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A GENERALIZED OPERATOR INVOLVING
THE q-HYPERGEOMETRIC FUNCTION

Aabed Mohammed and Maslina Darus

Abstract. Motivated by the familiar q-hypergeometric functions, we introduce here a new
general operator. By this operator, we define a subclass of analytic function. The class generalizes
well known classes of starlike and convex functions. The integral means inequalities of this class are
investigated. Also, we consider p-γ-neighborhood for functions in this class. Our result contains
some interesting corollaries as its special cases.

1. Introduction

Let U = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C and
let A denote the class of functions normalized by

f(z) = z +
∞∑

k=2

akzk, (1.1)

which are analytic in the open unit disk U and satisfy the condition f(0) = f ′(0)−
1 = 0.

We say that a function f ∈ A is starlike of order δ and belongs to the class
S∗(δ), if it satisfies the inequality

<
(

zf ′(z)
f(z)

)
> δ (z ∈ U ; 0 ≤ δ < 1) .

The class C of convex functions of order δ is a subclass of A where the functions
f ∈ A satisfy the inequality

<
(

zf ′′(z)
f ′(z)

+ 1
)

> δ (z ∈ U ; 0 ≤ δ < 1) .
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For functions F ∈ A given by F (z) = z +
∑∞

n=2 bnzn and G ∈ A, given by
G(z) = z +

∑∞
n=2 cnzn, we define the Hadamard product (or convolution) of F and

G by

(F ∗G)(z) = z +
∞∑

n=2
bncnzn (z ∈ U) .

Let g and h be analytic functions in the unit disk U . The function g is subor-
dinate to h, written as g ≺ h, if g is univalent, g(0) = h(0) and g(U) ⊂ h(U).

In general, given two functions g and h which are analytic in U , the function
g is said to be subordinate to h if there exists a function w analytic in U with

w(0) = 0 and |w(z)| < 1 (z ∈ U)

such that g(z) = h(w(z)) (z ∈ U).
A q−hypergeometric series is a power series in one complex variable z with

power series coefficients which depend, apart from q, on r complex upper parameters
a1, a2, . . . , ar and s complex lower parameters b1, b2, . . . , bs as follows (see [14, p. 4,
Eq. (1.2.22)]):

rφs(a1, . . . , ar; b1, . . . , bs; q, z) = rφs




a1, . . ., ar

; q, z
b1, . . ., bs




=
∞∑

n=0

(a1; q)n · · · (ar; q)n

(q; q)n(b1; q)n · · · (bs; q)n

[
(−1)n

q(
n
2)

]1+s−r

zn, (1.2)

with
(
n
2

)
= n(n− 1)/2, where q 6= 0 when r > s + 1.

Here (a, q)n is the q-shifted factorial defined by

(a; q)n =
{

1, n = 0,

(1− a)(1− aq)(1− aq2) · · · (1− aqn−1), n ∈ N,

where N denotes the set of all positive integers. It is easy to see that

lim
q→1−

rφs(qa1 , . . . , qar ; qb1 , . . . , qbs ; q, (q − 1)1+s−rz) = rFs(a1, . . . , ar; b1, . . . , bs; z),

where rFs(a1, . . . , ar; b1, . . . , bs; z) is the well known generalized hypergeometric
function defined by (for a1, . . . , ar, b1, . . . , bs, z ∈ C)

rFs(a1, . . . , ar; b1, . . . , bs; z) = rFs




a1, . . . , ar;
; z

b1, . . . , bs




=
∞∑

n=0

(a1)n · · · (ar)n

(b1)n · · · (bs)n

zn

n!

(r ≤ s + 1, r, s ∈ N0 := N ∪ {0}), where bj 6= 0,−1,−2, . . . , (j = 1, 2, . . . , s) and
(µ)n is the Pochhammer symbol defined by

(µ)n =
{

1, if n = 0 and µ ∈ C \ {0},
µ(µ + 1) · · · (µ + n− 1), if n ∈ N and µ ∈ C.
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An important property that we will use is the convergence criteria of the q-
hypergeometric series defined in (1.2) depending on the values of q, r and s. Since

un+1

un
=

(1− a1q
n)(1− a2q

n) · · · (1− arq
n)

(1− qn+1)(1− b1qn) · · · (1− bsqn)
(−qn)1+s−rz,

where un denotes the terms of the series (1.2) containing z, then by the ratio test,
we conclude that (see [14]), if 0 < |q| < 1, the rφs series converges absolutely for all
z if r ≤ s and for |z| < 1 if r = s+1. If |q| > 1 and |z| < |b1 · · · bsq|/|a1 · · · ar|, then
also rφs converges absolutely. The series rφs diverges for z 6= 0 when 0 < |q| < 1
and r > s+1, and when |q| > 1 and |z| > |b1 · · · bsq|/|a1 · · · ar|, unless it terminates.
As is customary the rφs notation is also used for the sums of this series inside the
circle of convergence and for their analytic continuations (called q-hypergeometric
function) outside the circle of convergence.

In 1908, Jackson reintroduced and started a systematic study of the q-difference
operator [4, 14]:

Dqh(x) =
h(qx)− h(x)

(q − 1)x
, q 6= 1, x 6= 0, (1.3)

which is now sometimes referred to as Euler-Jackson, Jackson q-difference operator,
or simply the q-derivative. Observe that

Dqz
n =

1− qn

1− q
zn−1 and lim

q→1
Dqh(z) = h′(z),

where h′(z) is the ordinary derivative.
The formulas for the q-derivative Dq of a product and a quotient of two func-

tions are

Dq(h(z)g(z)) = h(qz)Dqg(z) + g(z)Dqh(z),

Dq

(
h(z)
g(z)

)
=

g(z)Dqh(z)− h(z)Dqg(z)
g(qz)g(z)

, g(qz)g(z) 6= 0.

For more properties of Dq see [9, 15].
Now for z ∈ U , 0 < |q| < 1, and r = s + 1, the q-hypergeometric function

defined in (1.2) takes the form

rΦs(a1, . . . , ar; b1, · · · , bs; q, z) =
∞∑

n=0

(a1, q)n · · · (ar, q)n

(q, q)n(b1, q)n · · · (br, q)n

zn,

which converges absolutely in the open unit disk U . Let

m(a1, . . . , ar; b1, . . . , bs; q, z) = zrΦs(a1, . . . , ar; b1, . . . , bs; q, z)

= z +
∞∑

n=2

(a1, q)n−1 · · · (ar, q)n−1

(q, q)n−1(b1, q)n−1 · · · (br, q)n−1

zn.

We define for f ∈ A, an operator Mr
s(a1, . . . , ar; b1, . . . , bs; q) by the Hadamard

product

Mr
s(a1, . . . , ar; b1, . . . , bs; q)f(z) = m(a1, . . . , ar; b1, . . . , bs; q, z) ∗ f(z). (1.4)
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So, for a function of the form (1.1) and from (1.4),

Mr
s(a1, . . . , ar; b1, . . . , bs; q)f(z) = z +

∞∑
n=2

Υnanzn, (1.5)

where, for convenience,

Υn =
(a1, q)n−1 · · · (ar, q)n−1

(q, q)n−1(b1, q)n−1 · · · (bs, q)n−1

.

For brevity, we write,

Mr
s[ai; bj ; q]f(z) = Mr

s(a1, . . . , ar; b1, . . . , bs; q)f(z),

(i = 1, 2, . . . r, j = 1, 2, . . . s).

Remark 1.1. When ai = qαi , bj = qβj , αi, βj ∈ C, βj 6= 0,−1, . . . ;
(i = 1, 2, . . . r, j = 1, 2, . . . s) and q → 1, we obtain the Dziok-Srivastava linear
operator [8] (for r = s + 1), so that it includes (as its special cases) various other
linear operators introduced and studied by Ruscheweyh [22], Carlson-Shaffer [6]
and Bernardi-Libera-Livingston operators [5, 19, 21]. Some of relations for the
general operator (1.5) are discussed in the next lemma.

Lemma 1.1. For f ∈ A, we have
(i) M1

0[q; ; q]f(z) = f(z),
(ii) M1

0[q
2; ; q]f(z) = zDqf(z), and limq→1M1

0[q
2, ; q]f(z) = zf ′(z), where Dq

is the q-derivative defined in (1.3).

Now usingMr
s[ai; bj ; q]f , we define the following subclass of analytic functions.

Definition 1.1. Given 0 < α ≤ 1 and 0 ≤ β ≤ 1 and functions

Φ(z) = z +
∞∑

n=2
λnzn, Ψ(z) = z +

∞∑
n=2

µnzn,

analytic in U such that λn ≥ 0, µn ≥ 0, λn > µn, (n ≥ 2), we say that f ∈ A is in
Mr,s (ai, bj , q, Φ, Ψ, α, β) if f(z) ∗Ψ(z) 6= 0 and

∣∣∣∣
Mr

s (ai, bj , q) (f ∗ Φ) (z)
Mr

s (ai, bj , q) (f ∗Ψ) (z)
− 1

∣∣∣∣ < α

∣∣∣∣β
Mr

s (ai, bj , q) (f ∗ Φ) (z)
Mr

s (ai, bj , q) (f ∗Ψ) (z)
+ 1

∣∣∣∣ ,

where Mr
s[ai, bj ; q]f(z) is given by (1.5). We further let

MT r,s (ai, bj , q, Φ, Ψ, α, β) = Mr,s (ai, bj , q, Φ, Ψ, α, β) ∩ T ,

where
T =

{
f ∈ A : f(z) = z −

∞∑
n=2

|an| zn, z ∈ U
}

, (1.6)

a subclass of A being introduced and studied by Silverman [25].



458 A. Mohammed, M. Darus

By suitably specializing the values of r, s, a1, a2, . . . , ar, b1, b2, . . . , bs, q, Φ, Ψ,
α and β, the class MT r,s (ai, bj , q, Φ, Ψ, α, β) leads to various subclasses. As illus-
trations, we present some examples:

Example 1. For r = 1, s = 0 and a1 = q, we have

MT 1, 0 (q, , q, Φ, Ψ, α, β) = DT (Φ, Ψ, α, β)

=
{

f ∈ T :
∣∣∣∣
(f ∗ Φ) (z)
(f ∗Ψ) (z)

− 1
∣∣∣∣ < α

∣∣∣∣β
(f ∗ Φ) (z)
(f ∗Ψ) (z)

+ 1
∣∣∣∣
}

,

where DT (Φ, Ψ, α, β) was introduced and studied by Darus [7].
Example 2. For r = 1, s = 0, a1 = q, α = 1−δ

2(1−ν) , β = 0,

MT 1,0

(
q, , q,Φ,Ψ,

1− δ

2 (1− ν)
, 0

)
=

{
f ∈ T :

∣∣∣∣
(f ∗ Φ) (z)
(f ∗Ψ) (z)

− 1
∣∣∣∣ <

1− δ

2 (1− ν)

}
,

which implies the class BT (Φ, Ψ, δ, ν), introduced and studied by Frasin [10], Frasin
and Darus [11, 12].

Example 3. For r = 1, s = 0, a1 = q, Φ(z) = z
(1−z)2 , Ψ(z) = z

1−z , we get

MT 1, 0

(
q, , q,

z

(1− z)2
,

z

1− z
, α, β

)
= MT (α, β)

=
{

f ∈ T :
∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ < α

∣∣∣∣β
zf ′(z)
f(z)

+ 1
∣∣∣∣
}

,

where M(α, β) was introduced by Lakshminarasimhan [18].
Example 4. For r = 1, s = 0, a1 = q, α = 1− δ, β = 0,

MT 1, 0 (q, , q, Φ, Ψ, 1− δ, 0) = DT (Φ,Ψ, δ) =
{

f ∈ T :
∣∣∣∣
(f ∗ Φ) (z)
(f ∗Ψ) (z)

− 1
∣∣∣∣ < 1− δ

}
,

where DT (Φ,Ψ, δ) was introduced by Juneja et.al [16]. In particular, for r = 1,
s = 0, a1 = q, Φ(z) = z

(1−z)2 , Ψ(z) = z
1−z , α = 1− δ, β = 0,

MT 1,0

(
q, , q,

z

(1− z)2
,

z

1− z
, 1− δ, 0

)
= S∗T (δ) =

{
f ∈ T :

∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ < 1− δ

}

and for r = 1, s = 0, a1 = q, Φ(z) = z+z2

(1−z)3 , Ψ(z) = z
(1−z)2

, α = 1− δ, β = 0 we get

MT 1,0

(
q, , q,

z + z2

(1− z)3
,

z

(1− z)2
, 1− δ, 0

)
= CT (δ) =

{
f ∈ T :

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ < 1− δ
}

,

where S∗T (δ) and CT (δ) denote the subfamilies of T that are starlike of order δ and
convex of order δ which were studied by Silverman [25].

Example 5. For r = 1, s = 0, a1 = q2 and q → 1, we get

MT 1,0

(
q2, , 1,Φ,Ψ, α, β

)
=

∣∣∣∣
(f ∗ Φ)′ (z)
(f ∗Ψ)′ (z)

− 1
∣∣∣∣ < α

∣∣∣∣β
(f ∗ Φ)′ (z)
(f ∗Ψ)′ (z)

+ 1
∣∣∣∣ .
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Example 6. For r = 1, s = 0, a1 = q2, q → 1, Φ(z) = z
(1−z)2 , Ψ(z) = z

1−z , we
get

MT 1,0

(
q2, , 1,

z

(1− z)2
,

z

1− z
, α, β

)

=
{

f ∈ T :
∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ < α

∣∣∣∣β
(

zf ′′(z)
f ′(z)

+ 1
)

+ 1
∣∣∣∣
}

.

Example 7. For r = 1, s = 0, a1 = q2, q → 1, Φ(z) = z+z2

(1−z)3 , Ψ(z) = z
(1−z)2

,
we get

MT 1, 0

(
q2, , 1,

z + z2

(1− z)3
,

z

(1− z)2
, α, β

)

=
{

f ∈ T :
∣∣∣∣
z (zf ′′′(z) + 2f ′′(z))

zf ′′(z) + f ′(z)

∣∣∣∣ < α

∣∣∣∣β
(

z (zf ′′′(z) + 2f ′′(z))
zf ′′(z) + f ′(z)

+ 1
)

+ 1
∣∣∣∣
}

.

Making use of the similar arguments as Darus [7], we get the following necessary
and sufficient condition of the class MT r,s (ai, bj , q,Φ,Ψ, α, β).

A function f ∈MT r,s (ai, bj , q,Φ,Ψ, α, β) if, and only if,

∞∑
n=2

[(1 + αβ)λn − (1− α)µn]
α(β + 1)

|Υn| |an| ≤ 1, 0 < α ≤ 1, 0 ≤ β ≤ 1. (1.7)

The result is sharp with the extremal functions

fn(z) = z − α(β + 1)
σ(α, β, n)

zn, n ≥ 2,

where σ(α, β, n) = [(1 + αβ) λn − (1− α)µn] |Υn|.
In [25], Silverman found that the function f2(z) = z − z2

2 is often extremal
for the family T . He applied this function to resolve his integral means inequality
settled in [26], that

∫ 2π

0

∣∣f(reiθ)
∣∣η dθ ≤

∫ 2π

0

∣∣f2(reiθ‘)
∣∣η dθ,

for all f ∈ T , η > 0 and 0 < r < 1. Silverman [27] also proved his conjecture for
the subclasses S∗T (δ) and CT (δ) of T .

In this paper, we prove Silverman’s conjecture for the functions in the fam-
ily MT r,s (ai, bj , q,Φ,Ψ, α, β). By taking appropriate choices of the parameters
r, s, a1, a2, . . . , ar, b1, b2, . . . , bs, q, Φ, Ψ, α and β, we obtain the integral means
inequalities for several known as well as new subclasses of convex and starlike func-
tions in U . In fact, these results also settle the Silverman’s conjecture for several
other subclasses of T . Also we consider the p-γ-neighborhood for function f(z)
belongs to this class. For other results dealing with integral means inequalities and
neighborhoods of certain subclasses of analytic functions, see [1, 2, 3, 17, 24].
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2. Integral means inequalities

Following the work of Littlewood [20], we obtain integral means inequalities
for the functions in the family MT r,s (ai, bj , q, Φ, Ψ, α, β).

Lemma 2.1. [20] If the functions f and g are analytic in U with g ≺ f , then
for η > 0 and 0 < r < 1,

∫ 2π

0

∣∣g(reiθ)
∣∣η dθ ≤

∫ 2π

0

∣∣f(reiθ‘)
∣∣η dθ.

Applying (1.7) and Lemma 2.1, we prove the following result.

Theorem 2.1. Let f ∈ MT r,s (ai, bj , q, Φ, Ψ, α, β), 0 < α ≤ 1, 0 ≤ β ≤ 1,
{σ (α, β, n)}∞n=2 be a non-decreasing sequence and f2(z) be defined by

f2(z) = z − α(β + 1)
σ(α, β, 2)

z2,

where
σ(α, β, 2) = [(1 + αβ)λ2 − (1− α)µ2] |Υ2| (2.1)

and Υ2 is given by

Υ2 =
(1− a1) · · · (1− ar)

(1− q)(1− b1) · · · (1− bs)
.

Then for z = reθ, 0 < r < 1, we have
∫ 2π

0

|f(z)|η dθ ≤
∫ 2π

0

|f2(z)|η dθ. (2.2)

Proof. For a function f of the form (1.6), the inequality (2.2) is equivalent to

∫ 2π

0

∣∣∣∣∣1−
∞∑

n=2

|an|zn−1

∣∣∣∣∣

η

dθ ≤
∫ 2π

0

∣∣∣∣1−
α(β + 1)
σ(α, β, 2)

z

∣∣∣∣
η

dθ.

By Lemma 2.1, it suffices to show that

∞∑
n=2

|an|zn−1 ≺ α(β + 1)
σ(α, β, 2)

z. (2.3)

Setting
∞∑

n=2
anzn−1 =

α(β + 1)
σ(α, β, 2)

w(z), from (2.3) and (1.7), we obtain

|w(z)| =
∣∣∣∣
∞∑

n=2

σ(α, β, 2)
α(β + 1)

anzn−1

∣∣∣∣ ≤ |z|
∞∑

n=2

σ(α, β, n)
α(β + 1)

an ≤ |z| < 1.

By the definition of subordination, we have (2.3). This completes the proof.
In the view of Examples 1 to 7, we state the following corollaries.
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Corollary 2.1. Let f ∈ MT 1, 0 (q, , q, Φ, Ψ, α, β) = DT (Φ, Ψ, α, β), 0 <
α ≤ 1, 0 ≤ β ≤ 1 and f2(z) be defined by

f2(z) = z − α(β + 1)
(1 + αβ)λ2 − (1− α) µ2

z2.

Then for z = reθ, 0 < r < 1, we have
∫ 2π

0

|f(z)|ηdθ ≤
∫ 2π

0

|f2(z)|ηdθ. (2.4)

Corollary 2.2. Let f ∈MT 1,0

(
q, , q,Φ,Ψ, 1−δ

2(1−ν) , 0
)
, and f2(z) be defined

by

f2(z) = z − 1− δ

2 (1− ν)λ2 − (1 + δ − 2ν)µ2
z2.

Then for z = reθ, 0 < r < 1, (2.4) holds true.

Corollary 2.3. Let f ∈ MT 1, 0

(
q, , q, z

(1−z)2 , z
1−z , α, β

)
= MT (α, β), 0 <

α ≤ 1, 0 ≤ β ≤ 1 and f2(z) be defined by

f2(z) = z − α(β + 1)
α(2β + 1) + 1

z2.

Then for z = reθ, 0 < r < 1, (2.4) holds true.

Corollary 2.4. Let MT 1, 0 (q, , q,Φ,Ψ, 1− δ, 0) = DT (Φ,Ψ, δ) and f2(z)
be defined by

f2(z) = z − 1− δ

λ2 − δµ2
z2.

Then for z = reθ, 0 < r < 1, (2.4) holds true.

Corollary 2.5. Let f ∈ MT 1, 0

(
q, , q, z

(1−z)2 , z
1−z , 1− δ, 0

)
= S∗T (δ) and

f2(z) be defined by

f2(z) = z − 1− δ

2− δ
z2.

Then for z = reθ, 0 < r < 1, (2.4) holds true.

Corollary 2.6. Let f ∈MT 1, 0

(
q, , q, z+z2

(1−z)3 , z
(1−z)2

, 1− δ, 0
)

= CT (δ) and
f2(z) be defined by

f2(z) = z − 1− δ

2 (2− δ)
z2.

Then for z = reθ, 0 < r < 1, (2.4) holds true.

Corollary 2.7. Let f ∈MT 1, 0

(
q2, , 1,Φ,Ψ, α, β

)
and f2(z) be defined by

f2(z) = z − α(β + 1)
2 [(1 + αβ)λ2 − (1− α) µ2]

z2.

Then for z = reθ, 0 < r < 1, (2.4) holds true.
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Corollary 2.8. Let f ∈ MT 1, 0

(
q2, , 1, z

(1−z)2 , z
1−z , α, β

)
and f2(z) be de-

fined by

f2(z) = z − α(β + 1)
2 [α(2β + 1) + 1]

z2.

Then for z = reθ, 0 < r < 1, (2.4) holds true.

Corollary 2.9. Let f ∈ MT 1, 0

(
q2, , 1, z+z2

(1−z)3 , z
(1−z)2

, α, β
)

and f2(z) be
defined by

f2(z) = z − α(β + 1)
4 [α(2β + 1) + 1]

z2.

Then for z = reθ, 0 < r < 1, (2.4) holds true.

Remark 2.1. If we take δ = 0 in S∗T (δ) of Corollary 2.5 and CT (δ) of Corollary
2.6, we get the integral means results obtained by Silverman [27].

Remark 2.2. With the help of Remark 1.1 and by suitably specializing the
various parameters involved in Theorem 2.1, we can state the corresponding results
for the subclasses defined in Examples 1 to 7 and also for many relatively more
familiar function classes.

3. Neighborhoods of the class MT r,s (ai, bj , q, Φ, Ψ, α, β).

For f ∈ T of the form (1.6), and γ ≥ 0, Frasin and Darus [13] investigated the
p-γ-neighborhood of f as the following

Mp
γ (f) =

{
g ∈ T : g(z) = z −

∞∑
n=2

bnzn,
∞∑

n=2
np+1 |an − bn| ≤ γ

}
, (3.1)

where p is a fixed positive integer. It follows from (3.1), that if e(z) = z, then

Mp
γ (e) =

{
g ∈ T : g(z) = z −

∞∑
n=2

bnzn,
∞∑

n=2
np+1 |bn| ≤ γ

}
.

We observe that M0
γ (f) ≡ Nγ(f), M1

γ (f) ≡ Mγ(f), where Nγ(f) is called a γ-
neighborhood of f introduced by Ruscheweyh [23] and Mγ(f) was defined by Sil-
verman [28].

Now, we obtain p-γ-neighborhood for function in the class
MT r,s (ai, bj , q,Φ,Ψ, α, β).

Theorem 3.1. If
{
σ (α, β, n)/np+1

}∞
n=2

is a non-decreasing sequence, then
MT r,s (ai, bj , q,Φ,Ψ, α, β) ⊂ Mp

γ (e), where

γ =
2p+1α(β + 1)

σ (α, β, 2)
,

and σ (α, β, 2) is defined as in (2.1).
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Proof. It follows from (1.7) that if f ∈MT r,s (ai, bj , q, Φ, Ψ, α, β), then

∞∑
n=2

np+1 |an| ≤ 2p+1α(β + 1)
σ (α, β, 2)

.

This gives that MT r,s (ai, bj , q, Φ, Ψ, α, β) ⊂ Mp
γ (e).

By taking different choices of r, s, a1, a2, . . . , ar, b1, b2, . . . , bs, q, Φ, Ψ, α and
β in the above theorem, we can state the following neighborhood results for various
subclasses studied earlier by several researchers.

In view of the Examples 1 to 7 in Section 1 and Theorem 3.1, we have the
following corollaries for the classes defined in these examples.

Corollary 3.1. DT (Φ,Ψ, α, β) ⊂ Mp
γ (e), where

γ =
2p+1α(β + 1)

[(1 + αβ)λ2 − (1− α)µ2]
.

Corollary 3.2. MT 1,0

(
q, , q, Φ, Ψ, 1−δ

2(1−ν) , 0
)
⊂ Mp

γ (e), where

γ =
2p+1 (1− δ)

2 (1− ν)λ2 − (1 + δ − 2ν)µ2
.

Corollary 3.3. MT (α, β) ⊂ Mp
γ (e), where γ =

2p+1α(β + 1)
[α (2β + 1) + (2β − 1)]

.

Corollary 3.4. DT (Φ,Ψ, δ) ⊂ Mp
γ (e), where γ =

2p+1 (1− δ)
λ2 − δµ2

.

Corollary 3.5. S∗T (δ) ⊂ Mp
γ (e), where γ =

2p+1 (1− δ)
(2− δ)

.

Corollary 3.6. CT (δ) ⊂ Mp
γ (e), where γ =

2p+1 (1− δ)
2 (2− δ)

.

Corollary 3.7. MT 1,0

(
q2, , 1, Φ, Ψ, α, β

) ⊂ Mp
γ (e), where

γ =
2p+1α(β + 1)

2 [(1 + αβ)λ2 − (1− α)µ2]
.

Corollary 3.8. MT 1,0

(
q2, , 1, z

(1−z)2 , z
1−z , α, β

)
⊂ Mp

γ (e), where

γ =
2p+1α(β + 1)

2 (1 + 2αβ + α)
.
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Corollary 3.9. MT 1, 0

(
q2, , 1, z+z2

(1−z)3 , z
(1−z)2

, α, β
)
⊂ Mp

γ (e), where

γ =
2p+1α(β + 1)

4 (1 + 2αβ + α)
.
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