q)}\right|
\end{aligned}
$$

which upon setting $|z|=r$ and $|\varphi(z)|=\rho(0 \leq \rho \leq 1)$ leads to the inequality

$$
\begin{aligned}
& \left|\left(\theta_{p, l, s}\left(\alpha_{1}+1, A_{1}\right) f(z)\right)^{(q)}\right| \\
& \quad \leq \frac{v(\rho)}{\left(1-r^{2}\right)\left[\frac{\alpha_{1}}{A_{1}}-\left|\frac{\alpha_{1}}{A_{1}} B+(A-B) \gamma\right| r\right]}\left|\left(\theta_{p, l, s}\left(\alpha_{1}+1, A_{1}\right) g(z)\right)^{(q)}\right|
\end{aligned}
$$

where

$$
\left.\left.v(\rho)=-r(1+|B| r) \rho^{2}+\left(1-r^{2}\right) \rho\left[\frac{\alpha_{1}}{A_{1}}-\left\lvert\, \frac{\alpha_{1}}{A_{1}} B+(A-B) \gamma\right.\right) \right\rvert\, r\right]+r(1+|B| r)
$$

takes its maximum value at $\rho=1$ with $r_{0}=r_{0}\left(\gamma, \alpha_{1}, A_{1}, A, B\right)$ is the smallest positive root of the equation (3.2). Furthermore, if $0 \leq \sigma \leq r_{0}$, then the function $\chi(\rho)$ defined by

$$
\begin{align*}
& \chi(\rho)=-\sigma(1+|B| \sigma) \rho^{2} \\
& \left.\left.\quad+\left(1-\sigma^{2}\right)\left[\frac{\alpha_{1}}{A_{1}}-\left\lvert\, \frac{\alpha_{1}}{A_{1}} B+(A-B) \gamma\right.\right) \right\rvert\, \sigma\right]+\sigma(1+|B| \sigma) \tag{3.9}
\end{align*}
$$

is an increasing function on the interval $0 \leq \rho \leq 1$, so that

$$
\left.\left.\chi(\rho) \leq \chi(1)=\left(1-\sigma^{2}\right)\left[\frac{\alpha_{1}}{A_{1}}-\left\lvert\, \frac{\alpha_{1}}{A_{1}} B+(A-B) \gamma\right.\right) \right\rvert\, \sigma\right] \quad\left(0 \leq \rho \leq 1 ; 0 \leq \sigma \leq r_{0}\right)
$$

Hence, upon setting $\rho=1$ in (3.9), we conclude that (3.1) of Theorem 1 holds true for $|z| \leq r_{0}=r_{0}\left(\gamma, \alpha_{1}, A_{1}, A, B\right)$ where $r_{0}\left(\gamma, \alpha_{1}, A_{1}, A, B\right)$ is the smallest positive root of the equation (3.2). In fact, as one can see easily, in any case, either $\left|\frac{\alpha_{1}}{A_{1}} B+(A-B) \gamma\right| \neq 0$, or if it is equal to zero, (3.2) has a unique root in the interval $(0,1)$ and this is the smallest positive root of equation (3.2). This completes the proof of the theorem.

## 4. Special cases

Setting $A_{i}=B_{j}=1,(i=1, \ldots, l ; j=1, \ldots, s)$ in Theorem 1, we get the following result:

Corollary 1. Let the function $f \in \mathcal{A}_{p}$ and suppose that $g \in S_{p, l, s}^{q}\left(\alpha_{1}, A, B ; \gamma\right)$ and $\alpha_{1}>\left|\gamma(A-B)-\alpha_{1} B\right|$. If $\left(\mathcal{H}_{p, l, s}\left(\alpha_{1}\right) f(z)\right)^{(q)} \ll\left(\mathcal{H}_{p, l, s}\left(\alpha_{1}\right) g(z)\right)^{(q)}, z \in \mathbb{U}$, then

$$
\left|\left(\mathcal{H}_{p, l, s}\left(\alpha_{1}+1\right) f(z)\right)^{(q)}\right| \leq\left|\left(\mathcal{H}_{p, l, s}\left(\alpha_{1}+1\right) g(z)\right)^{(q)}\right| \text { for }|z| \leq r_{1}
$$

where $r_{1}=r_{1}\left(\gamma, \alpha_{1}, A, B\right)$ is the smallest positive root of the equation

$$
r_{1}^{3}\left|\gamma(A-B)+\alpha_{1} B\right|-\left(\alpha_{1}+2|B|\right) r_{1}^{2}-\left[\left|\gamma(A-B)+\alpha_{1} B\right|+2\right] r_{1}+\alpha_{1}=0
$$

Setting $A=1$ and $B=-1$, in Theorem 1, we get
Corollary 2. Let the function $f \in \mathcal{A}_{p}$ and suppose that $g \in T_{p, l, s}^{q}\left(\alpha_{1}, A_{1}, \gamma\right)$ and $\frac{\alpha_{1}}{A_{1}}>\left|2 \gamma-\frac{\alpha_{1}}{A_{1}}\right|$. If $\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) f(z)\right)^{(q)} \ll\left(\theta_{p, l, s}\left(\alpha_{1}, A_{1}\right) g(z)\right)^{(q)}$ in $\mathbb{U}$, then

$$
\begin{equation*}
\left|\left(\theta_{p, l, s}\left(\alpha_{1}+1, A_{1}\right) f(z)\right)^{(q)}\right| \leq\left|\left(\theta_{p, l, s}\left(\alpha_{1}+1, A_{1}\right) g(z)\right)^{(q)}\right| \text { for }|z| \leq r_{2} \tag{4.1}
\end{equation*}
$$

where

$$
r_{2}=r_{2}\left(\gamma, \alpha_{1}, A_{1}\right)= \begin{cases}\frac{k-\sqrt{k^{2}-4 \frac{\alpha_{1}}{A_{1}}\left|2 \gamma-\frac{\alpha_{1}}{A_{1}}\right|}}{2\left|2 \gamma-\frac{\alpha_{1}}{A_{1}}\right|}, & \text { if } 2 \gamma \neq \frac{\alpha_{1}}{A_{1}} \\ \frac{\alpha_{1}}{\alpha_{1}+2 A_{1}}, & \text { if } 2 \gamma=\frac{\alpha_{1}}{A_{1}}\end{cases}
$$

$\left(k=2+\frac{\alpha_{1}}{A_{1}}+\left|2 \gamma-\frac{\alpha_{1}}{A_{1}}\right| ; \gamma \in \mathbb{C}^{*}\right)$.
REmARK 1. The expression under the square root in (4.1) is positive, since

$$
\begin{aligned}
k^{2}-4 \frac{\alpha_{1}}{A_{1}}\left|2 \gamma-\frac{\alpha_{1}}{A_{1}}\right| & =\left(\frac{\alpha_{1}}{A_{1}}-\left|2 \gamma-\frac{\alpha_{1}}{A_{1}}\right|\right)^{2}+4+\frac{4 \alpha_{1}}{A_{1}}+4\left|2 \gamma-\frac{\alpha_{1}}{A_{1}}\right| \\
& >\left(\frac{\alpha_{1}}{A_{1}}-\left|2 \gamma-\frac{\alpha_{1}}{A_{1}}\right|\right)^{2}+4+8\left|2 \gamma-\frac{\alpha_{1}}{A_{1}}\right|>0
\end{aligned}
$$

Further, putting $l=s+1, \alpha_{1}=\beta_{1}=p, A_{1}=B_{1}=1, \alpha_{i}=A_{i}=\beta_{j}=B_{j}=1$, $(i=2, \ldots, s+1 ; j=2, \ldots, s)$, in Corollary 2, we get

Corollary 3. [1] Let the function $f \in \mathcal{A}_{p}$ and suppose that $g \in S_{p}^{q}$. If $(f(z))^{(q)} \ll(g(z))^{(q)}$ in $\mathbb{U}$, then

$$
\left|(f(z))^{(q+1)}\right| \leq\left|(g(z))^{(q+1)}\right| \text { for }|z| \leq r_{3}
$$

where

$$
\begin{equation*}
r_{3}=r_{3}(\gamma, p, q)=\frac{k-\sqrt{k^{2}-4 p|2 \gamma-p+q|}}{2|2 \gamma-p+q|} \tag{4.2}
\end{equation*}
$$

$\left(k=2+p-q+|2 \gamma-p+q| ;\right.$ and $\left.p \in \mathbb{N}, q \in \mathbb{N}_{0}, \gamma \in \mathbb{C}^{*}\right)$.
Putting $q=0$ in Corollary 3, we obtain
Corollary 4. Let the function $f \in \mathcal{A}_{p}$ and suppose that $g \in S_{p}(\gamma)$. If $f(z) \ll g(z)$ in $\mathbb{U}$, then

$$
\left|f^{\prime}(z)\right| \leq\left|g^{\prime}(z)\right| \text { for }|z| \leq r_{4}
$$

where

$$
\begin{equation*}
r_{4}=r_{4}(\gamma, p)=\frac{k-\sqrt{k^{2}-4 p|2 \gamma-p|}}{2|2 \gamma-p|} \tag{4.3}
\end{equation*}
$$

$\left(k=2+p+|2 \gamma-p| ;\right.$ and $\left.p \in \mathbb{N}, \gamma \in \mathbb{C}^{*}\right)$.
Putting $q=0, l=s+1, \beta_{1}=p, \alpha_{1}=p+1, A_{1}=B_{1}=1, \alpha_{i}=A_{i}=B_{j}=$ $\beta_{j}=1(i=2,3, \ldots, s+1 ; j=2,3, \ldots, s)$ in Corollary 2, with the aid of Lemma 1, we get the following result.

Corollary 5. Let the function $f \in \mathcal{A}_{p}$ and suppose that $g \in K_{p}(\gamma)$. If $f(z) \ll g(z)$ in $\mathbb{U}$, then

$$
\left|f^{\prime}(z)\right| \leq\left|g^{\prime}(z)\right| \text { for }|z| \leq r_{5}
$$

where

$$
\begin{equation*}
r_{5}=r_{5}(\gamma, p)=\frac{k-\sqrt{k^{2}-4 p|\gamma-p|}}{2|\gamma-p|} \tag{4.4}
\end{equation*}
$$

$\left(k=2+p+|\gamma-p| ;\right.$ and $\left.p \in \mathbb{N}, \gamma \in \mathbb{C}^{*}\right)$.

Further, putting $l=2, s=1, \alpha_{1}=\alpha, \alpha_{2}=1, \beta_{1}=\beta, A_{1}=A_{2}=B_{1}=1 \mathrm{in}$ Corollary 2, we get

Corollary 6. Let the function $f \in \mathcal{A}_{p}$ and suppose that $g \in T_{p, 2,1}^{q}\left(\alpha_{1}, 1, \beta ; \gamma\right)$ and $\alpha \geq|2 \gamma-\alpha|$. If $\left(L_{p}(\alpha, \beta) f(z)\right)^{(q)} \ll\left(L_{p}(\alpha, \beta) g(z)\right)^{(q)}$ in $\mathbb{U}$, then

$$
\left|\left(L_{p}(\alpha+1, \beta) f(z)\right)^{(q)}\right| \leq\left|\left(L_{p}(\alpha+1, \beta) g(z)\right)^{(q)}\right| \text { for }|z| \leq r_{6}
$$

where

$$
r_{6}=r_{6}(\gamma, \alpha)= \begin{cases}\frac{k-\sqrt{k^{2}-4 \alpha|2 \gamma-\alpha|}}{2|2 \gamma-\alpha|}, & \text { if } 2 \gamma \neq \alpha  \tag{4.5}\\ \frac{\alpha}{\alpha+2} & \text { if } 2 \gamma=\alpha\end{cases}
$$

$(k=2+\alpha+|2 \gamma-\alpha|$ and $\gamma \in \mathbb{C} \backslash\{0\})$.
This is a known result obtained recently by Goyal, Bansal and Goswami [13].
Further, putting $\alpha=1$, we get a known result obtained by Altinas et al. [2], which contains another known result obtained by MacGregor [16], when $\gamma=1$. Also, putting $\alpha=p+1$ and $\beta=p-\lambda+1$ in Corollary 6 , we get a known result obtained by Goyal and Goswami [14].

REmark 2. In view of Remark 1 mentioned with Corollary 1, it can be proved easily that the expressions under the square roots occurring in (4.2)-(4.5) are positive.

Acknowledgement. The authors are thankful to the worthy referee for his useful suggestions for the improvement of the paper. The first author ( SPG ) is also thankful to CSIR, New Delhi, India for awarding Emeritius Scientist under scheme No. 21(084)/10/EMR-II.

## REFERENCES

[1] O. Altinas, H.M. Srivastava, Some majorization properties associated with p-valent starlike and convex functions of complex order, East Asian Math. J. 17 (2001), 175-183.
[2] O. Altinas, Ö. Özkan, H.M. Srivastava, Majorization by starlike functions of complex order, Complex Variables 46 (2001), 207-218.
[3] M.K. Aouf, J. Dziok, Certain class of analytic functions associated with the Wright generalized hypergeometric function, J. Math. Appl. 30 (2008), 23-32.
[4] M.K. Aouf, A. Shamandy, A.M. El-Aswah, E.E. Ali, Inclusion properties for certain subclasses of p-valent functions associated with Dziok-Raina operator, unpublished.
[5] S.K. Bansal, J. Dziok, P. Goswami, Certain results for a subclass of meromorphic multivalent functions associated with the Wright function, European J. Pure Appl. Math. 3 (2010), 633640.
[6] B.C. Carlson, D.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), 737-745.
[7] N.E. Cho, O.H. Kwon, H.M. Srivastava, Inclusion and argument properties for certain subclasses of multivalent functions asociated with a family of linear operators, J. Math. Anal. Appl. 292 (2004), 470-483.
[8] J. Dziok, R.K. Raina, Families of analytic functions associated with the Wright generalized hypergeometric function, Demonst. Math. 37 (2004), 533-542.
[9] J. Dziok, R.K. Raina, H.M. Srivastava, Some classes of analytic functions associated with operators on Hilbert space involving Wright's generalized hypergeometric function, Proc. Jangjeon Math. Soc. 7 (2004), 43-55.
[10] J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comp. 103 (1993), 1-13.
[11] R.M. Goel, N.S. Sohi, A new criterion for p-valent functions, Proc. Amer. Math. Soc. 78 (1980), 353-357.
[12] P. Goswami, Z.-G. Wang, Majorization for certain classes of analytic functions, Acta Univ. Apulensis 21 (2010), 97-104.
[13] S.P. Goyal, S.K. Bansal, P. Goswami, Majorization for the subclass of analytic functions defined by linear operator using differential subordination, J. Appl. Math. Statis. Inform. 6 (2010), 45-50.
[14] S.P. Goyal, P. Goswami, Majorization for certain classes of analytic functions defined by fractional derivatives, Appl. Math. Lett. 22 (2009), 1855-1858.
[15] J.-L. Liu, K.I. Noor, Some properties of Noor integral operator, J. Natur. Geom. 21 (2002), 81-90.
[16] T.H. MacGreogor, Majorization by univalent functions, Duke Math. J. 34 (1967), 95-102.
[17] M.A. Nasr, M.K. Aouf, Starlike function of complex order, J. Natur. Sci. Math. 25 (1985), 1-12.
[18] Z. Nehari, Z., Conformal Mappings, MacGraw-Hill Book Company, New York, Toronto and London, 1952.
[19] J. Patel, A.K. Mishra, On certain subclasses of multivalent functions associated with an extended differential operator, J. Math. Anal. Appl. 332 (2007), 109-122.
[20] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
[21] H. Saitoh, A linear operator and its applications of frst order diferential subordinations, Math. Japonica 44 (1996), 31-38.
[22] G. Schober, Univalent Functions: Selected Topics, Springer-Verlag, Berlin, Heidlberg, New York, 1975.
[23] P. Wiatriwski, On the coefficients of some family of holomorphic functions, Zeszyty Nauk. Lodz. Nauk. Mat.-Przyrod 39 (1970), 75-85.
[24] E.M. Wright, The asymptotic expansion of the generalzed hypergeometric function, J. London Math. Soc. 10 (1935), 286-293.
(received 05.09.2011; in revised form 24.09.2012; available online 01.11.2012)
Department of Mathematics, University of Rajasthan, Jaipur-302004, India
E-mail: somprg@gmail.com
Department of Mathematics, Global Institute of Technology, Sitapura, Jaipur 302022, India
E-mail: bansalindian@gmail.com


[^0]:    2010 Mathematics Subject Classification: 30C45
    Keywords and phrases: Analytic, p-valent, majorization, Wright generalized hypergeometric

