ON (f, g)-DERIVATIONS OF \boldsymbol{B}-ALGEBRAS

L. Kamali Ardekani and B. Davvaz

Abstract

In this paper, as a generalization of derivation of a B-algebra, we introduce the notion of f-derivation and (f, g)-derivation of a B-algebra. Also, some properties of (f, g) derivation of commutative B-algebra are investigated.

1. Introduction and preliminaries

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCKalgebras and $B C I$-algebras $[7,8]$. It is known that the class of $B C K$-algebras is a proper subclass of the class $B C I$-algebras. In $[5,6], \mathrm{Q} . \mathrm{P} . \mathrm{Hu}$ and $\mathrm{X} . \mathrm{Li}$ introduced a wide class of abstract algebras, $B C H$-algebras. They have shown that the class of $B C I$-algebras is a proper subclass of $B C H$-algebras. In [9], Y. B. Jun, E. H. Roh and H.S. Kim introduced the notion of $B H$-algebras, which is a generalization of $B C H / B C I / B C K$-algebras. Recently, J. Neggers and H. S. Kim introduced in [12] a new notion, called a B-algebra. This class of algebras is related to several classes of interest such as $B C H / B C I / B C K$-algebras. In [1], N. O. Al-Shehrie introduced the notion of derivation in B-algebras which is defined in a way similar to the notion in ring theory (see $[2,3,10,15]$) and investigated some properties related to this concept.

In this paper, we introduce the notions of f-derivation and (f, g)-derivation of a B-algebra and some related are explored. Also, using the concept of derivation of commutative B-algebra we investigate some of its properties.

We recall the notion of a B-algebra and review some properties which we will need in the next section.

A B-algebra $[12]$ is a non-empty set X with a constant 0 and a binary operation * satisfying the following conditions, for all $x, y, z \in X:(B 1) x * x=0 ;(B 2) x * 0=$ x; $(B 3)(x * y) * z=x *(z *(0 * y))$. A B-algebra $(X, *, 0)$ is said to be commutative [12] if $x *(0 * y)=y *(0 * x)$, for all $x, y \in X$.

In any B-algebra X, the following properties are valid, for all $x, y, z \in X[4$, 12]: $(1)(x * y) *(0 * y)=x ;(2) x *(y * z)=(x *(0 * z)) * y ;(3) x * y=0$ implies

2010 AMS Subject Classification: 06F35, 16B70, 16W25.
Keywords and phrases: Commutative B-algebra; f-derivation; (f, g)-derivation.
that $x=y$; (4) $0 *(0 * x)=x ;(5)(x * z) *(y * z)=x * y ;(6) 0 *(x * y)=y * x$; (7) $x * z=y * z$ implies that $x=y$ (right cancelation law); (8) $z * x=z * y$ implies that $x=y$ (left cancelation law). Moreover, if X is a commutative B-algebra, according to [11] we have: $(9)(0 * x) *(0 * y)=y * x ;(10)(z * y) *(z * x)=x * y$; (11) $(x * y) * z=(x * z) * y$; (12) $(x *(x * y)) * y=0$; (13) $(x * z) *(y * t)=(t * z) *(y * x)$. For a B-algebra X, one can define binary operation " \wedge " as $x \wedge y=y *(y * x)$, for all $x, y \in X$. If $(X, *, 0)$ is a commutative B-algebra, then by (12) and (3), we get $y *(y * x)=x$, for all $x, y \in X$ that means $x \wedge y=x$.

A mapping f of a B-algebra X in to itself is called an endomorphism of X if $f(x * y)=f(x) * f(y)$, for all $x, y \in X$. Note that $f(0)=0$.

Let $(X, *,+, 0)$ be an algebra of type $(2,2,0)$ satisfying $B 1, B 2, B 3$ and $B 4$: $x+y=x *(0 * y)$, for all $x, y \in X$. Then, $(X, *, 0)$ is a B-algebra. Conversely, if $(X, *, 0)$ be a B-algebra and we define $x+y$ by $x *(0 * y)$, for all $x, y \in X$, then $(X, *,+, 0)$ obeys the equations $B 1-B 4$ (see [15]).

2. (f, g)-derivation of B-algebras

In this section, we introduce the notion of f-derivation and (f, g)-derivation of B-algebras.

Definition 1. [1] Let X be a B-algebra. By a left-right derivation (briefly, (l, r)-derivation) of X, a self map d of X satisfying the identity $d(x * y)=(d(x) * y) \wedge$ $(x * d(y))$, for all $x, y \in X$. If d satisfies the identity $d(x * y)=(x * d(y)) \wedge(d(x) * y)$, for all $x, y \in X$, then it is said that d is a right-left derivation (briefly, (r, l)-derivation) of X. Moreover, if d is both an (l, r) - and (r, l)-derivation, it is said that d is a derivation.

Definition 2. [1] A self map d of a B-algebra X is said to be regular if $d(0)=0$. If $d(0) \neq 0$, then d is called an irregular map.

Definition 3. Let X be a B-algebra. A left-right f-derivation (briefly, (l, r) -f-derivation) of X is a self map d of X satisfying the identity $d(x * y)=(d(x) *$ $f(y)) \wedge(f(x) * d(y))$, for all $x, y \in X$, where f is an endomorphism of X. If d satisfies the identity $d(x * y)=(f(x) * d(y)) \wedge(d(x) * f(y))$, for all $x, y \in X$, then we say d is a right-left f-derivation (briefly, (r, l) - f-derivation) of X. Moreover, if d is both an (l, r) - and (r, l) - f-derivation, we say d is an f-derivation.

Example 1. Let $X=\{0,1,2\}$ and the binary operation $*$ is defined as follows:

$*$	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

Then, $(X, *, 0)$ is a B-algebra (see [12]). Define the map $d, f: X \longrightarrow X$ by

$$
d(x)=f(x)= \begin{cases}0 & \text { if } x=0 \\ 2 & \text { if } x=1 \\ 1 & \text { if } x=2\end{cases}
$$

Then, f is an endomorphism. It is easily to check that d is both (l, r) - and (r, l) -f-derivation of X. So d is an f-derivation. Now, we define $d^{\prime}=0$. Then, d^{\prime} is not an (l, r) - f-derivation, since $d^{\prime}(1 * 2)=0$ but $\left(d^{\prime}(1) * f(2)\right) \wedge\left(f(1) * d^{\prime}(2)\right)=$ $(0 * 1) \wedge(2 * 0)=2$. Also, d^{\prime} is not an (r, l) - f-derivation, since $d^{\prime}(1 * 2)=0$ but $\left(f(1) * d^{\prime}(2)\right) \wedge\left(d^{\prime}(1) * f(2)\right)=(2 * 0) \wedge(0 * 1)=2$.

Theorem 1. Let d be an (l, r) - f-derivation of B-algebra X. Then, $d(0)=$ $d(x) * f(x)$, for all $x \in X$.

Proof. For all $x \in X$, we have:

$$
\begin{aligned}
d(0) & =d(x * x)=(d(x) * f(x)) \wedge(f(x) * d(x)) \\
& =(f(x) * d(x)) *((f(x) * d(x)) *(d(x) * f(x))) \\
& =((f(x) * d(x)) *(0 *(d(x) * f(x)))) *(f(x) * d(x)) \\
& =((f(x) * d(x)) *(f(x) * d(x))) *(f(x) * d(x)) \\
& =0 *(f(x) * d(x))=d(x) * f(x) .
\end{aligned}
$$

Theorem 2. Let d be an (r, l) - f-derivation of B-algebra X. Then, $d(0)=$ $f(x) * d(x)$ and $d(x)=d(x) \wedge f(x)$, for all $x \in X$.

Proof. For all $x \in X$, we have:

$$
\begin{aligned}
d(0) & =d(x * x)=(f(x) * d(x)) \wedge(d(x) * f(x)) \\
& =(d(x) * f(x)) *((d(x) * f(x)) *(f(x) * d(x))) \\
& =((d(x) * f(x)) *(0 *(f(x) * d(x)))) *(d(x) * f(x)) \\
& =((d(x) * f(x)) *(d(x) * f(x))) *(d(x) * f(x)) \\
& =0 *(d(x) * f(x))=f(x) * d(x) .
\end{aligned}
$$

Also, we have for all $x \in X$,

$$
\begin{aligned}
d(x) * 0 & =d(x)=d(x * 0)=(f(x) * d(0)) \wedge(d(x) * f(0)) \\
& =d(x) *(d(x) *(f(x) * d(0)))=d(x) *(d(x) *(f(x) *(f(x) * d(x))))
\end{aligned}
$$

By (8) and (3), we get $d(x) \wedge f(x)=d(x)$.
Corollary 1. Let d be an (l, r) - f-derivation $((r, l)$ - f-derivation) of B-algebra X. Then, (1) d is injective if and only if f be injective; (2) If d is regular, then $d=f ;(3)$ If there is an element $x_{0} \in X$ such that $d\left(x_{0}\right)=f\left(x_{0}\right)$, then $d=f$.

Proof. Let d be an (l, r) - f-derivation.
(1) Suppose that d is injective and $f(x)=f(y), x, y \in X$. Then, $d(0)=$ $d(x) * f(x)$ and $d(0)=d(y) * f(y)$, by Theorem 1. So, $d(x) * f(x)=d(y) * f(y)$. Thus, $d(x)=d(y)$, by (7). Therefore, $x=y$, since d is injective.

Conversely, suppose that f is injective and $d(x)=d(y), x, y \in X$. Then, $d(0)=d(x) * f(x)$ and $d(0)=d(y) * f(y)$, by Theorem 1. So, $d(x) * f(x)=d(y) * f(y)$. Thus $f(x)=f(y)$, by (8). Therefore $x=y$, since f is injective.
(2) Suppose that d is regular and $x \in X$. Then $0=d(0)=d(x) * f(x)$, by Theorem 1. Hence, $d(x)=f(x)$, by (3).
(3) Suppose that there is an element $x_{0} \in X$ such that $d\left(x_{0}\right)=f\left(x_{0}\right)$. Then, $d\left(x_{0}\right) * f\left(x_{0}\right)=0$. So, $d(0)=0$, by Theorem 1. Part (2) implies that $d=f$.

Similarly, when d is an (r, l) - f-derivation, the proof follows by Theorem 2.
Definition 4. Let X be a B-algebra. A left-right (f, g)-derivation (briefly, $(l, r)-(f, g)$-derivation $)$ of X is a self map d of X satisfying the identity $d(x * y)=$ $(d(x) * f(y)) \wedge(g(x) * d(y))$, for all $x, y \in X$, where f, g are endomorphisms of X. If d satisfies the identity $d(x * y)=(f(x) * d(y)) \wedge(d(x) * g(y))$, for all $x, y \in X$, then we say d is a right-left (f, g)-derivation (briefly, $(r, l)-(f, g)$-derivation) of X. Moreover, if d is both an (l, r) - and $(r, l)-(f, g)$-derivation, then d is a (f, g)-derivation.

It is clear that if the function g is equal to the function f, then the (f, g) derivation is f-derivation defined in Definition 3. Also, if we choose the functions f and g the identity functions, then the (f, g)-derivation that we define coincides with the derivation defined in Definition 1.

Example 2. Let $(X, *, 0), d$ and f are as Example 1. Define $g=I$, where I is an identity function. It is easily checked that d is an (f, g)-derivation. But d is not an $(l, r)-(g, f)$-derivation, since $d(1 * 2)=1$ but $(d(1) * g(2)) \wedge(f(1) * d(2))=$ $(2 * 2) \wedge(2 * 1)=0$. Also, d is not an $(r, l)-(g, f)$-derivation, since $d(1 * 2)=1$ but $(g(1) * d(2)) \wedge(d(1) * f(2))=(1 * 1) \wedge(2 * 1)=0$.

Example 3. Let $X=\{0,1,2,3\}$ and binary operation $*$ is defined as:

$*$	0	1	2	3
0	0	2	1	3
1	1	0	3	2
2	2	3	0	1
3	3	1	2	0

Then, $(X, *, 0)$ is a B-algebra (see [1]). Define maps $d, f, g: X \longrightarrow X$ by

$$
d(x)=f(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0 \\
2 & \text { if } x=1 \\
1 & \text { if } x=2 \\
3 & \text { if } x=3
\end{array} \text { and } g(x)= \begin{cases}0 & \text { if } x=0 \\
3 & \text { if } x=1,2,3\end{cases}\right.
$$

Then, f and g are endomorphisms. It is easily to check that d is an (f, g)-derivation.

Theorem 3. Let d be a self map of a B-algebra X. Then, the following hold:
(1) If d is a regular $(l, r)-(f, g)$-derivation of X, then $d(x)=d(x) \wedge g(x)$, for all $x \in X$;
(2) If d is an $(r, l)-(f, g)$-derivation of X, then $d(x)=f(x) \wedge d(x)$, for all $x \in X$ if and only if d is a regular.

Proof. (1) Suppose that d is a regular $(l, r)-(f, g)$-derivation of X and $x \in X$. Then, $d(x)=d(x * 0)=(d(x) * f(0)) \wedge(g(x) * d(0))=d(x) \wedge g(x)$.
(2) Suppose that d is an $(r, l)-(f, g)$-derivation of X. If $d(x)=f(x) \wedge d(x)$, for all $x \in X$, then $d(0)=f(0) \wedge d(0)=d(0) *(d(0) * 0)=d(0) * d(0)=0$. Conversely, suppose that $d(0)=0$. Then, $d(x)=d(x * 0)=(f(x) * d(0)) \wedge(d(x) * g(0))=$ $f(x) \wedge d(x)$, for all $x \in X$.

Now, we investigate (f, g)-derivation of commutative B-algebras.
Theorem 4. Let X be a commutative B-algebra. Then, for all $x, y \in X$,
(1) If d is an $(l, r)-(f, g)$-derivation of X, then $d(x * y)=d(x) * f(y)$. Moreover, $d(0)=d(x) * f(x)$;
(2) If d is an $(r, l)-(f, g)$-derivation of X, then $d(x * y)=f(x) * d(y)$. Moreover $d(0)=f(x) * d(x)$;
(3) If d is an $(l, r)-(f, g)$-derivation $((r, l)-(f, g)$-derivation), then Corollary 1 is valid.

Proof. The proof is clear.
Theorem 5. Let X be a commutative B-algebra and f, g be endomorphisms. If $d=f$, then d is an (f, g)-derivation.

Proof. Suppose that $x, y \in X$. Then, $d(x * y)=f(x * y)=f(x) * f(y)=$ $d(x) * f(y)=(d(x) * f(y)) \wedge(g(x) * d(y))$. So, d is an $(r, l)-(f, g)$-derivation. Also, we have $d(x * y)=f(x * y)=f(x) * f(y)=f(x) * d(y)=(f(x) * d(y)) \wedge(d(x) * g(y))$. Hence, d is an $(l, r)-(f, g)$-derivation. Therefore, d is an (f, g)-derivation.

THEOREM 6. Let d be an $(l, r)-(f, g)$-derivation $((r, l)-(f, g)$-derivation) of a commutative B-algebra X. Then, for all $x, y \in X$, (1) $d(x)=d(0)+f(x)$; (2) $d(x+y)=d(x)+d(y)-d(0)$; (3) $d(x) * d(y)=f(x) * f(y)$.

Proof. (1) Suppose that d is an $(l, r)-(f, g)$-derivation of X and $x \in X$. Then, by Theorem $4(1)$, we have $d(x)=d(0 *(0 * x))=d(0) * f(0 * x)=d(0) *(0 * f(x))=$ $d(0)+f(x)$. Now, suppose that d is an $(r, l)-(f, g)$-derivation of X and $x \in X$. Then, by Theorem $4(2)$, we get $d(x)=d(x * 0)=f(x) * d(0)$ and $d(0)=f(0) * d(0)$. So, $d(x)=f(x) *(0 * d(0))=d(0) *(0 * f(x))=d(0)+f(x)$.
(2) By (1), for all $x, y \in X, d(x+y)=d(0)+f(x+y)=d(0)+f(x)+d(0)+$ $f(y)-d(0)=d(x)+d(y)-d(0)$.
(3) Suppose that d is an $(l, r)-(f, g)$-derivation of X. Then, by Theorem 4, $d(x) * f(x)=d(0)=d(y) * f(y)$, for all $x, y \in X$. Thus, $(d(y) * f(y)) *(d(x) *$
$f(x))=0$. Now, by (13) we obtain $(f(x) * f(y)) *(d(x) * d(y))=0$. Therefore, $d(x) * d(y)=f(x) * f(y)$.

When d is an $(r, l)-(f, g)$-derivation, the proof is similar.
Let $(X, *, 0)$ be an B-algebra and $x \in X$. Define $x^{n}:=x^{n-1} *(0 * x)(n \geq 1)$ and $x^{0}:=0$. Note that $x^{1}=x^{0} *(0 * x)=0 *(0 * x)=x[12]$.

Theorem 7. [12] Let $(X, *, 0)$ be a B-algebra. Then, for all $x \in X$,

$$
x^{m} * x^{n}= \begin{cases}x^{m-n} & \text { if } m \geq n \\ 0 * x^{n-m} & \text { if } m<n\end{cases}
$$

Theorem 8. Let $(X, *, 0)$ be a commutative B-algebra X. For all $x \in X$,
(1) If d be an $(l, r)-(f, g)$-derivation, then

$$
d\left(x^{m} * x^{n}\right)= \begin{cases}d(0) *(0 * f(x))^{m-n} & \text { if } m \geq n \\ d(0) * f(x)^{n-m} & \text { if } m<n\end{cases}
$$

(2) If d be an ($r, l)-(f, g)$-derivation, then

$$
d\left(x^{m} * x^{n}\right)= \begin{cases}f(x)^{m-n-1} *(0 * d(x)) & \text { if } m \geq n \\ (0 * d(x)) * f(x)^{n-m-1} & \text { if } m<n\end{cases}
$$

Proof. It is clear that $\left(x * y^{n}\right) * y=x * y^{n+1}$, for all $x, y \in X$ and $n \geq 1$. So by induction we get, $d\left(x^{n}\right)=d(0) *(0 * f(x))^{n}$, where d is an $(l, r)-(f, g)$-derivation. Also, we have $d\left(x^{n}\right)=f(x)^{n-1} *(0 * d(x))$, where d is an $(r, l)-(f, g)$-derivation. Now (1) and (2) follow by Theorem 7.

Theorem 9. Let X be a commutative B-algebra and f, g be endomorphisms such that $f \circ f=f$. Also, let d and d^{\prime} be $(l, r)-(f, g)$-derivations $((r, l)-(f, g)$ derivations) of X. Then, $d \circ d^{\prime}$ is also an $(l, r)-(f, g)$-derivation $((r, l)-(f, g)-$ derivation) of X.

Proof. Let d and d^{\prime} are the $(l, r)-(f, g)$-derivations of X. Then, by Theorem 4, for all $x, y \in X$, we have $\left(d \circ d^{\prime}\right)(x * y)=d\left(d^{\prime}(x) * f(y)\right)=d\left(d^{\prime}(x)\right) * f(f(y))=$ $d \circ d^{\prime}(x) * f(y)=\left(d \circ d^{\prime}(x) * f(y)\right) \wedge\left(g(x) * d \circ d^{\prime}(y)\right)$. Thus, $d \circ d^{\prime}$ is a $(l, r)-(f, g)-$ derivation of X. Now, suppose that d, d^{\prime} are $(r, l)-(f, g)$-derivations of X. Similarly, we can prove $d \circ d^{\prime}$ is a $(r, l)-(f, g)$-derivation of X.

Theorem 10. Let X be a commutative B-algebra, d and d^{\prime} be (f, g) derivations of X such that $f \circ d=d \circ f, d^{\prime} \circ f=f \circ d^{\prime}$. Then, $d \circ d^{\prime}=d^{\prime} \circ d$.

Proof. Since d^{\prime} is an $(l, r)-(f, g)$-derivation and d is an $(r, l)-(f, g)$-derivation of X, for all $x, y \in X$,

$$
\begin{align*}
\left(d \circ d^{\prime}\right)(x * y) & =d\left(\left(d^{\prime}(x) * f(y)\right) \wedge\left(g(x) * d^{\prime}(y)\right)\right) \\
& =d\left(d^{\prime}(x) * f(y)\right)=f \circ d^{\prime}(x) * d \circ f(y) \tag{1}
\end{align*}
$$

Also, since d^{\prime} is an $(l, r)-(f, g)$-derivation and d is an $(r, l)-(f, g)$-derivation of X, for all $x, y \in X$, we have

$$
\begin{align*}
\left(d^{\prime} \circ d\right)(x * y) & =d^{\prime}((f(x) * d(y)) \wedge(d(x) * g(y)))=d^{\prime}(f(x) * d(y)) \\
& =d^{\prime} \circ f(x) * f \circ d(y)=f \circ d^{\prime}(x) * d \circ f(y) \tag{2}
\end{align*}
$$

By the relations (1) and (2), we have $d \circ d^{\prime}(x * y)=d^{\prime} \circ d(x * y)$, for all $x, y \in X$. By putting $y=0$, we get $d \circ d^{\prime}(x)=d^{\prime} \circ d(x)$, for all $x \in X$.

Let X be a B-algebra and d, d^{\prime} be two self maps of X. We define $d \bullet d^{\prime}: X \longrightarrow$ X as follows: $\left(d \bullet d^{\prime}\right)(x)=d(x) * d^{\prime}(x)$, for all $x \in X$.

Theorem 11. Let X be a commutative B-algebra and d, d^{\prime} be (f, g) derivations of X. Then, (1) $\left(f \circ d^{\prime}\right) \bullet(d \circ f)=(d \circ f) \bullet\left(f \circ d^{\prime}\right) ;(2)\left(d \circ d^{\prime}\right) \bullet(f \circ f)=$ $(f \circ f) \bullet\left(d \circ d^{\prime}\right)$.

Proof. (1) Since d is an $(r, l)-(f, g)$-derivation and d^{\prime} is an $(l, r)-(f, g)$-derivation of X, then for all $x, y \in X,\left(d \circ d^{\prime}\right)(x * y)=d\left(\left(d^{\prime}(x) * f(y)\right) \wedge\left(g(x) * d^{\prime}(y)\right)\right)=$ $d\left(d^{\prime}(x) * f(y)\right)=\left(f\left(d^{\prime}(x)\right) * d(f(y))\right) \wedge\left(d\left(d^{\prime}(x)\right) * g(f(y))\right)=\left(f \circ d^{\prime}(x)\right) *(d \circ f(y))$. Also, d is a $(l, r)-(f, g)$-derivation and d^{\prime} is a $(r, l)-(f, g)$-derivation of X. Hence, for all $x, y \in X,\left(d \circ d^{\prime}\right)(x * y)=d\left(\left(f(x) * d^{\prime}(y)\right) \wedge\left(d^{\prime}(x) * g(y)\right)\right)=d\left(f(x) * d^{\prime}(y)\right)=$ $\left(d(f(x)) * f\left(d^{\prime}(y)\right)\right) \wedge\left(g(f(x)) * d\left(d^{\prime}(y)\right)\right)=(d \circ f(x)) *\left(f \circ d^{\prime}(y)\right)$. Now, we obtain $\left(f \circ d^{\prime}(x)\right) *(d \circ f(y))=(d \circ f(x)) *\left(f \circ d^{\prime}(y)\right)$, for all $x, y \in X$. By putting $x=y$, we have $\left(f \circ d^{\prime}(x)\right) *(d \circ f(x))=(d \circ f(x)) *\left(f \circ d^{\prime}(x)\right)$. So $\left(f \circ d^{\prime} \bullet d \circ f\right)(x)=\left(d \circ f \bullet f \circ d^{\prime}\right)(x)$, for all $x \in X$.
(2) The proof is similar to the proof of (1).

Let $\operatorname{Der}(X)$ denotes the set of all (f, g)-derivations on X. Let $d, d^{\prime} \in \operatorname{Der}(X)$. Define the binary operation \wedge as follows: $\left(d \wedge d^{\prime}\right)(x)=d(x) \wedge d^{\prime}(x)$, for all $x \in X$.

Theorem 12. If X is a commutative B-algebra, then $(\operatorname{Der}(X), \wedge)$ is a semigroup.

Proof. Suppose that d, d^{\prime} are $(l, r)-(f, g)$-derivations of X. We prove $d \wedge d^{\prime}$ is also an $(l, r)-(f, g)$-derivation. For all $x, y \in X,\left(d \wedge d^{\prime}\right)(x * y)=d(x * y) \wedge d^{\prime}(x * y)=$ $d(x * y)=d(x) * f(y)=\left(d(x) \wedge d^{\prime}(x)\right) * f(y)=\left(d \wedge d^{\prime}\right)(x) * f(y)=\left(\left(d \wedge d^{\prime}\right)(x) *\right.$ $f(y)) \wedge\left(g(x) *\left(d \wedge d^{\prime}\right)(y)\right)$. So, $d \wedge d^{\prime}$ is a $(l, r)-(f, g)$-derivation of X.

Now, suppose that d, d^{\prime} are $(r, l)-(f, g)$-derivations of X. Then, for all $x, y \in X$, $\left(d \wedge d^{\prime}\right)(x * y)=d(x * y) \wedge d^{\prime}(x * y)=d(x * y)=f(x) * d(y)=f(x) *\left(d(y) \wedge d^{\prime}(y)\right)=$ $f(x) *\left(d \wedge d^{\prime}\right)(y)=\left(f(x) *\left(d \wedge d^{\prime}\right)(y)\right) *\left(\left(d \wedge d^{\prime}\right)(x) * g(y)\right)$. So, $d \wedge d^{\prime}$ is an $(r, l)-(f, g)$-derivation of X. Therefore, $d \wedge d^{\prime} \in \operatorname{Der}(X)$. Let $d, d^{\prime}, d^{\prime \prime} \in \operatorname{Der}(X)$. We prove $d \wedge\left(d^{\prime} \wedge d^{\prime \prime}\right)=\left(d \wedge d^{\prime}\right) \wedge d^{\prime \prime}$ (associative property). If $x, y \in X$, then $\left(d \wedge\left(d^{\prime} \wedge d^{\prime \prime}\right)\right)(x * y)=d(x * y) \wedge\left(d^{\prime} \wedge d^{\prime \prime}\right)(x * y)=d(x * y)$. Also, we have $\left(\left(d \wedge d^{\prime}\right) \wedge d^{\prime \prime}\right)(x * y)=\left(d \wedge d^{\prime}\right)(x * y)=d(x * y) \wedge d^{\prime}(x * y)=d(x * y)$. This shows that $\left(d \wedge\left(d^{\prime} \wedge d^{\prime \prime}\right)\right)(x * y)=\left(\left(d \wedge d^{\prime}\right) \wedge d^{\prime \prime}\right)(x * y)$, for all $x, y \in X$. By putting $y=0$, we obtain $d \wedge\left(d^{\prime} \wedge d^{\prime \prime}\right)=\left(d \wedge d^{\prime}\right) \wedge d^{\prime \prime}$. Therefore, $(\operatorname{Der}(X), \wedge)$ is a semigroup. ■

REFERENCES

[1] N.O. Al-Shehri, Derivations of B-algebras, JKAU: Sci. 22 (2010), 71-83.
[2] H.E. Bell, L.C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (1989), 339-346.
[3] H.E. Bell, G. Mason, On derivations in near rings, Near-Rings and Near-Fields (Tübingen, 1985), North-Holland Math. Stud., vol. 137, North-Holland, Amsterdam, (1987) 31-35.
[4] J.R. Cho, H.S. Kim, On B-algebras and quasigroups, Quasigroups and Related Systems 8 (2001), 1-6.
[5] Q.P. Hu, X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
[6] Q.P. Hu, X. Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
[7] K. Iséki, S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
[8] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
[9] Y.B. Jun, E.H. Roh, H.S. Kim, On BH-algebras, Sci. Math. Japonica 1 (1998), 347-354.
[10] K. Kaya, Prime rings with α-derivations, Hacettepe Bull. Mater. Sci. Eng. 16-17 (19871988), 63-71.
[11] H.S. Kim, H.G. Park, On O-commutative B-algebras, Sci. Math. Japonica 62 (2005), 31-36.
[12] J. Neggers, H.S. Kim, On B-algebras, Mat. Vesnik 54 (2002), 21-29.
[13] H.K. Park, H.S. Kim, On quadratic B-algebras, Quasigroups and Related Systems 8 (2001), 67-72.
[14] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[15] A. Walendziak, Some axiomatizations of B-algebras, Math. Slovaca 56 (2006), 301-306.
(received 11.05.2012; in revised form 23.09.2012; available online 01.11.2012)
Department of Mathematics, Yazd University, Yazd, Iran
E-mail: davvaz@yazd.ac.ir, bdavvaz@yahoo.com

