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THE UNIVALENCE OF SOME INTEGRAL OPERATORS
USING THE BESSEL FUNCTIONS

Nicoleta Ularu

Abstract. In this paper we will introduce some new integral operators using the generalized
Bessel functions and analytic functions. For this operators we will prove the univalence condition.

1. Preliminaries and definitions

Let A the class of all functions of the form

f(z) = z +
∞∑

n=1

an+1z
n+1 (1)

which are analytic in the unit disk U = {z : |z| < 1} and satisfy the condition

f(0) = f ′(0)− 1 = 0.

We denote by S the class of univalent functions.
We will consider the generalized Bessel function of the first kind and order ν as

the particular solution of the second-order linear homogenous differential equation

z2ω′′(z) + bzω′(z) + [cz2 − ν2 + (1− b)ν]ω(z) = 0.

This solution is denoted by ων,b,c(z) and has the familiar infinite sum representation

ω(z) = ων,b,c(z) =
∞∑

n=0

(−c)n

n! Γ(ν + n + b+1
2 )

(z

2

)2n+ν

z ∈ C, (2)

where Γ is the Euler gamma function. Considering this series we can study the
Bessel, modified Bessel and spherical Bessel functions. Geometric properties for
this were obtained by Baricz in [4].

The Bessel functions are obtained for b = c = 1 in (2) and are defined by
(see [4])

Jν(z) =
∞∑

n=0

(−1)n

n! Γ(ν + n + 1)

(z

2

)2n+ν

,
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for z ∈ C. For b = −c = 1 in (2) are obtained the modified Bessel functions and
are defined by (see [4])

Iν(z) =
∞∑

n=0

1
n! Γ(ν + n + 1)

(z

2

)2n+ν

, z ∈ C.

The spherical Bessel functions are obtained for b− 1 = c = 1 in (2) and are defined
by (see [4])

Kν(z) =

√
2
z
Jν+ 1

2
(z) =

∞∑
n=0

(−1)n

n! Γ(ν + n + 3
2 )

(z

2

)2n+ν

, z ∈ C.

In particular cases Bessel functions of the first kind reduces to some elementary
functions, like sine and cosine and modified Bessel functions of the first kind are
reduced to hyperbolic sine and cosine.

The generalized Bessel function of the first kind were studied by Á. Baricz
in [3]. Recently, in 2010 Baricz and Frasin proved in [6] the univalence of some
integral operators involving generalized Bessel functions and with Ponnusamy some
conditions of starlikeness and convexity of generalized Bessel functions in [7].

We consider the function defined by

uν,b,c(z) = 2νΓ(ν +
b + 1

2
)zν/2ων,b,c(

√
z)

and using the Pochhammer symbol, defined in terms of Euler-Gamma function

(λ)ν =
Γ(λ + µ)

Γ(λ)
=

{
1, ν = 0, λ ∈ C− 0
λ(λ + 1) . . . (λ + n− 1), µ = n, λ ∈ C

we obtain for the function uν,b,c(z) the following series representation

uν,b,c(z) = z +
∞∑

n=1

(−c)n

4n(κ)nn!
zn+1 (3)

for κ := ν + b+1
2 6∈ Z0.

More results about function uν,b,c(z) of generalized Bessel function ων,b,c(z)
we find in the papers of Baricz in [4] and [5], where he proves some geometric
properties and also some interesting inequalities that involving generalized Bessel
functions.

To prove our main results we will use Ahlfors [1] and Becker [2] univalence
criterion:

Theorem 1.1. Let d be a complex number, |d| ≤ 1, d 6= −1. If f(z) =
z + a2z

2 + . . . is a regular function in U and
∣∣∣∣d|z|2 + (1− |z|2)zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1 (4)

for all z ∈ U , then the function f is regular and univalent in U .
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Also we will use some lemmas that were proven by E. Deniz, H. Orhan and
H. M. Srivastava in [8]. These were obtained by the generalization of the results
obtained by Baricz and Ponnusamy in [7].

Lemma 1.1. If the parameters ν, b ∈ R and c ∈ C are so constrained that

κ > max
{

0,
|c| − 2

4

}
,

then the function ϕν,b,c : U → C,

ϕν,b,c(z) = z +
∞∑

n=1

(−c)n

4n(κ)nn!
zn+1

satisfies the following inequalities:
∣∣∣∣ϕ′ν,b,c(z)− ϕν,b,c(z)

z

∣∣∣∣ ≤
(κ + 1) |c|

κ[4(κ + 1)− |c|] , z ∈ U ,

∣∣∣∣
zϕ′ν,b,c(z)
ϕν,b,c(z)

− 1
∣∣∣∣ ≤

8(κ + 1) |c|
32κ(κ + 1)− 8(2κ + 1) |c|+ |c|2 , z ∈ U , (5)

4κ(κ + 1)− (3κ + 2) |c|
κ[4(κ + 1)− |c|] ≤

∣∣zϕ′ν,b,c(z)
∣∣ ≤ 4κ(κ + 1) + (κ + 2) |c|

κ[4(κ + 1)− |c|] , z ∈ U ,

∣∣z2ϕ′′ν,b,c

∣∣ ≤ |c| 4(κ + 1) + |c|
2κ4(κ + 1)− |c| , z ∈ U ,

and ∣∣∣∣∣
zϕ′′ν,b,c(z)
ϕ′ν,b,c(z)

∣∣∣∣∣ ≤
4(κ + 1) |s|+ |c|2

8κ(κ + 1)− 2(3κ + 2) |c| , z ∈ U . (6)

Lemma 1.2. If the parameters ν, b ∈ R and c ∈ C are so constrained that

k > max
{

0,
|c|
8
− 1

}

then the function ϕν,b,c : U → C,

ϕν,b,c(z) = z +
∞∑

n=1

(−c)n

4n(κ)nn!
zn+1

satisfies the following inequalities:
∣∣∣∣ϕ′ν,b,c(z)− ϕν,b,c(z)

z

∣∣∣∣ ≤
|c|
4κ

(
8(κ + 1) + |c|
8(κ + 1)− |c|

)
, z ∈ U ,

∣∣∣∣
zϕ′ν,b,c(z)
ϕν,b,c(z)

− 1
∣∣∣∣ ≤

8(κ + 1) |c|+ |c|2
32κ(κ + 1)− 4(2κ + 3) |c| , (7)

32κ(κ + 1)− 8(3κ + 2) |c| − |c|2
4κ[8(κ + 1)− |c|] ≤

∣∣zϕ′ν,b,c(z)
∣∣

≤ 32κ(κ + 1) + 4(3κ + 4) |c|+ |c|2
4κ[8(κ + 1)− |c|] , z ∈ U ,
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∣∣z2ϕ′′ν,b,c(z)
∣∣ ≤ |c|

2κ

(
|c|2

8(κ + 1)
· 8(κ + 2) + |c|
8(κ + 2)− |c| +

8(κ + 1) + |c|
8(κ− 1)− |c|

)
, z ∈ U

and∣∣∣∣∣
zϕ′′ν,b,c(z)
ϕ′ν,b,c(z)

∣∣∣∣∣ ≤
|c|
2
×

× 64(k + 1)2[8(κ + 2)− |c|] + 128(κ + 1)(κ + 2)− [8(κ + 2) + |c|] |c|2
2(κ + 1)[8(κ + 1)− |c|]16(κ + 1)(2κ− |c|)− |c| (4κ + |c|) . (8)

In this paper, using the generalized Bessel functions, we will introduce the
operators:

Iνi
(u, g)(z) =

∫ z

0

n∏

i=1

(
uνi,b,c(t)

gi(t)

)γi

dt, (9)

Jνi(u, g)(z) =
∫ z

0

n∏

i=1

(uνi,b,c(t))γi

(gi(t))σi
dt (10)

Tν(u, g)(z) =
∫ z

0

(u′ν,b,c(t)e
g(t))αdt, (11)

where uνi,b,c(z) are generalized Bessel functions and gi(z) ∈ A.
These operators are derived from the operators defined in [9] and [10].

2. Main results

Theorem 2.1. Let νi, b, c ∈ R, κi > |c|−2
4 for κi = νi + b+1

2 and the function
uνi,b,c(z) be defined by (3) for i = 1, n. If κ = min{κ1, . . . , κn}, γi ∈ C− 0, d ∈ C,

d 6= −1, gi(z) ∈ A with
∣∣∣ zg′i(z)

gi(z)

∣∣∣ ≤ Mi for Mi ≥ 1, i = 1, n and if we have the
inequality

|d|+
n∑

i=1

|γi|
(

1 +
8(κ + 1) |c|

32κ(κ + 1)− 8(2κ + 1) |c|+ |c|2 + Mi

)
≤ 1, (12)

then the operator Iνi(u, g)(z) defined by (9) is in the univalent function class S.

Proof. From the definition of Iνi(u, g)(z) we obtain that

zI ′′νi
(u, g)(z)

I ′νi
(u, g)(z)

=
n∑

i=1

γi

(
zu′νi,b,c(z)
uνi,b,c(z)

− zg′i(z)
gi(z)

)
.

It follows that ∣∣∣∣
zI ′′νi

(u, g)(z)
I ′νi

(u, g)(z)

∣∣∣∣ ≤
n∑

i=1

|γi|
(∣∣∣∣

zu′νi,b,c(z)
uνi,b,c(z)

∣∣∣∣ +
∣∣∣∣
zg′i(z)
gi(z)

∣∣∣∣
)

. (13)

We will use relation (5) from Lemma 1.1 and we obtain∣∣∣∣
zu′νi,b,c(z)
uνi,b,c(z)

∣∣∣∣ ≤ 1 +
8(κi + 1) |c|

32κi(κi + 1)− 8(2κi + 1) |c|+ |c|2 . (14)



The univalence of some integral operators 551

From (14) and from the hypothesis that
∣∣∣ zg′i(z)

giz

∣∣∣ ≤ Mi the relation (13) is equivalent
with

∣∣∣∣
zI ′′νi

(u, g)(z)
I ′νi

(u, g)(z)

∣∣∣∣ ≤
n∑

i=1

|γi|
(

1 +
8(κi + 1) |c|

32κi(κi + 1)− 8(2κi + 1) |c|+ |c|2 + Mi

)
.

We define the function G :
(
|c|−2

4 ,∞
)
→ R, G(x) = 8(x+1)|c|

32x(x+1)−8(2x+1)|c|+|c|2 . This
is a decreasing function, so it follows that

8(κi + 1) |c|
32κi(κi + 1)− 8(2κi + 1) |c|+ |c|2 ≤

8(κ + 1) |c|
32κ(κ + 1)− 8(2κ + 1) |c|+ |c|2 .

In order to prove the univalence we will use Theorem 1.1. So we have that
∣∣∣∣d|z|2 + (1− |z|2)zI ′′νi

(u, g)(z)
I ′νi

(u, g)(z)

∣∣∣∣

≤ |d|+
n∑

i=1

|γi|
(

1 +
8(κ + 1) |c|

32κ(κ + 1)− 8(2κ + 1) |c|+ |c|2 + Mi

)
. (15)

Using (5) in (15) we obtain that
∣∣∣∣d|z|2 + (1− |z|2)zI ′′νi

(u, g)(z)
I ′νi

(u, g)(z)

∣∣∣∣ ≤ 1,

so the operator Iνi(u, g)(z) is in the univalent function class S.
For γ1 = · · · = γn = γ and M1 = · · · = Mn = M in Theorem 2.1 we obtain

Corollary 2.1. Let νi, b, c ∈ R, κi > |c|−2
4 for κi = νi + b+1

2 and the function
uνi,b,c(z) be defined by (3) for i = 1, n. If κ = min{κ1, . . . , κn}, γ ∈ C− 0, d ∈ C,

d 6= −1, gi(z) ∈ A with
∣∣∣ zg′i(z)

gi(z)

∣∣∣ ≤ M for M ≥ 1, i = 1, n and if we have the
inequality

|d|+ n |γ|
(

1 +
8(κ + 1) |c|

32κ(κ + 1)− 8(2κ + 1) |c|+ |c|2 + M

)
≤ 1,

then the operator Iνi(u, g)(z) =
∫ z

0

∏n
i=1

(
uνi,b,c(t)

gi(t)

)γ

dt is in the univalent function
class S.

Theorem 2.2. Let νi, b, c ∈ R, κi > |c|−2
4 for κi = νi + b+1

2 and the function
uνi,b,c(z) be defined by (3) for i = 1, n. If κ = min{κ1, . . . , κn}, γi ∈ C− 0, d ∈ C,

d 6= −1, gi(z) ∈ A with
∣∣∣ zg′i(z)

gi(z)

∣∣∣ ≤ Mi for Mi ≥ 1, i = 1, n and if we have the
inequality

|d|+
n∑

i=1

|γi|
(

1 +
8(κ + 1) |c|

32κ(κ + 1)− 8(2κ + 1) |c|+ |c|2
)

+
n∑

i=1

σiMi ≤ 1,

then the operator Jνi(u, g)(z) defined by (10) is in the univalent function class S.
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Proof. Similar with the proof of Theorem 2.1.

Theorem 2.3. Let νi, b, c ∈ R, κi > |c|
8 − 1 for κi = νi + b+1

2 and the function
uνi,b,c(z) be defined by (3) for i = 1, n. If κ = min{κ1, . . . , κn}, γi ∈ C− 0, d ∈ C,

d 6= −1, gi(z) ∈ A with
∣∣∣ zg′i(z)

gi(z)

∣∣∣ ≤ Mi for Mi ≥ 1, i = 1, n and if we have the
inequality

|d|+
n∑

i=1

|γi|
(

1 +
8(κ + 1) |c|+ |c|2

32κ(κ + 1)− 4(2κ + 3) |c| + Mi

)
≤ 1, (16)

then the operator Iνi
(u, g)(z) defined by (9) is in the univalent function class S.

Proof. From (9) we obtain that

zI ′′νi
(u, g)(z)

I ′νi
(u, g)(z)

=
n∑

i=1

γi

(
zu′νi,b,c(z)
uνi,b,c(z)

− zg′i(z)
gi(z)

)

and ∣∣∣∣
zI ′′νi

(u, g)(z)
I ′νi

(u, g)(z)

∣∣∣∣ ≤
n∑

i=1

|γi|
(∣∣∣∣

zu′νi,b,c(z)
uνi,b,c(z)

∣∣∣∣ +
∣∣∣∣
zg′i(z)
gi(z)

∣∣∣∣
)

.

Now we will use the relation (7) from Lemma 1.2 and we obtain that
∣∣∣∣
zu′νi,b,c(z)
uνi,b,c(z)

∣∣∣∣ ≤ 1 +
8(κi + 1) |c|+ |c|2

32κi(κi + 1)− 4(2κi + 3) |c| .

Using this and the hypothesis that
∣∣∣ zg′i(z)

gi(z)

∣∣∣ ≤ Mi it follows that

∣∣∣∣
zI ′′νi

(u, g)(z)
I ′νi

(u, g)(z)

∣∣∣∣ ≤
n∑

i=1

|γi|
(

1 +
8(κi + 1) |c|+ |c|2

32κi(κi + 1)− 4(2κi + 3) |c|

)
.

We consider the function H :
(
|c|
8 − 1,∞

)
, H(x) = 8(x+1)|c|+|c|

32x(x+1)−4(2x+3)|c| that is a
decreasing function, so

8(κi + 1) |c|+ |c|2
32κi(κi + 1)− 4(2κi + 3) |c| ≤

8(κ + 1) |c|+ |c|2
32κ(κ + 1)− 4(2κ + 3) |c| .

Using Theorem 1.1 it follows that
∣∣∣∣d|z|2 + (1− |z|2)zI ′′νi

(u, g)(z)
I ′νi

(u, g)(z)

∣∣∣∣

≤ |d|+
n∑

i=1

|γi|
(

1 +
8(κ + 1) |c|+ |c|2

32κ(κ + 1)− 4(2κ + 3) |c| + Mi

)
≤ 1.

From the above relation it follows that Iνi(u, g)(z) ∈ S.

Theorem 2.4. Let νi, b, c ∈ R, κi > |c|
8 − 1 for κi = νi + b+1

2 and the function
uνi,b,c(z) be defined by (3) for i = 1, n. If κ = min{κ1, . . . , κn}, γi ∈ C− 0, d ∈ C,
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d 6= −1, gi(z) ∈ A with
∣∣∣ zg′i(z)

gi(z)

∣∣∣ ≤ Mi for Mi ≥ 1, i = 1, n and if we have the
inequality

|d|+
n∑

i=1

|γi|
(

1 +
8(κ + 1) |c|+ |c|2

32κ(κ + 1)− 4(2κ + 3) |c|

)
+

n∑

i=1

σiMi ≤ 1, (17)

then the operator Iνi(u, g)(z) defined by (9) is in the univalent function class S.

Proof. The proof is similar with the proof of Theorem 2.3.

Theorem 2.5. Let ν, b, c ∈ R, κ > |c|−2
4 for κ = ν + b+1

2 and the function
uν,b,c(z) be defined by (3). If α ∈ C − 0, d ∈ C − −1, g(z) ∈ A with |zg′i(z)| ≤ M
and if we have the inequality

|d|+ |α|
(

4(κ + 1) |c|+ |c|2
8κ(κ + 1)− 2(3κ + 2) |c| + M

)
≤ 1,

then the operator Tν(u, g)(z) defined by (11) is in the class of univalent function S.

Proof. From the definition of Tν(u, g)(z) we obtain that
zT ′′ν (u, g)(z)
T ′ν(u, g)(z)

= α

(
zu′′ν,b,c(z)
uν,b,c(z)

+ zg′(z)
)

and ∣∣∣∣
zT ′′ν (u, g)(z)
T ′ν(u, g)(z)

∣∣∣∣ ≤ |α|
(∣∣∣∣

zu′′ν,b,c(z)
uν,b,c(z)

∣∣∣∣ + |zg′(z)|
)

. (18)

For the function uν,b,c(z) we will use the relation (6) from Lemma 1.1 and we obtain
that ∣∣∣∣

zu′′ν,b,c(z)
uν,b,c(z)

∣∣∣∣ ≤
4(κ + 1) |c|+ |c|2

8κ(κ + 1)− 2(3κ + 2) |c| .
Now using the hypothesis that |zg(z)| ≤ M and the above relation from (18) we
obtain ∣∣∣∣

zT ′′ν (u, g)(z)
T ′ν(u, g)(z)

∣∣∣∣ ≤ |α|
(

4(κ + 1) |c|+ |c|2
8κ(κ + 1)− 2(3κ + 2) |c| + M

)
.

To prove the univalence we will use Theorem 1.1. So from Theorem 1.1 and from
the theorem hypothesis it follows that∣∣∣∣d|z|2 + (1− |z|)2 zT ′′ν (u, g)(z)

T ′ν(u, g)(z)

∣∣∣∣ ≤ |d|+ |α|
(

4(κ + 1) |c|+ |c|2
8κ(κ + 1)− 2(3κ + 2) |c| + M

)
≤ 1,

which implies that the operator is in the univalent function class S.

Theorem 2.6. Let ν, b, c ∈ R, κ > |c|
8 − 1 for κ = ν + b+1

2 and the function
uν,b,c(z) be defined by (3). If γ ∈ C−0, d ∈ C, d 6= −1, g(z) ∈ A with |zg′(z)| ≤ M
for M ≥ 1 and if we have the inequality
|d|+ |α| ×

×
(
|c|
2
· 64(κ + 1)2[8(κ + 2)− |c|] + 128(κ + 1)(κ + 2)− [8(κ + 2) + |c|] |c|2

2(κ + 1)[8(κ + 1)− |c|]16(κ + 1)(2κ− |c|)− |c| (4κ + |c|) + M

)

≤ 1,
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then the operator Tν(u, g)(z) defined by (11) is in the univalent function class S.

Proof. The proof is similar with the proof of Theorem 2.5, or the results from
Lemma 1.2 can be used.
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