A NOTE ON GENERATING FUNCTIONS OF CESÀRO POLYNOMIALS OF SEVERAL VARIABLES

Mohd Akhlaq Malik

Abstract. The present paper deals with certain generating functions of Cesàro polynomials of several variables.

1. Introduction

Let the sequence of functions $\{S_n(x) \mid n = 0, 1, 2, ...\}$ be generated by Singal and Srivastava [11]:

$$\sum_{n=0}^{\infty} A_{m,n} S_{m+n}(x) t^n = \frac{f(x,t)}{[g(x,t)]^m} S_m[h(x,t)]$$
(1.1)

where m is a nonnegative integer, the $A_{m,n}$ are arbitrary constants and f, g, h are suitable functions of x and t. The importance of a generating function of the form (1.1) in obtaining the bilateral and trilateral generating relations for the functions $S_n(x)$ was realized by several authors.

In particular, the present work is based on the papers due to Agarwal and Manocha [2], Chatterjea [6], Singal and Srivastava [11] and the book written by Srivastava and Manocha [9].

The Pochhammer symbol $(\lambda)_n$ is defined by

$$(\lambda)_n = \begin{cases} 1, & \text{if } n = 0\\ \lambda(\lambda+1)\cdots(\lambda+n-1), & \text{if } n = 1, 2, \dots \end{cases}$$

2. Cesàro polynomials

The Cesàro polynomials are denoted by $g_n^{(m)}(x)$ and is defined as (Chihara [15])

$$g_{n}^{(m)}(x) = \binom{m+n}{n} {}_{2}F_{1} \begin{bmatrix} -n, 1; \\ & x \\ -m-n; \end{bmatrix}$$
(2.1)

²⁰¹⁰ AMS Subject Classification: 33C45

Keywords and phrases: Cesàro polynomials of two and three variables; mixed bilateral generating functions; mixed trilateral generating functions.

M. A. Malik

which can also be written as

$$g_n^{(m)}(x) = \frac{(m+n)!}{m! n!} \sum_{r=0}^n \frac{(-n)_r (1)_r x^r}{r! (-m-n)_r}$$

Agarwal and Manocha[2] defined the polynomials $g_n^m(\boldsymbol{x})$ by the generating relation.

$$\sum_{n=0}^{\infty} g_n^{(m)}(x) t^n = (1-t)^{-m-1} (1-xt)^{-1}.$$
 (2.2)

which is easy to derive from (2.1).

Starting, as usual, from (2.2) one gets the following formula of the type (1.1) for the polynomials $g_n^m(x)$:

$$\sum_{n=0}^{\infty} \binom{n+k}{k} g_{n+k}^{(m)}(x) t^n = (1-t)^{-m-1-k} (1-xt)^{-1} g_k^{(m)} \left(\frac{x(1-t)}{1-xt}\right)^{-1} g_k^{(m)}(x) t^n = (1-t)^{-m-1-k} (1-xt)^{-1} (1-xt)^$$

which provided them the basic tool to deduce the following theorem on trilateral generating functions for the polynomials $g_n^m(x)$.

THEOREM 1. Let

$$Y_{r,\mu}[x,y,t] = \sum_{n=0}^{\infty} a_{n,\mu} g_{rn}^{(m)}(x) g_{n+\mu}(y) t^n$$

be a bilateral generating function. Then the following trilateral generating relation holds:

$$\sum_{n=0}^{\infty} g_n^{(m)}(x)\Omega_n^{r,\mu}(y,z)t^n = (1-t)^{-m-1}(1-xt)^{-1}Y_{r,\mu}\left[\frac{x(1-t)}{1-xt}, y, z\left(\frac{t}{1-t}\right)^r\right].$$

where, as well as throughout this paper,

$$\Omega_n^{r,\mu}(y,z) = \sum_{k=0}^{[n/r]} \binom{n}{rk} a_{k,\mu} g_{k+\mu}(y) z^k.$$

3. Cesàro polynomials of two variables

We define the Cesàro polynomials of two variables $g_n^{(m)}(x,y)$ as follows:

$$g_n^{(m)}(x,y) = \binom{m+n}{n} F \begin{bmatrix} -n: \ 1; 1; \\ & x, y \\ -m-n: \ -; -; \end{bmatrix}$$
(3.1)

which can also be written as:

$$g_n^{(m)}(x,y) = \frac{(m+n)!}{m!n!} \sum_{r=0}^n \sum_{s=0}^{n-r} \frac{(-n)_{r+s}(1)_r(1)_s}{(-m-n)_{r+s}r!s!} x^r y^s.$$

426

The following generating relation holds for (3.1).

Theorem 2.

$$\sum_{n=0}^{\infty} g_n^{(m)}(x,y) t^n = (1-t)^{-1-m} (1-xt)^{-1} (1-yt)^{-1}.$$
 (3.2)

Proof.

$$\begin{split} \sum_{n=0}^{\infty} g_n^{(m)}(x,y) t^n &= \sum_{n=0}^{\infty} \sum_{s=0}^{n} \sum_{s=0}^{n-r} \frac{(m+n)!(-n)_{r+s}(1)_r(1)_s}{m!n!(-m-n)_{r+s}r!s!} x^r y^s t^n \\ &= \sum_{n=0}^{\infty} \sum_{r=0}^{n} \sum_{s=0}^{n-r} \frac{(m+n)!(-1)^{r+s}n!r!s!}{m!n!r!s!(-m-n)_{r+s}(n-r-s)!} x^r y^s t^n \\ &= \sum_{n=0}^{\infty} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \frac{(m+n+r+s)!(-1)^{r+s}}{m!n!(-m-n-r-s)_{r+s}} x^r y^s t^{n+r+s} \\ &= \sum_{n=0}^{\infty} \frac{(m+n)!}{m!n!} t^n \sum_{r=0}^{\infty} (xt)^r \sum_{s=0}^{\infty} (yt)^s \\ &= \sum_{n=0}^{\infty} \frac{m!(1+m)_n}{m!n!} t^n (1-xt)^{-1}(1-yt)^{-1} \\ &= (1-t)^{-1-m}(1-xt)^{-1}(1-yt)^{-1}. \end{split}$$

Starting, as usual, from (3.2) we get the the following formula of the type (1.1) for the polynomials $g_n^m(x,y)$.

Theorem 3.

$$\sum_{n=0}^{\infty} \binom{n+k}{k} g_{n+k}^{(m)}(x,y) t^n$$

= $(1-t)^{-m-1-k} (1-xt)^{-1} (1-yt)^{-1} g_k^{(m)} \left(\frac{x(1-t)}{1-xt}, \frac{y(1-t)}{1-yt}\right)$ (3.3)

Proof.

$$\begin{split} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \binom{n+k}{k} g_{n+k}^{(m)}(x,y) t^n v^k &= \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \frac{(n+k)!}{n!k!} g_{n+k}^{(m)}(x,y) t^n v^k \\ &= \sum_{n=0}^{\infty} \sum_{k=0}^n \frac{n!}{(n-k)!k!} g_n^{(m)}(x,y) t^{n-k} v^k \\ &= \sum_{n=0}^{\infty} g_n^{(m)}(x,y) t^n \sum_{k=0}^n \frac{(-n)_k}{k!} \left(\frac{-v}{t}\right)^k \\ &= \sum_{n=0}^{\infty} g_n^{(m)}(x,y) t^n (1+\frac{v}{t})^n \\ &= \sum_{n=0}^{\infty} g_n^{(m)}(x,y) (t+v)^n \end{split}$$

M. A. Malik

$$= (1 - (t + v))^{-1-m} (1 - x(t + v))^{-1} (1 - y(t + v))^{-1}$$

$$= (1 - t)^{-1-m} (1 - xt)^{-1} (1 - yt)^{-1} (1 - \frac{v}{1 - t})^{-1-m} (1 - \frac{xv}{1 - xt})^{-1}$$

$$\times (1 - \frac{yv}{1 - yt})^{-1}$$

$$= (1 - t)^{-1-m} (1 - xt)^{-1} (1 - yt)^{-1} (1 - \frac{v}{1 - t})^{-1-m} (1 - \frac{xv(1 - t)}{(1 - xt)(1 - t)})^{-1}$$

$$\times (1 - \frac{yv(1 - t)}{(1 - yt)(1 - t)})^{-1}$$

$$= (1 - t)^{-1-m} (1 - xt)^{-1} (1 - yt)^{-1} \sum_{n=0}^{\infty} g_k^{(m)} \left(\frac{x(1 - t)}{1 - xt}, \frac{y(1 - t)}{1 - yt}\right) \frac{v^k}{(1 - t)^k}.$$

Equating the coefficient of v^k we get (3.3), which provides us with the basic tool to deduce the following theorem on mixed trilateral generating functions for the polynomials $g_n^{(m)}(x, y)$.

Theorem 4. Let

$$Y_{r,\mu}[x_1, x_2, y, t] = \sum_{n=0}^{\infty} a_{n,\mu} g_{rn}^{(m)}(x_1, x_2) g_{n+r}(y) t^n$$

be a mixed bilateral generating function involving Cesàro polynomials of two variables and another one variable polynomials $g_{n+\mu}(y)$. Then the following mixed trilateral generating relation holds:

$$\sum_{n=0}^{\infty} g_n^{(m)}(x_1, x_2) \Omega_n^{r,\mu}(y, z) t^n$$

$$= (1-t)^{-m-1} (1-x_1 t)^{-1} (1-x_2 t)^{-1} Y_{r,\mu} \left[\frac{x_1(1-t)}{1-x_1 t}, \frac{x_2(1-t)}{1-x_2 t}, y, z \left(\frac{t}{1-t} \right)^r \right].$$
(3.4)

Proof.

$$\begin{split} \sum_{n=0}^{\infty} g_n^{(m)}(x_1, x_2) \Omega_n^{r,\mu}(y, z) t^n \\ &= \sum_{n=0}^{\infty} g_n^{(m)}(x_1, x_2) \left(\sum_{k=0}^{[n/r]} \binom{n}{rk} a_{k,\mu} g_{k+\mu}(y) z^k \right) t^n \\ &= \sum_{n=0}^{\infty} \sum_{k=0}^{[n/r]} g_n^{(m)}(x_1, x_2) \frac{(n)!}{(n-rk)! (rk)!} a_{k,\mu} g_{k+\mu}(y) z^k t^n \\ &= \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} g_{n+rk}^{(m)}(x_1, x_2) \frac{(n+rk)!}{(rk)! (n)!} a_{k,\mu} g_{k+\mu}(y) z^k t^{n+rk} \\ &= \sum_{k=0}^{\infty} a_{k,\mu} g_{k+\mu}(y) z^k t^{rk} \sum_{n=0}^{\infty} \binom{n+rk}{rk} g_{n+rk}^{(m)}(x_1, x_2) t^n \end{split}$$

428

Generating functions of Cesàro polynomials

$$\begin{split} &= \sum_{k=0}^{\infty} a_{k,\mu} g_{k+\mu}(y) z^k t^{rk} (1-t)^{-m-1-rk} (1-x_1 t)^{-1} (1-x_2 t)^{-1} \\ &\quad \times g_{rk}^{(m)} \left(\frac{x_1 (1-t)}{1-x_1 t}, \frac{x_2 (1-t)}{1-x_2 t} \right) \\ &= (1-t)^{-m-1} (1-x_1 t)^{-1} (1-x_2 t)^{-1} \\ &\quad \sum_{k=0}^{\infty} a_{k,\mu} g_{rk}^{(m)} \left(\frac{x_1 (1-t)}{1-x_1 t}, \frac{x_2 (1-t)}{1-x_2 t} \right) g_{k+\mu}(y) [z(\frac{t}{1-t})^r]^k \\ &= (1-t)^{-m-1} (1-x_1 t)^{-1} (1-x_2 t)^{-1} Y_{r,\mu} \left[\frac{x_1 (1-t)}{1-x_1 t}, \frac{x_2 (1-t)}{1-x_2 t}, y, z\left(\frac{t}{1-t}\right)^r \right] \end{split}$$

which proves (3.4).

4. Cesàro polynomials of three variables

We define the Cesàro polynomials of three variables $g_n^{(m)}(x,y,z)$ as follows:

which can also be written as

$$g_n^{(m)}(x,y,z) = \frac{(m+n)!}{m!n!} \sum_{r=0}^n \sum_{s=0}^{n-r} \sum_{k=0}^{n-r-s} \frac{(-n)_{r+s+k}(1)_r(1)_s(1)_k}{(-m-n)_{r+s+k}r!s!k!} x^r y^s z^k.$$

The following generating relation holds for (4.1)

$$\sum_{n=0}^{\infty} g_n^{(m)}(x,y,z)t^n = (1-t)^{-1-m}(1-xt)^{-1}(1-yt)^{-1}(1-zt)^{-1}.$$
 (4.2)

Starting, as usual, from (4.2) we get the following formula of the type (1.1) for the polynomials $g_n^{(m)}(x, y, z)$:

$$\sum_{n=0}^{\infty} \binom{n+k}{k} g_{n+k}^{(m)}(x,y,z)t^n = (1-t)^{-m-1-k}(1-xt)^{-1}(1-yt)^{-1} \times (1-zt)^{-1}g_k^{(m)}\left(\frac{x(1-t)}{1-xt},\frac{y(1-t)}{1-yt},\frac{z(1-t)}{1-zt}\right) \quad (4.3)$$

which provides us with the basic tool to deduce the following theorem on mixed trilateral generating functions for the polynomials $g_n^{(m)}(x, y, z)$.

THEOREM 5. Let

$$Y_{r,\mu}[x_1, x_2, y, t] = \sum_{n=0}^{\infty} a_{n,\mu} g_{rn}^{(m)}(x_1, x_2) g_{n+r}(y) t^n$$

429

M. A. Malik

be a mixed bilateral generating function involving Cesàro polynomials of three variables and another one variable polynomials $g_{n+\mu}(y)$. Then the following mixed trilateral generating relation holds:

$$\sum_{n=0}^{\infty} g_n^{(m)}(x_1, x_2, x_3) \Omega_n^{r,\mu}(y, z) t^n = (1-t)^{-m-1} (1-x_1 t)^{-1} (1-x_2 t)^{-1} \\ \times (1-x_3 t)^{-1} Y_{r,\mu} \left[\frac{x_1(1-t)}{1-x_1 t}, \frac{x_2(1-t)}{1-x_2 t}, \frac{x_3(1-t)}{1-x_3 t}, y, z \left(\frac{t}{1-t} \right)^r \right].$$
(4.4)

The proof of (4.2), (4.3) and (4.4) are similar to those (3.2), (3.3) and (3.4) respectively.

CONCLUDING REMARK. Cesàro polynomials can be extended up to *n*-variables and analogous results of this paper can be obtained.

REFERENCES

- A. Edrelyi et al., Higher Transcendental Functions, Vol.II McGraw-Hill Book Co.Inc;New York, 1953.
- [2] A.K. Agarwal, H.L. Manocha, On some new generating functions, Mat. Vesnik 4(17)(32) (1980), 395–402. (Also published in Indian J.Pure App. Math. 13 (1982), 1369-1375).
- [3] A.K. Agarwal et al, Alternative methods of obtaining differential operator representations, Indian J. Pure Appl. Math. 13 (1982), 237–246.
- [4] D.K. Basu, On sets generated by $A(t)\phi(xt)$, C. R. Acad. Bulgare Sci. 29 (1976), 1107–1110.
- [5] E.D. Rainville, Special Functions, Chelsea Publishing Company, Bronx, New York, 1971.
- [6] F. Brafman, Some generating functions for Laguerre and Hermite polynomials, Canad. J. Math. 9 (1957), 180–187.
- [7] H.M. Srivastava, Some generalization of Carlitz's theorem, Pacific J. Math. 85 (1979), 471– 477.
- [8] H.M. Srivastava, Some bilateral generating functions for certain special functions, I and II, Indag. Math. 42 (1980).
- [9] H.M. Srivastava, H.L. Manocha, A treatise on generating functions, John Wily and Sons (Halsted Press, New York, Ellis Horwood, Chichester).
- [10] H.M. Srivastava, J.L. Lavoie, A certain method of obtaining functions, Indag. Math. 37 (1975), 304–320.
- [11] J.P. Singhal, H.M. Srivastava, A class of bilateral generating functions for certain classical polynomials, Pacific J. Math. 42 (1972), 755–762.
- [12] L. Carlitz, A class of generating functions, SIAM J. Math. Anal. 8 (1977), 518–532.
- [13] M.J. Gottlib, Concerning some polynomials orthogonal on a finite or enumerable set of points, Amer. J. Math. 60 (1938), 453–458.
- [14] Shy-Der Lin, Shuoh-Jung Liu, Han-Chun Lu, H.M. Srivastava, Integral representations for the generalized Bedient polynomials and the generalized Cesàro polynomials, Appl. Math. Comput. 218 (2011), 1330–1341.
- [15] S.K. Chatterjea, An extension of a class of bilateral generating functions for certain special functions, Bull. Inst. Acad. Sinica 5 (1977), 323–331.
- [16] T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach Science Publishers Inc. New York, 1978.

(received 26.09.2011; in revised form 20.06.2012; available online 10.09.2012)

Govt. Girls Hr. Sec. School, Darhal Malkan Rajouri - 185135, Jammu and Kashmir, India. *E-mail*: mohd.akhlaq860gmail.com, mohd.akhlaqmalik860yahoo.com