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Abstract. In 1960, Ore proved that if G is a graph of order n > 3 such that d(z) +d(y) > n
for each pair of nonadjacent vertices z,y in G, then G is Hamiltonian. In 1985, Ainouche and
Christofides proved that if G is a 2-connected graph of order n > 3 such that d(z) +d(y) >n—1
for each pair of nonadjacent vertices x,y in G, then G is Hamiltonian or G belongs to two classes
of exceptional graphs. In this paper, we prove that if G is a connected graph of order n > 3 such
that d(x) + d(y) > n — 2 for each pair of nonadjacent vertices z,y in G, then G is Hamiltonian or
G belongs to one of several classes of well-structured graphs.

1. Introduction

We consider only finite undirected graphs without loops or multiple edges. For
a graph G, let V(G) be the vertex set of G and E(G) the edge set of G. Let K,
denote the complete graph of order n and K, the empty graph of order n. For
two vertices u and v, let d(u, v) be the length of a shortest path between vertices u
and v in G, that is, d(u,v) is the distance between u and v. We denote by d(z) the
degree of vertex = in G and the minimum degree of a graph G is denoted by §(G)
and the independent number of G is denoted by «(G). For a subgraph H of a graph
G and a subset S of V(G), let N (S) be the set of vertices in H that are adjacent
to some vertex in S, the cardinality of Ny (S) is denoted by dg(S). In particular,
if H =G and S = {u}, then Ny(S) = Ng(u), which is the neighborhood of u
in G. Furthermore, let G — H and G[S] denote the subgraphs of G induced by
V(G)—V(H) and S, respectively. For each integer m > 3, let C,,, = z122 - - - 21
denote a cycle of order m and define

Ngm (u) ={xit1:2; € N¢,,(v)}, Ng (u) ={zi—1 :x; € N¢,, (u)},

m

Ngfm (u) = Ngm (u) UNg (u), where subscripts are taken by modulo m.

If no ambiguity can arise we sometimes write N (u) instead of Ng(u), V instead
of V(G), etc. We refer to the book [2] for graph theory notation and terminology
not described in this paper.
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If a graph G has a Hamiltonian cycle (a cycle containing every vertex of G),
then G is called Hamiltonian.

In 1952, Dirac established the well-known degree type condition for Hamilton-
ian graphs.

THEOREM 1.1. [3] If the minimum degree of graph G of order n is at least
n/2, then G is Hamiltonian.

In 1960, Ore obtained the following Ore type condition:

THEOREM 1.2. [4] If G is a graph of order n > 3 such that d(x) + d(y) > n
for each pair of nonadjacent vertices x,y in G, then G is Hamiltonian.

In 1985, Ainouche and Christofides proved the following result.

THEOREM 1.3. [1] If G is a connected graph of order n > 3 such that d(z) +
d(y) > n—1 for each pair of nonadjacent vertices x,y in G, then G is Hamiltonian
or G € {Gl \ (Kh U Ky), G(nfl)/Q vV K(:z+1)/2}'

G, denotes all graphs of order h, h is a positive integer. For graphs A and B
the join operator AV B of A and B is the graph constructed from A and B by adding
all edges joining the vertices of A and the vertices of B. The union operator AU B
of A and B is the graph of V(AUB) = V(A)UV(B) and E(AUB) = E(A)UE(B).

Recently, in [5], [6], some generalized Fan type conditions for Hamiltonian
graphs were introduced as follows.

THEOREM 1.4. If G is a k-connected graph of order n, and if maz{d(v) : v €
S} > n/2 for every independent set S of G with |S| = k which has two distinct
vertices x,y € S satisfying 1 < |N(z) N N(y)| < «(G) — 1, then G is Hamiltonian.

In this paper, we present the following two results, which improve the above
results.

THEOREM 1.5. If G is a connected graph of order n > 3 such that d(z) +
d(y) > n—2 for each pair of nonadjacent vertices x,y in G, then G is Hamiltonian

or G e {(G(n—l)/2 V K(_n+1)/2) — 67G(n—1)/2 V K@+1)/27G(n—2)/2 \Y (K(_nf2)/2 U

KQ),G(n,Q)/Q vV K(_n+2)/27G2 V3Ks, Go V (2K2 U Kl),Kl : Cé,Kh Tw Ké,KLg}.
3Ky, = Ky UKy UK, K is the graph obtained from complete graph K;
by removing a matching of size k < t/2, (G(—1)2 V K(_n+1)/2) — e is the graphs

(n+1)/2

obtained from graph G(,_1y/2 V K by removing an edge connected some

vertex of G(,_1)/2 and some vertex of K, /2 graph K 3 is a claw. The two

(n+1)
graphs K7 : C§ and K}, : w : K, can be found in the proofs of Subcase 1.2 and

Subcase 2.2 of Theorem 1.5, respectively.

Since Hamiltonian graph is 2-connected, by Theorem 1.5, we have
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COROLLARY 1.6. If G is a 2-connected graph of order n > 9 such that d(z) +
d(y) > n—2 for each pair of nonadjacent vertices x,y in G, then G is Hamiltonian
or G € {(G(n,l)/g V K(:l+1)/2) —e, (G(n,l)/g V K(;+1)/2), G(n,Q)/Q V (K(n72)/2 U
K2), Gn2)/2V K5 1)}

2. The proof of main result

In order to prove Theorem 1.5, we need the following lemma.

LEMMA 2.1. Let G be a 2-connected graph of order n > 3 such that d(x) +
d(y) > n—2 for each pair of nonadjacent vertices x,y in G. If G is not Hamiltonian
and Cp, = 2122 -+ - Tmx1 18 a longest cycle of G and H is a component of G — C,,
with |[V(H)| = [{u}| =1, than (n —2)/2 < d(u) < (n—1)/2 or G € {G2 V (2K U
Kl); Kl : Cé}

Proof. Since G is 2-connected, let z;41, 241 € Ngm (u). We denote the path
Tit1Ziq2 -2 \ {z;} on Cy, by P; and the path z; 1249 2; by P. Since Cp,
is a longest cycle of G, so we have the following,

(i) Each of N;l (xj4+1) is not adjacent to x;41( Otherwise, if x) € N;l (xj41) is
adjacent to x;+1. Let P(H) be a path in H which two end-vertices adjacent to x;,
xj, respectively, then cycle z; P(H)z;xj_1 - TkTit1Tit2 - - Th—1Tj41Tj42 - - T; 1S
longer than C,,, a contradiction ).

(ii) Each of Np, (z;41) is not adjacent to x;11(Otherwise, if x, € Np (2;41) is
adjacent to z;4+1. Let P(H) be a path in H which two end-vertices adjacent to x;, z;,
respectively, then cycle x;P(H)x;Tj_1 - Tit1TkTh—1 " Tj41Tk+1Tht2 - Ti 1S
longer than C,,, a contradiction). Since z; ¢ V(P1), so we can see that N;l (zj+1)N
Np,(xj41) = ¢, and clearly [N (zj41) U Np, (j41) U {zit1}| > [Ne, (j41)]-

By (¢) and (i), each of N;,'l (7j+1)UNp, (zj4+1)U{zit1} is not adjacent to z;41.
Hence we can check [N, (it1)] < [V(Cp)| = [N (2j41) UNp, (2j41) U{zipa }] <
[V(Cw)| — |Ne,, (zj+1)], this implies

[N, (i1)| + [Ne,, (2j40)] < [V(Crm)l- (i)

Also, both ;41,241 do not have any common neighbor in G — Cp,, — H and both
Zit1, T 41 are not adjacent to any vertex of H. Hence we also have

INa—c,,, (zit1)| + [No—c,, (2j41)| < [V(G = Cp — H)|. (i)
Combining inequalities (i) and (ii), we have
IN(zig)| + [N (zj01)]| < V(Cn)|+ V(G = Cp— H)| <n— [V(H)| = n—1. (iii)

Then, we claim d(u) > (n—3)/2. Otherwise, if d(u) < (n—3)/2, by the assumption
of Lemma that d(u)+d(zi41) > n—2 and d(u)+d(xj41) > n—2, d(z;+1) > (n—1)/2
and d(zj11) > (n—1)/2, so d(x;41) + d(z;41) > n — 1, this contradicts inequality

(iid).
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Thus, d(u) > (n — 3)/2 holds. Then consider two cases.

When n is even. Since d(u) > (n—3)/2 and d(u) is integer, so d(u) > (n—2)/2.

When n is odd. Since d(u) = (n — 3)/2 and d(u) > 2, so (n — 3)/2 > 2,
this implies n > 7. (i). When n > 9, by d(u) = (n — 3)/2, clearly there exist
two vertices x;,x;42 of C,, that are adjacent to w, then since C), is a longest
cycle, so none of Néfm (u) are adjacent to x;y1. so at most m — |N,3im (u)| vertices
are adjacent to x;11, and clearly |N§m (w)] > Neg,, (u)] + 2, so we easily check
d(u) + d(zi41) <m — |Né5m (u)] = |N¢,, (u)] < n — 2, a contradiction. (i¢). When
n = 7,8. Since n is odd, so n # 8, and we only consider n = 7. In this case,
diu) = (n—3)/2 =2and m = 6. Let Cpp, = ;%4142 43Ti+4Ti45T;. (10 — 1).
When d(u) = {z;,z;12}. By assumption of Lemma that d(u) + d(z) > n — 2
for k =i+ 1,i+3,i+4,i+5 on Cp, = TiTi41Ti42Ti43Ti+4Tit52;, s0 d(zg) >
3. Since C,, is a longest cycle, x;11%Tit4, Tit3Ti, TitsTitz € E(G). We denote
the graph by K; : C§, where V(K; : Cf) = V(K;) UV (Cs,), E(Ky : C§) =
{Ul‘i, UL 42, Ti4+1TLi44, L;43T5, $i+5$i+2} U E(Cﬁ) (Z’L — 2). When d(u) = {mi, Ii+3}.
Clearly, to satisfy the assumption of Lemma, each vertex of G — {x;, z;43} must be
adjacent to x;, x;43, this implies G € Go V (2K U K1), where V(G3) = {x;, x;43},
V(K1) = (u), 2K2 = G{zit1@is2}] U G{witamits}].

Thus, this proves that d(u) > (n —2)/2 or G € {G2V (2K2 U K1), K5 : C§}.

On the other hand, since C,, is a longest cycle of G, so u is not adjacent to
consecutive two vertices on C,,. Hence it can be checked that d(u) < (n —1)/2.

Therefore, this completes the proof of Lemma. m

Proof of Theorem 1.5. Assume that G is not Hamiltonian with G satisfying
the assumption of Theorem 5. Let C,, = z122 - - - x,,x1 be a longest cycle of G and
H be a component of G — C,,. Consider the following cases.

CASE 1. The connectivity of G is at least 2.

In this case, since the connectivity of G is at least 2, so there must ex-
ist u,v € V(H) and z;q1,2j41 € V(Cp,) such that z;41 € Néfm(u), Tiy1 €
N¢ (v)(if [V(H)| = 1, then u = v). We claim d(z41) + d(zj41) < n —
|[V(H)|. Otherwise, if d(zi41) + d(xzj41) > n — |V(H)|, then we denote the
path Ti41Ti42 Ty \ {LEJ} on Om by P1 and the path Tjp1Tj42 T4 by PQ.
Since C,, is a longest cycle of G, so we have the following, (i). Each of
Nﬁ;l (xj+1) is not adjacent to z;11( Otherwise, if zy € N;l (xj+1) is adjacent
to x;41. Let P(H) be a path in H which two end-vertices adjacent to z;,
xj, respectively, then cycle z;P(H)x;2;_1 - TrZit1Tit2 Tho1Tj41Lj42 " L5
is longer than Ci,, a contradiction ). (ii). Each of Np (v;4+1) is not adja-
cent to x;y1(Otherwise, if xp € Np, (xj41) is adjacent to x;41. Let P(H) be
a path in H which two end-vertices adjacent to x;,x;, respectively, then cycle
x; P(H)xjTj_1 - Tig1TkTh—1 - - Tj41Tk+1Tk42 - - ; is longer than C,,, a contra-
diction). Since z; ¢ V(P1), so we can see that N;l (zj41) N Np, (zj41) = ¢,
and clearly [Np (j41) U Np, (2541) U {zis1}| > [Ne,, (zj41)]- By (i) and (),
each of Nj (2j41) U Np, (zj41) U {ziy1} is not adjacent to 2;1. Hence it can
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be checked that [Ng,, (zi41)] < [V(Cp)| — [N (2j41) U Np, (2541) U {zig1}] <
[V(Cw)| — |Ne,, (z;+1)], this implies

INo,., (zip1)| + [N, (2540)] < [V(Cr)l- (1)

Also, both ;41,241 do not have any common neighbor in G — Cy,, — H and both
Zi+1,%;+1 are not adjacent to any vertex of H. Hence we also have

[Na-c,. (wi1)| + [Na-c,, (2j41)] < V(G = Crn — H)|. 2)
Combining inequalities (1) and (2), we have
IN(@is1)| + [N(zj41)| < [V(C)| + V(G = Cr — H)[ < n = [V(H)|.  (3)

Therefore, the above claim that d(z;4+1) + d(z;1+1) < n —|V(H)| holds.

Then, by the assumption of Theorem that d(z;41) +d(zj4+1) > n — 2, together
with above claim, we have |V (H)| < 2.

Now, we consider the following subcases on |V (H)| < 2.
SUBCASE 1.1. When |V (H)| = 2.

In this case let V(H) = {u,v}. Since C,, is a longest cycle of G, so clearly
Hzi, zig1,---xj_1}| > 3 for each pairs vertices z;,z; that z; € N¢, (u),z; €
Ng¢,, (v), thus we can check d(u) < |V(Cp)|/3+ |V(H —u)| < (n—2)/3+1. Then
by the assumption of Theorem that d(u) + d(zi+1) > n — 2, we have d(z;+1) >
(2n —7)/3, Similarly, also d(x;+1) > (2n — 7)/3. Hence we have

d(wis1) + d(xj) > (4n — 14)/3. (4)

When n > 9, clearly, inequality (4) contradicts inequality (3).

When n < 8, we consider the following two cases. (i).If n < 7. In this case,
since |V (H)| = 2, then m < 5, so there must exist two consecutive vertices ;, x; 41
or two vertices z;,z;12 on C,, that are adjacent to w,v, respectively. Hence we
easily obtain a cycle longer than C,,, a contradiction. (i7). If n = 8. Then clearly
m = 6. By |[{z;,zit1,---zj_1}| > 3 for each pairs z; € Ng¢,, (u),z; € Ng,, (v).
When u is adjacent to vertex x; on C),, then since C,, is a longest cycle, so v is
at most adjacent to both x;,x;+3. Again then, clearly u is also at most adjacent
to both z; and z;13. Since C,, is a longest cycle, so each vertex of {z;11,2;q12}
is not adjacent to any of {x;y4,2;15}, this implies G € G5 V 3K5, where 3K, =
HUGH@ip1, vig2}] U G[{@iva, wigs}], G2 = G{wi, migs}].

SUBCASE 1.2. When |V(H)| = 1.

In this case, let V(H) = {u}. By Lemma 2.1, (n — 2)/2 < d(u) < (n—1)/2
or G € {GaV (2K3 U K1), K; : C4}. Thus, we only consider (n —2)/2 < d(u) <
(n—1)/2.

SUBCASE 1.2.1. d(u) = (n — 2)/2.

When |V(G — Cp,)| = 1. In this case since G has not Hamiltonian cycle C,
and d(u) = (n — 2)/2, so we easy to obtain N(u) = {2, Zi13, Tits, Tit7, - s Ti—2}
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on Cpy, ie., in {x;, Ti13, Tits, Titr, - ,Ti—2} the first two vertices are x;, 2,13 and
all other vertices are z;ys5,Tiy7, * ,Ti—2.

In this case since G has not Hamiltonian cycle C,,, clearly {x;14, %16, - ,
Zi—1,u} is a independent set and each of {x;11,2,42} is not adjacent to any

of {@i14,%iye, -, Ti—1,u}, this implies G € G(—2y/2 V (K(_n_Q)/2 U K3), where

V(Gn-2)2) = {&i,Tivs, Tivs, Tigr, - @ica}, VB, g /0) = {Tiva, Tite, -,
wi-1,uf, V(K2) = {Tip1, Tiva}.

When |V(G — Cy,)| = 2. In this case let v € V(G — Cy, — u). Since G
has not Hamiltonian cycle C,, and d(u) = (n — 2)/2, so we easily obtain N(u) =
{®it1,%iq3,- -+, 24-1}, this implies G € G(,,—2)/2 \/K(_n,+2)/2’ where V(G ,—2)/2) =

{xi+17 Ti43," " 7Ii71}7 V(K(:I_;’_g)/g) = {xi+27 Tiddy ", Ti, U, ’U}.
SUBCASE 1.2.2. When d(u) = (n —1)/2.

In this case, since C,, is a longest cycle of G, we easily obtain G € G(,_1)/2 V

K(jz+1)/2 or G € (Gp—1)2V K(n+1)/2> — e, where e is an edge connected by some

two vertices u and v with u in G(,_1)/2 and v in K

(n+1)2°
CASE 2. The connectivity of G is 1.

In this case, let w be a cut vertex of G and let H', H” be two components of
G —w.

SuBCASE 2.1. |V(G — H' — H")| > [{w}|.

In this case, let H"” be a component of (G —w) — H' — H”, and let x €
V(H'),y e V(H") and z € V(H"). Without loss of generality, assume |V (H')| =
max{|V(H')|, [V(H")|,|V(H")|}, then clearly |V(H")| + |V(H")| < 2(n—-1)/
so we can check that d(y) +d(z) < 2(n—1)/3+2{w}| —{y} — {z}| = 2n—-2)/
by n>7,s0 (2n — 2)/3 < n — 3, a contradiction.

SUBCASE 2.2. |V(G— H' — H")| = {w}| = 1.

When n > 7. In this case, without loss of generality, assume |V(H')| >
[V (H")|, then H" is a complete (Otherwise, if there exist two nonadjacent vertices
u,v in H"”, we can check d(u) 4+ d(v) < n — 3, a contradiction). Let v € V(H"), by
d(z) 4+ d(u) > n — 2 for each vertex x in H’', x is at most not adjacent to a vertex
of H' \ {«}, thus, G € H : w: H' = K}, : w : K}, where K, is complete graph of
order h and K] can be obtained from a complete graph K; by removing a matching
of size 0 < k < t/2(i.e., K is the graph by removing some vertex disjoint edges of
K;),withl1 <h<(n—-1)/2,t=n—h—1. In particular, if h = (n — 1)/2, then
Ge K(nfl)/2 LW K(nfl)/Z-

When n = 6. in this case we easily obtain G € K, : w : K}, where h +t = 5.

When n = 5, similarly, we have G € K, : w : K, where h +t = 4.

When n = 4, we easily obtain G € Kj, : w : Kj, where h +t =3 or G —w
consists of three components, so in this case G is a claw-free graph K 3.

When n = 3, clearly, G € Kj, : w: K| = K1 5.

Therefore, this completes the proof of Theorem. m
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