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ENTIRE FUNCTIONS AND THEIR DERIVATIVES
SHARE TWO FINITE SETS

Chao Meng

Abstract. In this paper, we study the uniqueness of entire functions and prove two theorems
which improve the result given by Fang [M.L. Fang, Entire functions and their derivatives share
two finite sets, Bull. Malaysian Math. Sci. Soc. 24 (2001), 7–16].

1. Introduction, definitions and results

Let f and g be two nonconstant meromorphic functions defined in the open
complex plane C. If for some a ∈ C ∪ {∞}, f and g have the same set of a-
points with the same multiplicities then we say that f and g share the value a CM
(counting multiplicities). If we do not take the multiplicities into account, f and
g are said to share the value a IM (ignoring multiplicities). We assume that the
reader is familiar with the notations of Nevanlinna theory that can be found, for
instance, in [3] or [6].

Let S be a set of distinct elements of C∪{∞} and Ef (S) =
⋃

a∈S{z : f(z)−a =
0}, where each zero is counted according to its multiplicity. If we do not count the
multiplicity the set

⋃
a∈S{z : f(z)−a = 0} is denoted by Ef (S). If Ef (S) = Eg(S)

we say that f and g share the set S CM. On the other hand, if Ef (S) = Eg(S),
we say that f and g share the set S IM. Let m be a positive integer or infinity and
a ∈ C∪{∞}. We denote by Em)(a, f) the set of all a-points of f with multiplicities
not exceeding m, where an a-point is counted according to its multiplicity. For a
set S of distinct elements of C we define Em)(S, f) =

⋃
a∈S Em)(a, f). If for some

a ∈ C ∪ {∞}, E∞)(a, f) = E∞)(a, g), we say that f and g share the value a CM.
We can define Em)(a, f) and Em)(S, f) similarly.

In 1977, Gross [2] posed the following question.
Question. Can one find two finite sets Sj(j = 1, 2) such that any two non-

constant entire functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2 must be
identical?
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Yi [7] gave a positive answer to the question. He proved

Theorem A. [7] Let f and g be two nonconstant entire functions, n ≥ 5 a
positive integer, and let S1 = {z : zn = 1}, S2 = {a}, where a 6= 0 is a constant
satisfying a2n 6= 1. If Ef (Sj) = Eg(Sj) for j = 1, 2, then f ≡ g.

In 2001, Fang [1] investigated the question and proved the following theorems

Theorem B. [1] Let f and g be two nonconstant entire functions, n ≥ 5, k two
positive integers, and let S1 = {z : zn = 1}, S2 = {a, b, c}, where a, b, c are nonzero
finite distinct constants satisfying a2 6= bc, b2 6= ac, c2 6= ab. If Ef (S1) = Eg(S1)
and Ef(k)(S2) = Eg(k)(S2), then f ≡ g.

Theorem C. [1] Let f and g be two nonconstant entire functions, n ≥ 5, k
two positive integers, and let S1 = {z : zn = 1}, S2 = {a, b}, where a, b are two
nonzero finite distinct constants. If Ef (S1) = Eg(S1) and Ef(k)(S2) = Eg(k)(S2),
then one of the following cases must occur: (1) f ≡ g; (2) b = −a, f = ecz+d,
g = te−cz−d, where c, d, t are three constants satisfying tn = 1 and (−1)ktc2k = a2;
(3) f = ecz+d, g = te−cz−d, where c, d, t are three constants satisfying tn = 1 and
(−1)ktc2k = ab; (4) b = −a, f ≡ −g.

Theorem D. [1] Let f and g be two nonconstant entire functions, n ≥ 5, k
two positive integers, and let S1 = {z : zn = 1}, S2 = {a}, where a 6= 0,∞. If
Ef (S1) = Eg(S1) and Ef(k)(S2) = Eg(k)(S2), then one of the following cases must
occur: (1) f ≡ g; (2) f = ecz+d, g = te−cz−d, where c, d, t are three constants
satisfying tn = 1 and (−1)ktc2k = a2.

In this paper, we consider the more general sets S1 = {z : zn = 1}, S2 =
{a1, a2, . . . , am}, where a1, a2, . . . , am are distinct nonzero constants. We prove the
following results which improve Theorem B, Theorem C and Theorem D.

Theorem 1. Let n(≥ 5), k, m be positive integers, and let S1 = {z : zn = 1},
S2 = {a1, a2, . . . , am}, where a1, a2, . . . , am are distinct nonzero constants. If
two nonconstant entire functions f and g satisfy E3)(S1, f) = E3)(S1, g), and
Ef(k)(S2) = Eg(k)(S2), then one of the following cases must occur: (1) f = tg,
{a1, a2, . . . , am} = t{a1, a2, . . . , am}, where t is a constant satisfying tn = 1;
(2) f(z) = decz, g(z) = t

de−cz, {a1, a2, . . . , am} = (−1)kc2kt{ 1
a1

, . . . , 1
am
}, where t,

c, d are nonzero constants and tn = 1.

Theorem 2. Let n(≥ 5), k, m be positive integers, and let S1 = {z : zn = 1},
S2 = {a1, a2, . . . , am}, where a1, a2, . . . , am are distinct nonzero constants. If
two nonconstant entire functions f and g satisfy E2)(S1, f) = E2)(S1, g), and
Ef(k)(S2) = Eg(k)(S2), then one of the following cases must occur: (1) f = tg,
{a1, a2, . . . , am} = t{a1, a2, . . . , am}, where t is a constant satisfying tn = 1;
(2) f(z) = decz, g(z) = t

de−cz, {a1, a2, . . . , am} = (−1)kc2kt{ 1
a1

, . . . , 1
am
}, where t,

c, d are nonzero constants and tn = 1.
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2. Some lemmas

In this section, we present some lemmas which will be needed in the sequel.
We will denote by H the following function:

H =
(

F ′′

F ′
− 2F ′

F − 1

)
−

(
G′′

G′
− 2G′

G− 1

)
.

Lemma 1. [5] Let f be a nonconstant meromorphic function, and let a0, a1,
a2, . . . , an be finite complex numbers, an 6= 0. Then

T (r, anfn + · · ·+ a2f
2 + a1f + a0) = nT (r, f) + S(r, f).

Lemma 2. [4] Let F , G be two nonconstant meromorphic functions such that
E3)(1, F ) = E3)(1, G), then one of the following cases holds: (1) T (r, F )+T (r,G) ≤
2{N2

(
r, 1

F

)
+ N2

(
r, 1

G

)
+ N2(r, F ) + N2(r,G)} + S(r, F ) + S(r,G); (2) F ≡ G;

(3) FG ≡ 1.

Lemma 3. [9] Let F and G be two nonconstant meromorphic functions and
E2)(1, F ) = E2)(1, G). If H 6≡ 0, then

T (r, F ) + T (r,G) ≤ 2
(

N2

(
r,

1
F

)
+ N2(r, F ) + N2

(
r,

1
G

)
+ N2(r,G)

)

+ N (3

(
r,

1
F − 1

)
+ N (3

(
r,

1
G− 1

)
+ S(r, F ) + S(r,G).

Lemma 4. [8] Let H be defined as above. If H ≡ 0 and

lim sup
r→∞

N(r, 1
F ) + N(r, 1

G ) + N(r, F ) + N(r,G)
T (r)

< 1, r ∈ I,

where I is a set with infinite linear measure and T (r) = max{T (r, F ), T (r,G)},
then FG ≡ 1 or F ≡ G.

Lemma 5. [3] Let f be a nonconstant meromorphic function, n be a positive
integer, and let Ψ be a function of the form Ψ = fn + Q, where Q is a differential
polynomial of f with degree ≤ n− 1. If

N(r, f) + N

(
r,

1
Ψ

)
= S(r, f),

then Ψ = (f + α)n, where α is a meromorphic function with T (r, α) = S(r, f),
determined by the term of degree n− 1 in Q.
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3. Proof of Theorem 1

Set F = fn, G = gn. By Lemma 1, we have

T (r, F ) = nT (r, f) + S(r, f), T (r,G) = nT (r, g) + S(r, g). (1)

From E3)(S1, f) = E3)(S1, g), we deduce E3)(1, F ) = E3)(1, G). Then F and G
satisfy the condition of Lemma 2. We assume Case (1) in Lemma 2 holds, that is,

T (r, F ) + T (r,G) ≤ 2{N2(r,
1
F

) + N2(r,
1
G

)}+ S(r, F ) + S(r,G)

≤ 4T (r, f) + 4T (r, g) + S(r, f) + S(r, g) (2)

Combining (1) and (2) together we have

(n− 4)T (r, f) + (n− 4)T (r, g) ≤ S(r, f) + S(r, g), (3)

which contradicts n ≥ 5. Thus by Lemma 2, we have FG ≡ 1 or F ≡ G, that is
f = tg or fg = t where t is a constant and tn = 1. Next we consider the following
two cases:

Case 1. f = tg. Then f (k) = tg(k). By Ef(k)(S2) = Eg(k)(S2), we get
{a1, a2, . . . , am} = t{a1, a2, . . . , am}.

Case 2. fg = t. Then there exists an entire function h such that f = eh and
g = te−h. Therefore

f (i) = αif, g(i) = βig, i = 1, 2, . . . , (4)

where α1 = h′, β1 = −h′, and αi, βi satisfy the following recurrence formulas,
respectively.

αi+1 = α′i + α2
i , βi+1 = β′i + β2

i , i = 1, 2, . . . (5)

Without loss of the generality, we assume that a1 is not an exceptional value of
f (k). Suppose f (k)(z0) = a1. Then t

a1
αk(z0)βk(z0) = g(k)(z0) ∈ S2. Therefore,

m∏

j=1

(
t

a1
αk(z0)βk(z0)− aj) = 0. (6)

Note that N(r, 1/(f (k) − a1)) 6= S(r, f). We get
m∏

j=1

(
t

a1
αkβk − aj) = 0, (7)

which implies that αkβk is a nonzero constant. And thus αk and βk have no zeros.
The recurrence formulas in (5) show that

αk = αk
1 + P (α1), βk = βk

1 + Q(β1), (8)

where P (α1) is a differential polynomial in α1 of degree k − 1, and Q(β1) is a
differential polynomial in β1 of degree k − 1. If α1 and β1 are not constants, then
by Lemma 5, we have

αk =
(
α1 +

γ1

k

)k

, βk =
(
β1 +

γ2

k

)k

, (9)
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where γ1, γ2 are small functions of α1 and β1, respectively. Note that α1 = −β1 =
h′. We conclude that αkβk can not be constant, which is a contradiction. Hence one
of α1 and β1 is constant. Thus h is a linear function. Therefore, f(z) = decz and
g(z) = t

de−cz, where c, d are nonzero constants. Now from Ef(k)(S2) = Eg(k)(S2),
we get {a1, a2, . . . , am} = (−1)kc2kt{ 1

a1
, . . . , 1

am
}, which completes the proof of

Theorem 1.

4. Proof of Theorem 2

Set F = fn, G = gn. From E2)(S1, f) = E2)(S1, g), we deduce E2)(1, F ) =
E2)(1, G). By Lemma 1, we have

T (r, F ) = nT (r, f) + S(r, f), T (r,G) = nT (r, g) + S(r, g). (10)

Assume H 6≡ 0. By Lemma 3, we have

T (r, F ) + T (r,G) ≤ 2
(

N2

(
r,

1
F

)
+ N2(r, F ) + N2

(
r,

1
G

)
+ N2(r,G)

)

+ N (3

(
r,

1
F − 1

)
+ N (3

(
r,

1
G− 1

)
+ S(r, F ) + S(r,G). (11)

Obviously we have

N (3

(
r,

1
F − 1

)
≤ 1

2
N

(
r,

F

F ′

)
=

1
2
N

(
r,

F ′

F

)
+ S(r, f)

≤ 1
2
N

(
r,

1
F

)
+ S(r, f) ≤ 1

2
T (r, f) + S(r, f). (12)

Similarly we have

N (3

(
r,

1
G− 1

)
≤ 1

2
T (r, g) + S(r, g). (13)

Combining (10), (11), (12) and (13) together we have

(n− 9
2
)T (r, f) + (n− 9

2
)T (r, g) ≤ S(r, f) + S(r, g), (14)

which contradicts n ≥ 5. Thus H ≡ 0. By Lemma 4, we have FG ≡ 1 or F ≡ G,
that is f = tg or fg = t where t is a constant and tn = 1. Proceeding as in the
proof of Theorem 1, we get the conclusion of Theorem 2. This completes the proof
of Theorem 2.

5. Some Remarks

From Theorem 2, we know Theorem 1 still holds if we replace E3)(S1, f) =
E3)(S1, g) by E2)(S1, f) = E2)(S1, g). But we do not know whether Theorem 1 and
2 still hold for n < 5. We intend to study the question in future work.
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