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ORE TYPE CONDITION AND HAMILTONIAN GRAPHS

Kewen Zhao

Abstract. In 1960, Ore proved that if G is a graph of order n ≥ 3 such that d(x)+d(y) ≥ n
for each pair of nonadjacent vertices x, y in G, then G is Hamiltonian. In 1985, Ainouche and
Christofides proved that if G is a 2-connected graph of order n ≥ 3 such that d(x) + d(y) ≥ n− 1
for each pair of nonadjacent vertices x, y in G, then G is Hamiltonian or G belongs to two classes
of exceptional graphs. In this paper, we prove that if G is a connected graph of order n ≥ 3 such
that d(x) + d(y) ≥ n− 2 for each pair of nonadjacent vertices x, y in G, then G is Hamiltonian or
G belongs to one of several classes of well-structured graphs.

1. Introduction

We consider only finite undirected graphs without loops or multiple edges. For
a graph G, let V (G) be the vertex set of G and E(G) the edge set of G. Let Kn

denote the complete graph of order n and K−
n the empty graph of order n. For

two vertices u and v, let d(u, v) be the length of a shortest path between vertices u
and v in G, that is, d(u, v) is the distance between u and v. We denote by d(x) the
degree of vertex x in G and the minimum degree of a graph G is denoted by δ(G)
and the independent number of G is denoted by α(G). For a subgraph H of a graph
G and a subset S of V (G), let NH(S) be the set of vertices in H that are adjacent
to some vertex in S, the cardinality of NH(S) is denoted by dH(S). In particular,
if H = G and S = {u}, then NH(S) = NG(u), which is the neighborhood of u
in G. Furthermore, let G − H and G[S] denote the subgraphs of G induced by
V (G)− V (H) and S, respectively. For each integer m ≥ 3, let Cm = x1x2 · · ·xmx1

denote a cycle of order m and define

N+
Cm

(u) = {xi+1 : xi ∈ NCm(u)}, N−
Cm

(u) = {xi−1 : xi ∈ NCm(u)},

N±
Cm

(u) = N+
Cm

(u) ∪N−
Cm

(u), where subscripts are taken by modulo m.

If no ambiguity can arise we sometimes write N(u) instead of NG(u), V instead
of V (G), etc. We refer to the book [2] for graph theory notation and terminology
not described in this paper.
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If a graph G has a Hamiltonian cycle (a cycle containing every vertex of G),
then G is called Hamiltonian.

In 1952, Dirac established the well-known degree type condition for Hamilton-
ian graphs.

Theorem 1.1. [3] If the minimum degree of graph G of order n is at least
n/2, then G is Hamiltonian.

In 1960, Ore obtained the following Ore type condition:

Theorem 1.2. [4] If G is a graph of order n ≥ 3 such that d(x) + d(y) ≥ n
for each pair of nonadjacent vertices x, y in G, then G is Hamiltonian.

In 1985, Ainouche and Christofides proved the following result.

Theorem 1.3. [1] If G is a connected graph of order n ≥ 3 such that d(x) +
d(y) ≥ n−1 for each pair of nonadjacent vertices x, y in G, then G is Hamiltonian
or G ∈ {G1 ∨ (Kh ∪Kt), G(n−1)/2 ∨K−

(n+1)/2}.

Gh denotes all graphs of order h, h is a positive integer. For graphs A and B
the join operator A∨B of A and B is the graph constructed from A and B by adding
all edges joining the vertices of A and the vertices of B. The union operator A∪B
of A and B is the graph of V (A∪B) = V (A)∪V (B) and E(A∪B) = E(A)∪E(B).

Recently, in [5], [6], some generalized Fan type conditions for Hamiltonian
graphs were introduced as follows.

Theorem 1.4. If G is a k-connected graph of order n, and if max{d(v) : v ∈
S} ≥ n/2 for every independent set S of G with |S| = k which has two distinct
vertices x, y ∈ S satisfying 1 ≤ |N(x) ∩N(y)| ≤ α(G)− 1, then G is Hamiltonian.

In this paper, we present the following two results, which improve the above
results.

Theorem 1.5. If G is a connected graph of order n ≥ 3 such that d(x) +
d(y) ≥ n−2 for each pair of nonadjacent vertices x, y in G, then G is Hamiltonian
or G ∈ {(G(n−1)/2 ∨ K−

(n+1)/2) − e,G(n−1)/2 ∨ K−
(n+1)/2, G(n−2)/2 ∨ (K−

(n−2)/2 ∪
K2), G(n−2)/2 ∨K−

(n+2)/2, G2 ∨ 3K2, G2 ∨ (2K2 ∪K1),K1 : C ′6,Kh : w : K ′
t,K1,3}.

3K2 = K2 ∪ K2 ∪ K2. K ′
t is the graph obtained from complete graph Kt

by removing a matching of size k ≤ t/2, (G(n−1)/2 ∨ K−
(n+1)/2) − e is the graphs

obtained from graph G(n−1)/2 ∨ K−
(n+1)/2 by removing an edge connected some

vertex of G(n−1)/2 and some vertex of K−
(n+1)/2, graph K1,3 is a claw. The two

graphs K1 : C ′6 and Kh : w : K ′
t can be found in the proofs of Subcase 1.2 and

Subcase 2.2 of Theorem 1.5, respectively.

Since Hamiltonian graph is 2-connected, by Theorem 1.5, we have
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Corollary 1.6. If G is a 2-connected graph of order n ≥ 9 such that d(x) +
d(y) ≥ n−2 for each pair of nonadjacent vertices x, y in G, then G is Hamiltonian
or G ∈ {(G(n−1)/2 ∨ K−

(n+1)/2) − e, (G(n−1)/2 ∨ K−
(n+1)/2), G(n−2)/2 ∨ (K−

(n−2)/2 ∪
K2), G(n−2)/2 ∨K−

(n+2)/2}.

2. The proof of main result

In order to prove Theorem 1.5, we need the following lemma.

Lemma 2.1. Let G be a 2-connected graph of order n ≥ 3 such that d(x) +
d(y) ≥ n−2 for each pair of nonadjacent vertices x, y in G. If G is not Hamiltonian
and Cm = x1x2 · · ·xmx1 is a longest cycle of G and H is a component of G− Cm

with |V (H)| = |{u}| = 1, than (n− 2)/2 ≤ d(u) ≤ (n− 1)/2 or G ∈ {G2 ∨ (2K2 ∪
K1),K1 : C ′6}.

Proof. Since G is 2-connected, let xi+1, xj+1 ∈ N+
Cm

(u). We denote the path
xi+1xi+2 · · ·xj \ {xj} on Cm by P1 and the path xj+1xj+2 · · ·xi by P2. Since Cm

is a longest cycle of G, so we have the following,
(i) Each of N+

P1
(xj+1) is not adjacent to xi+1( Otherwise, if xk ∈ N+

P1
(xj+1) is

adjacent to xi+1. Let P (H) be a path in H which two end-vertices adjacent to xi,
xj , respectively, then cycle xiP (H)xjxj−1 · · ·xkxi+1xi+2 · · ·xk−1xj+1xj+2 · · ·xi is
longer than Cm, a contradiction ).

(ii) Each of N−
P2

(xj+1) is not adjacent to xi+1(Otherwise, if xk ∈ N−
P2

(xj+1) is
adjacent to xi+1. Let P (H) be a path in H which two end-vertices adjacent to xi, xj ,
respectively, then cycle xiP (H)xjxj−1 · · ·xi+1xkxk−1 · · ·xj+1xk+1xk+2 · · ·xi is
longer than Cm, a contradiction). Since xj /∈ V (P1), so we can see that N+

P1
(xj+1)∩

N−
P2

(xj+1) = φ, and clearly |N+
P1

(xj+1) ∪N−
P2

(xj+1) ∪ {xi+1}| ≥ |NCm(xj+1)|.
By (i) and (ii), each of N+

P1
(xj+1)∪N−

P2
(xj+1)∪{xi+1} is not adjacent to xi+1.

Hence we can check |NCm(xi+1)| ≤ |V (Cm)| − |N+
P1

(xj+1)∪N−
P2

(xj+1)∪ {xi+1}| ≤
|V (Cm)| − |NCm(xj+1)|, this implies

|NCm(xi+1)|+ |NCm(xj+1)| ≤ |V (Cm)|. (i)

Also, both xi+1, xj+1 do not have any common neighbor in G−Cm −H and both
xi+1, xj+1 are not adjacent to any vertex of H. Hence we also have

|NG−Cm(xi+1)|+ |NG−Cm(xj+1)| ≤ |V (G− Cm −H)|. (ii)

Combining inequalities (i) and (ii), we have

|N(xi+1)|+ |N(xj+1)| ≤ |V (Cm)|+ |V (G−Cm −H)| ≤ n− |V (H)| = n− 1. (iii)

Then, we claim d(u) ≥ (n−3)/2. Otherwise, if d(u) < (n−3)/2, by the assumption
of Lemma that d(u)+d(xi+1) ≥ n−2 and d(u)+d(xj+1) ≥ n−2, d(xi+1) > (n−1)/2
and d(xj+1) > (n− 1)/2, so d(xi+1) + d(xj+1) > n− 1, this contradicts inequality
(iii).
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Thus, d(u) ≥ (n− 3)/2 holds. Then consider two cases.
When n is even. Since d(u) ≥ (n−3)/2 and d(u) is integer, so d(u) ≥ (n−2)/2.
When n is odd. Since d(u) = (n − 3)/2 and d(u) ≥ 2, so (n − 3)/2 ≥ 2,

this implies n ≥ 7. (i). When n ≥ 9, by d(u) = (n − 3)/2, clearly there exist
two vertices xi, xi+2 of Cm that are adjacent to u, then since Cm is a longest
cycle, so none of N±

Cm
(u) are adjacent to xi+1. so at most m − |N±

Cm
(u)| vertices

are adjacent to xi+1, and clearly |N±
Cm

(u)| ≥ NCm
(u)| + 2, so we easily check

d(u) + d(xi+1) ≤ m − |N±
Cm

(u)| − |NCm
(u)| < n − 2, a contradiction. (ii). When

n = 7, 8. Since n is odd, so n 6= 8, and we only consider n = 7. In this case,
d(u) = (n − 3)/2 = 2 and m = 6. Let Cm = xixi+1xi+2xi+3xi+4xi+5xi. (ii − 1).
When d(u) = {xi, xi+2}. By assumption of Lemma that d(u) + d(xk) ≥ n − 2
for k = i + 1, i + 3, i + 4, i + 5 on Cm = xixi+1xi+2xi+3xi+4xi+5xi, so d(xk) ≥
3. Since Cm is a longest cycle, xi+1xi+4, xi+3xi, xi+5xi+2 ∈ E(G). We denote
the graph by K1 : C ′6, where V (K1 : C ′6) = V (K1) ∪ V (C6, ), E(K1 : C ′6) =
{uxi, uxi+2, xi+1xi+4, xi+3xi, xi+5xi+2}∪E(C6). (ii−2). When d(u) = {xi, xi+3}.
Clearly, to satisfy the assumption of Lemma, each vertex of G−{xi, xi+3} must be
adjacent to xi, xi+3, this implies G ∈ G2 ∨ (2K2 ∪K1), where V (G2) = {xi, xi+3},
V (K1) = (u), 2K2 = G[{xi+1xi+2}] ∪G[{xi+4xi+5}].

Thus, this proves that d(u) ≥ (n− 2)/2 or G ∈ {G2 ∨ (2K2 ∪K1),K1 : C ′6}.
On the other hand, since Cm is a longest cycle of G, so u is not adjacent to

consecutive two vertices on Cm. Hence it can be checked that d(u) ≤ (n− 1)/2.
Therefore, this completes the proof of Lemma.

Proof of Theorem 1.5. Assume that G is not Hamiltonian with G satisfying
the assumption of Theorem 5. Let Cm = x1x2 · · ·xmx1 be a longest cycle of G and
H be a component of G− Cm. Consider the following cases.
Case 1. The connectivity of G is at least 2.

In this case, since the connectivity of G is at least 2, so there must ex-
ist u, v ∈ V (H) and xi+1, xj+1 ∈ V (Cm) such that xi+1 ∈ N+

Cm
(u), xj+1 ∈

N+
Cm

(v)(if |V (H)| = 1, then u = v). We claim d(xi+1) + d(xj+1) ≤ n −
|V (H)|. Otherwise, if d(xi+1) + d(xj+1) > n − |V (H)|, then we denote the
path xi+1xi+2 · · ·xj \ {xj} on Cm by P1 and the path xj+1xj+2 · · ·xi by P2.
Since Cm is a longest cycle of G, so we have the following, (i). Each of
N+

P1
(xj+1) is not adjacent to xi+1( Otherwise, if xk ∈ N+

P1
(xj+1) is adjacent

to xi+1. Let P (H) be a path in H which two end-vertices adjacent to xi,
xj , respectively, then cycle xiP (H)xjxj−1 · · ·xkxi+1xi+2 · · ·xk−1xj+1xj+2 · · ·xi

is longer than Cm, a contradiction ). (ii). Each of N−
P2

(xj+1) is not adja-
cent to xi+1(Otherwise, if xk ∈ N−

P2
(xj+1) is adjacent to xi+1. Let P (H) be

a path in H which two end-vertices adjacent to xi, xj , respectively, then cycle
xiP (H)xjxj−1 · · ·xi+1xkxk−1 · · ·xj+1xk+1xk+2 · · ·xi is longer than Cm, a contra-
diction). Since xj /∈ V (P1), so we can see that N+

P1
(xj+1) ∩ N−

P2
(xj+1) = φ,

and clearly |N+
P1

(xj+1) ∪ N−
P2

(xj+1) ∪ {xi+1}| ≥ |NCm(xj+1)|. By (i) and (ii),
each of N+

P1
(xj+1) ∪ N−

P2
(xj+1) ∪ {xi+1} is not adjacent to xi+1. Hence it can
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be checked that |NCm
(xi+1)| ≤ |V (Cm)| − |N+

P1
(xj+1) ∪ N−

P2
(xj+1) ∪ {xi+1}| ≤

|V (Cm)| − |NCm
(xj+1)|, this implies

|NCm(xi+1)|+ |NCm(xj+1)| ≤ |V (Cm)|. (1)

Also, both xi+1, xj+1 do not have any common neighbor in G−Cm −H and both
xi+1, xj+1 are not adjacent to any vertex of H. Hence we also have

|NG−Cm(xi+1)|+ |NG−Cm(xj+1)| ≤ |V (G− Cm −H)|. (2)

Combining inequalities (1) and (2), we have

|N(xi+1)|+ |N(xj+1)| ≤ |V (Cm)|+ |V (G− Cm −H)| ≤ n− |V (H)|. (3)

Therefore, the above claim that d(xi+1) + d(xj+1) ≤ n− |V (H)| holds.
Then, by the assumption of Theorem that d(xi+1)+ d(xj+1) ≥ n− 2, together

with above claim, we have |V (H)| ≤ 2.
Now, we consider the following subcases on |V (H)| ≤ 2.

Subcase 1.1. When |V (H)| = 2.
In this case let V (H) = {u, v}. Since Cm is a longest cycle of G, so clearly

|{xi, xi+1, · · ·xj−1}| ≥ 3 for each pairs vertices xi, xj that xi ∈ NCm(u), xj ∈
NCm(v), thus we can check d(u) ≤ |V (Cm)|/3 + |V (H − u)| ≤ (n− 2)/3 + 1. Then
by the assumption of Theorem that d(u) + d(xi+1) ≥ n − 2, we have d(xi+1) ≥
(2n− 7)/3, Similarly, also d(xj+1) ≥ (2n− 7)/3. Hence we have

d(xi+1) + d(xj+1) ≥ (4n− 14)/3. (4)

When n ≥ 9, clearly, inequality (4) contradicts inequality (3).
When n ≤ 8, we consider the following two cases. (i).If n ≤ 7. In this case,

since |V (H)| = 2, then m ≤ 5, so there must exist two consecutive vertices xi, xi+1

or two vertices xi, xi+2 on Cm that are adjacent to u, v, respectively. Hence we
easily obtain a cycle longer than Cm, a contradiction. (ii). If n = 8. Then clearly
m = 6. By |{xi, xi+1, · · ·xj−1}| ≥ 3 for each pairs xi ∈ NCm(u), xj ∈ NCm(v).
When u is adjacent to vertex xi on Cm, then since Cm is a longest cycle, so v is
at most adjacent to both xi, xi+3. Again then, clearly u is also at most adjacent
to both xi and xi+3. Since Cm is a longest cycle, so each vertex of {xi+1, xi+2}
is not adjacent to any of {xi+4, xi+5}, this implies G ∈ G2 ∨ 3K2, where 3K2 =
H ∪G[{xi+1, xi+2}] ∪G[{xi+4, xi+5}], G2 = G[{xi, xi+3}].
Subcase 1.2. When |V (H)| = 1.

In this case, let V (H) = {u}. By Lemma 2.1, (n − 2)/2 ≤ d(u) ≤ (n − 1)/2
or G ∈ {G2 ∨ (2K2 ∪ K1),K1 : C ′6}. Thus, we only consider (n − 2)/2 ≤ d(u) ≤
(n− 1)/2.
Subcase 1.2.1. d(u) = (n− 2)/2.

When |V (G − Cm)| = 1. In this case since G has not Hamiltonian cycle Cn

and d(u) = (n− 2)/2, so we easy to obtain N(u) = {xi, xi+3, xi+5, xi+7, · · · , xi−2}
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on Cm, i.e., in {xi, xi+3, xi+5, xi+7, · · · , xi−2} the first two vertices are xi, xi+3 and
all other vertices are xi+5, xi+7, · · · , xi−2.

In this case since G has not Hamiltonian cycle Cn, clearly {xi+4, xi+6, · · · ,
xi−1, u} is a independent set and each of {xi+1, xi+2} is not adjacent to any
of {xi+4, xi+6, · · · , xi−1, u}, this implies G ∈ G(n−2)/2 ∨ (K−

(n−2)/2 ∪ K2), where
V (G(n−2)/2) = {xi, xi+3, xi+5, xi+7, · · · , xi−1}, V (K−

(n−2)/2) = {xi+4, xi+6, · · · ,

xi−1, u}, V (K2) = {xi+1, xi+2}.
When |V (G − Cm)| = 2. In this case let v ∈ V (G − Cm − u). Since G

has not Hamiltonian cycle Cn and d(u) = (n − 2)/2, so we easily obtain N(u) =
{xi+1, xi+3, · · · , xi−1}, this implies G ∈ G(n−2)/2 ∨K−

(n+2)/2, where V (G(n−2)/2) =
{xi+1, xi+3, · · · , xi−1}, V (K−

(n+2)/2) = {xi+2, xi+4, · · · , xi, u, v}.
Subcase 1.2.2. When d(u) = (n− 1)/2.

In this case, since Cm is a longest cycle of G, we easily obtain G ∈ G(n−1)/2 ∨
K−

(n+1)/2 or G ∈ (G(n−1)/2 ∨K−
(n+1)/2)− e, where e is an edge connected by some

two vertices u and v with u in G(n−1)/2 and v in K−
(n+1)2.

Case 2. The connectivity of G is 1.
In this case, let w be a cut vertex of G and let H ′, H ′′ be two components of

G− w.
Subcase 2.1. |V (G−H ′ −H ′′)| > |{w}|.

In this case, let H ′′′ be a component of (G − w) − H ′ − H ′′, and let x ∈
V (H ′), y ∈ V (H ′′) and z ∈ V (H ′′′). Without loss of generality, assume |V (H ′)| =
max{|V (H ′)|, |V (H ′′)|, |V (H ′′′)|}, then clearly |V (H ′′)| + |V (H ′′′)| ≤ 2(n − 1)/3,
so we can check that d(y)+d(z) ≤ 2(n−1)/3+2|{w}|− |{y}|− |{z}| = (2n−2)/3,
by n ≥ 7, so (2n− 2)/3 ≤ n− 3, a contradiction.
Subcase 2.2. |V (G−H ′ −H ′′)| = |{w}| = 1.

When n ≥ 7. In this case, without loss of generality, assume |V (H ′)| ≥
|V (H ′′)|, then H ′′ is a complete (Otherwise, if there exist two nonadjacent vertices
u, v in H ′′, we can check d(u) + d(v) ≤ n− 3, a contradiction). Let u ∈ V (H ′′), by
d(x) + d(u) ≥ n− 2 for each vertex x in H ′, x is at most not adjacent to a vertex
of H ′ \ {x}, thus, G ∈ H ′ : w : H ′′ = Kh : w : K ′

t, where Kh is complete graph of
order h and K ′

t can be obtained from a complete graph Kt by removing a matching
of size 0 ≤ k ≤ t/2(i.e., K ′

t is the graph by removing some vertex disjoint edges of
Kt ), with 1 ≤ h ≤ (n − 1)/2, t = n − h − 1. In particular, if h = (n− 1)/2, then
G ∈ K(n−1)/2 : w : K(n−1)/2.

When n = 6. in this case we easily obtain G ∈ Kh : w : K ′
t, where h + t = 5.

When n = 5, similarly, we have G ∈ Kh : w : K ′
t, where h + t = 4.

When n = 4, we easily obtain G ∈ Kh : w : K ′
t, where h + t = 3 or G − w

consists of three components, so in this case G is a claw-free graph K1,3.
When n = 3, clearly, G ∈ Kh : w : K ′

t = K1,2.
Therefore, this completes the proof of Theorem.
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