GENERALIZATIONS OF PRIMAL IDEALS OVER COMMUTATIVE SEMIRINGS

Malik Bataineh and Ruba Malas

Abstract

In this article we generalize some definitions and results from ideals in rings to ideals in semirings. Let R be a commutative semiring with identity. Let $\phi: \vartheta(R) \rightarrow \vartheta(R) \cup\{\emptyset\}$ be a function, where $\vartheta(R)$ denotes the set of all ideals of R. A proper ideal $I \in \vartheta(R)$ is called ϕ-prime ideal if $r a \in I-\phi(I)$ implies $r \in I$ or $a \in I$. An element $a \in R$ is called ϕ-prime to I if $r a \in I-\phi(I)$ (with $r \in R$) implies that $r \in I$. We denote by $p(I)$ the set of all elements of R that are not ϕ-prime to $I . I$ is called a ϕ-primal ideal of R if the set $P=p(I) \cup \phi(I)$ forms an ideal of R. Throughout this work, we define almost primal and ϕ-primal ideals, and we also show that they enjoy many of the properties of primal ideals.

1. Introduction

The concept of semiring was introduced by H. S. Vandiver in 1935. The concept of primal ideals in a commutative ring R was introduced and studied in [6] (see also [7]). The set of elements of R that are not prime to I is denoted by $S(I)$; while the set of elements of R that are not weakly prime to I is denoted by $W(I)$. A proper ideal I of R is said to be a primal if $S(I)$ forms an ideal; therefore, 0 is not necessarily a primal, such an ideal is always a prime ideal. If I is a primal ideal of R, then $(P=$ the set of elements of R that are not prime to $I)$ is a prime ideal of R, called the adjoint prime ideal P of I. In this case we also say that I is a P-primal ideal (see [4]). Also, a proper ideal I of R is called a weakly primal if the set $P=W(I) \cup\{0\}$ forms an ideal; this ideal is called the weakly adjoint ideal P of I and is always a weakly prime ideal [5, Proposition 4]. Weakly primal ideals in a commutative semiring were introduced and studied by S. Ebrahimi Atani in [4]. Bhatwadekar and Sharma (2005) defined a proper ideal I of an integral domain R to be almost prime if for $a, b \in R$ with $a b \in I-I^{2}$, either $a \in I$ or $b \in I$ holds. This definition can obviously be made for any commutative ring R. Prime ideals play a central role in the commutative ring theory. Let $\phi: \vartheta(R) \rightarrow \vartheta(R) \cup\{\emptyset\}$ be a function, where $\vartheta(R)$ denotes the set of all ideals of R. D. D. Anderson and M. Bataineh (2008) defined a proper ideal I of a commutative ring R to be a ϕ-prime

[^0]ideal if for $a, b \in R$ with $a b \in I-\phi(I)$ implies $a \in I$ or $b \in I$. M. Henriksen (1958) called an ideal I of a semiring R a k-ideal, whenever $x, x+y \in I$ implies $y \in I$.

Throughout the paper, R will be a commutative semiring with identity; however, in most places the existence of an identity plays no role. By a proper ideal I of R, we mean an ideal $I \in \vartheta(R)$ with $I \neq R$. Let us generalize the definition of a primal ideal; a proper ideal I of R is an almost primal (resp., P_{ϕ}-primal) if the set $P=p(I) \cup I^{2}$ (resp., $\left.P=p(I) \cup \phi(I)\right)$ forms an ideal of R, where $p(I)$ is the set of all elements in R that are not almost prime (resp., ϕ-prime) to I. This ideal is called the almost adjoint ideal P of I. Given two functions $\psi_{1}, \psi_{2}: \vartheta(R) \rightarrow \vartheta(R) \cup\{\emptyset\}$, we define $\psi_{1} \leq \psi_{2}$ if $\psi_{1}(I) \subseteq \psi_{2}(I)$ for each $I \in \vartheta(R)$.

Example 1.1. Let R be a commutative semiring. Define the following functions $\phi_{\alpha}: \vartheta(R) \rightarrow \vartheta(R) \cup\{\emptyset\}$ and the corresponding ϕ_{α}-primal ideals, by

$$
\begin{array}{lll}
\phi_{\varnothing} & \phi(J)=\emptyset & \text { a } \phi \text {-primal ideal is a primal. } \\
\phi_{0} & \phi(J)=0 & \text { a } \phi \text {-primal ideal is a weakly primal. } \\
\phi_{2} & \phi(J)=J^{2} & \text { a } \phi \text {-primal ideal is an almost primal. } \\
\phi_{n}(n \geq 2) & \phi(J)=J^{n} & \text { a } \phi \text {-primal ideal is a } n \text {-almost primal. } \\
\phi_{\omega} & \phi(J)=\bigcap_{n \in \mathbb{N}} J^{n} & \text { a } \phi \text {-primal ideal is a } \omega \text {-primal. } \\
\phi_{1} & \phi(J)=J & \text { a } \phi \text {-primal ideal is any ideal. }
\end{array}
$$

Observe that $\phi_{\varnothing} \leq \phi_{0} \leq \phi_{\omega} \leq \cdots \leq \phi_{n+1} \leq \phi_{n} \leq \cdots \leq \phi_{2}$.
REmark 1.2. Let I be a P_{ϕ}-primal ideal in a commutative semiring R and $a \in I-\phi(I)$. As $a \cdot 1_{R} \in I-\phi(I)$ with $1_{R} \notin I, a$ is not a ϕ-prime to I; and therefore, $I \subseteq P$.

2. Results

In this section, we give several characterizations of ϕ-primal ideals.
THEOREM 2.1. Let I be a proper k-ideal of a commutative semiring R, $\phi: \vartheta(R) \rightarrow \vartheta(R) \cup\{\emptyset\}$ be a function and P be a proper ideal. Then the following are equivalent.
(i) I is a P_{ϕ}-primal.
(ii) For every $a \notin P-\phi(I),\left(I:_{R} a\right)=I \cup\left(\phi(I):_{R} a\right)$, and for $a \in P-\phi(I)$, $I \cup\left(\phi(I):_{R} a\right) \subsetneq\left(I:_{R} a\right)$.
(iii) If $a \notin P-\phi(I)$, then $\left(I:_{R} a\right)=A$ or $\left(I:_{R} a\right)=\left(\phi(I):_{R} a\right)$, and if $a \in P-\{\phi(I)\}$, then $I \subsetneq\left(I:_{R} a\right)$ and $\left(\phi(I):_{R} a\right) \subsetneq\left(I:_{R} a\right)$.

Proof. $(i) \Rightarrow\left(\right.$ ii) Let I be a P_{ϕ}-primal ideal of R. Then $P-\phi(I)$ is exactly the set of all elements in R that are not ϕ-prime to I. Suppose $a \notin P-\phi(I)$, and $b \in\left(I:_{R} a\right)$. If $a b \notin \phi(I)$ as a is ϕ - prime to I, then $b \in I$. If $a b \in \phi(I)$, then $b \in\left(\phi(I):_{R} a\right)$. As the reverse containment holds for any ideal I, we get the
equality. Now suppose that $a \in P-\phi(I)$. Then, there exists $s \in R-I$ such that $a s \in I-\phi(I)$; hence $s \in\left(I:_{R} a\right)-\left(I \cup\left(\phi(I):_{R} a\right)\right)$.
(ii) \Rightarrow (iii) Let $a \notin P-\phi(I)$. By [2, Lemma 2.1 and Lemma 2.2], if an ideal of R is a union of two k-ideals then it is equal to one of them. Moreover, if $a \in P-\phi(I)$, then by $(i i)$, we have $I \subsetneq\left(I:_{R} a\right)$ and $\left(\phi(I):_{R} a\right) \subsetneq\left(I:_{R} a\right)$.
$($ iii $) \Rightarrow(i)$ Since $P-\phi(I)$ is the set of all elements in R that are not ϕ-prime to I, we conclude that I is P-almost primal.

THEOREM 2.2. Let R be a semiring. Then every $k-\phi$-prime ideal of R is a ϕ-primal.

Proof. Let A be a k - ϕ-prime ideal of R. Assume that $A \neq \phi(A)$. It is enough to show that $A-\phi(A)$ is exactly the set of all elements in R that are not ϕ-prime to A. Let $a \in A-\phi(A)$. Then $a \cdot 1_{R} \in A-\phi(A)$ with $1_{R} \notin A$, gives that a is not ϕ-prime to A. On the other hand, if $a \notin A-\phi(A)$ and $a \in \phi(A)$, then a is a ϕ-prime to A. If $a \notin A$, let $b \in R$ be such that $a b \in A-\phi(A)$, which implies $b \in A$. Thus $a \notin A-\phi(A)$ is ϕ-prime to A. This shows that A is a ϕ-primal ideal of R.

Theorem 2.3. Let I be a k-ideal of a semiring R. If I is a P_{ϕ}-primal ideal of R, then P is a ϕ-prime ideal of R.

Proof. Suppose that $a, b \notin P$; we show that either $a b \in \phi(P)$ or $a b \notin P$. Assume that $a b \notin \phi(P)$. Let $r a b \in I-\phi(I)$ for some $r \in R$. Then, Theorem 2.1 gives that $r a \in\left(I:_{R} b\right)=I \cup(\phi(I): b)$ where $r a \notin\left(\phi(I):_{R} b\right)$; hence $r a \in I-\phi(I)$. Thus, $r \in\left(I:_{R} a\right)=I \cup(\phi(I): a)$, and so $r \in I$. Therefore, $a b$ is ϕ-prime to I and $a b \notin P$ as required.

Proposition 2.4. Let R be a commutative semiring and J a proper ideal of R.
(i) Let $\psi_{1}, \psi_{2}: \vartheta(R) \rightarrow \vartheta(R) \cup\{\emptyset\}$ be functions with $\psi_{1} \leq \psi_{2}$. Then if J ψ_{1}-primal, then J is ψ_{2}-primal.
(ii) J primal $\Rightarrow J$ weakly primal $\Rightarrow J \omega$-primal $\Rightarrow J(n+1)$-almost primal $\Rightarrow J$ n-almost primal $(n \geq 2) \Rightarrow J$ almost primal.

Proof. (i) Assume that J is $P-\psi_{1}$ primal ideal; we will show that J is a $P-\psi_{2}$ primal ideal in R. By Theorem $2.3, P$ is ψ_{1}-prime and hence ψ_{2}-prime. It is enough to show that $P-\psi_{2}(J)$ is exactly the set of all elements in R that are not ψ_{2}-prime to J. Let $x \in P-\psi_{2}(J)$ and $y \in R$ be such that $x y \in J-\psi_{2}(J)$. Since $\psi_{1} \leq \psi_{2}$, we get $P-\psi_{2}(J) \subseteq P-\psi_{1}(J)$. So, x is not ψ_{1}-prime to J, and thus $y \notin J$. Hence, x is not ψ_{2}-prime to J. Now let $x \in R$ be not ψ_{2}-prime to J, then there exists $y_{0} \in R$ with $x y_{0} \in J-\psi_{2}(J)$ and $y_{0} \notin J$. Now, we claim that x is not ψ_{1}-prime to J. Suppose not, that is for all $y \in R$ with $x y \in J-\psi_{1}(J)$ implies $y \in J$; which is a contradiction, since $x y_{0} \in J-\psi_{2}(J)$ with $y_{0} \notin J$ so $x \in P$.
(ii) follows by (i).

We next give a further general conditions for ϕ-primal ideals to be primal ideals.

THEOREM 2.5. Let R be a commutative semiring and $\phi: \vartheta(R) \rightarrow \vartheta(R) \cup\{\emptyset\}$ a function. Let P and I be k-ideals of R. If I is a P_{ϕ}-primal ideal of R that is not primal, then $I^{2} \subseteq \phi(I)$. Moreover, if P is a prime ideal of R with $I^{2} \nsubseteq \phi(I)$, then I is a P-primal ideal in R.

Proof. Suppose that $I^{2} \nsubseteq \phi(I)$ and P is a prime ideal of R. It suffices to show that P is exactly the set of elements that are not prime to I. If $a \in P$, then a is not ϕ-prime to I, so a is not prime to I. Now, assume that a is not prime to I. Then, there exists $r \in R-I$ such that $r a \in I$. If $r a \in I-\phi(I)$, then a is not ϕ-prime to I; hence $a \in P$. So, assume that $r a \in \phi(I)$. If $a I \nsubseteq \phi(I)$, then there exists $r_{0} \in I$ such that $a r_{0} \notin \phi(I) ; a\left(r+r_{0}\right) \in I-\phi(I)$ with $r+r_{0} \notin I$. Since I is a k-ideal, hence a is not ϕ-prime to I, and we have $a \in P$. So, we can assume that $a I \subseteq \phi(I)$. If $r I \nsubseteq \phi(I)$, then there exists $c \in I$ such that $r c \notin \phi(I)$ and so $(a+c) r \in I-\phi(I)$ with $r \notin I$, which gives that $a+c \in P, a \in P$. So we can assume $r I \subseteq \phi(I)$. As $I^{2} \nsubseteq \phi(I)$, there exists $a_{0}, b_{0} \in I$ such that $a_{0} b_{0} \in I$ with $a_{0} b_{0} \notin \phi(I)$. Hence $\left(a+a_{0}\right)\left(r+b_{0}\right) \in I-\phi(I)$ with $r+b_{0} \notin I$, which implies that $a+a_{0} \in P$.

An ideal I of a semiring R is called a partitioning ideal ($=Q$-ideal) (see [4]) if there exists a subset Q of R such that
(1) $R=\bigcup\{q+I: q \in Q\}$, and
(2) $\left(q_{1}+I\right) \cap\left(q_{2}+I\right) \neq \emptyset$, for any $q_{1}, q_{2} \in Q$ if and only if $q_{1}=q_{2}$.

Let I be a Q-ideal of a semiring R, and $R / I=\{q+I: q \in Q\}$. Then R / I forms a semiring under the binary operations \oplus and \odot, which are defined as follows: $\left(q_{1}+I\right) \oplus\left(q_{2}+I\right)=q_{3}+I$ for a unique element $q_{3} \in Q$ satisfying that $q_{1}+q_{2}+I \subseteq q_{3}+I$
$\left(q_{1}+I\right) \odot\left(q_{2}+I\right)=q_{4}+I$, for a unique element $q_{4} \in Q$ satisfying that $q_{1} q_{2}+I \subseteq q_{4}+I$. This semiring R / I is called the quotient semiring of R by I.

Let J be an ideal of R and $\phi: \vartheta(R) \rightarrow \vartheta(R) \cup\{\emptyset\}$ be a function. As in [1], we define $\phi_{J}: \vartheta(R / J) \rightarrow \vartheta(R / J) \cup\{\emptyset\}$ by $\phi_{J}(I / J)=(\phi(I)+J) / J$ for every ideal $I \in \vartheta(R)$ with $J \subseteq I\left(\right.$ and $\phi_{J}(I / J)=\emptyset$ if $\left.\phi(I)=\emptyset\right)$.

TheOrem 2.6. Let J be a Q-ideal of a semiring R, I a proper k-ideal of R and J a ϕ-prime ideal of R with $J \subseteq \phi(I)$. Then I is a ϕ-primal if and only if I / J is a ϕ_{J}-primal of R / J.

Proof. Assume that I is a P_{ϕ}-primal. It is easy to show P / J is ϕ_{J}-prime. Let $a+J \in P / J-\phi_{J}(I / J)=P / J-(\phi(I)+J) / J$, where $a \in P \cap Q[3$, Proposition 2.2]. Then $a \notin \phi(I)$, and hence a is not ϕ-prime to I, and so there exists $r \in R-I$ such that $r a \in I-\phi(I)$. If $r a \in J-\phi(J)$, then $J \phi$-prime gives that $r \in J$, which is a contradiction since $r \notin I$. Thus ra $\notin J-\phi(J)$. There is an element $q_{1} \in Q$ such that $r \in q_{1}+J$, so $r=q_{1}+c$ for some $c \in J$; hence, $a q_{1} \notin J-\phi(I)$. It follows that $\left(q_{1}+J\right) \odot(a+J) \in I / J-\phi_{J}(I / J)$ with $q_{1}+J \notin I / J$, which implies that $a+J$ is not ϕ_{J}-prime to I / J. Now assume that $b+J$ is not ϕ_{J}-prime to I / J, where $b \in Q$. Then there exists $c+J \in R / J-I / J$ such that $(c+J) \odot(b+J)=q_{2}+$
$J \in I / J-\phi_{J}(I / J)$ where $q_{2} \in Q \cap I$ and $q_{2} \notin \phi(I)$ is a unique element such that $b c+J \subseteq q_{2}+J$; hence $c b \in I-\phi(I)$ with $c \notin I$. So, $b \notin \phi(I)$ is not ϕ-prime to I. Therefore, $b+J \in P / J-\phi_{J}(I / J)$.

On the other hand, let I / J be a $P / J-\phi_{J}$-primal ideal of R / J; we show that I is a P - ϕ-primal. Let $a \in P-\phi(I)$; we can assume that $a \notin J$, so there is an element $q_{3} \in Q$ such that $a \in q_{3}+J$ which can be written as $a=q_{3}+d$, for some $d \in J$. As J is a ϕ-prime ideal and $q_{3}+J \in P / J-\phi_{J}(I / J)$, there exists $r+J \in R / J-I / J$ such that $\left(q_{3}+J\right) \oplus\left(r+J=q_{4}+J \in I / J-\phi_{J}(I / J)\right.$, where q_{4} is a unique element $\in I \cap Q$ such that $q_{3} r+J \subseteq q_{4}+I, r a \in I-\phi(I)$ with $r \notin I$. Thus, a is not ϕ-prime to I. Now assume that a is not ϕ-prime to I (so $a \notin \phi(I)$). Without loss of generality, we assume that $a \notin I$, and then there is an element $r \in R-I$ such that $r a \in I-\phi(I)$. So there are elements $q_{5}, q_{6} \in Q$ such that $a \in q_{5}+J$ and $r \in q_{6}+J$; so $a=q_{5}+e$ and $r=q_{6}+f$ for some $e, f \in J$, which leads to $e f \in I-\phi(I)$. Therefore, J is a ϕ-prime ideal which gives $q_{7}+J=\left(q_{5}+J\right) \odot\left(q_{6}+J\right) \in I / J-\phi_{J}(I / J)$, where q_{7} is a unique element $\in Q \cap I$ such that $q_{5} q_{6}+J \subseteq q_{7}+J$ with $\left(q_{6}+J\right) \notin I / J$. Consequently, $a+J=q_{5}+e+J \in P / J-\phi_{J}(I / J)$, since I / J is a P / J - ϕ_{J}-primal ideal of R / J and then $a \in P$.

Note that if P is a ϕ-primal but not primal, then by Theorem 2.5, $P^{2} \subseteq \phi(P)$. Moreover, if $\phi \leq \phi_{2}$, then $P^{2} \subseteq \phi(P) \subseteq P^{2}$; so $\phi(P)=P^{2}$. In particular, If P is a weakly primal but not a primal, then $P^{2}=0$. Now if $\phi \leq \phi_{3}$, then $P^{2}=\phi(P) \subseteq P^{3}$; so $P^{2}=P^{3}$; and hence P is idempotent. We next move to construct a ϕ-primal ideal J where $\phi_{\omega} \leq \phi$.

THEOREM 2.7. Let T and S be commutative semirings and I a P-weakly primal ideal of T. Then $J=I \times S$ is a ϕ-primal ideal of $R=T \times S$ for each ϕ with $\phi_{\omega} \leq \phi$.

Proof. Assume that I is a primal; then it is clear that J is also a primal. Suppose that I is a P-weakly primal but not a primal. Then $I^{2}=0, J^{2}=0 \times S$; and hence $\phi_{\omega}(J)=0 \times S$. Let us show that J is $P \times S_{\phi_{\omega}}$-primal of $T \times S$. It is enough to show that $P \times S-\phi_{\omega}(J)$ is exactly the set of all elements that are not a ϕ_{ω}-prime to J. Let $\left(x_{1}, x_{2}\right)$ be not ϕ_{ω}-prime to J; then there exists $\left(y_{1}, y_{2}\right) \in T \times S$ such that $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right) \in J-\phi_{\omega}(J)$ with $\left(y_{1}, y_{2}\right) \notin J$. Now, $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right) \in I \times S-\{0\} \times S ;\left(x_{1} y_{1}, x_{2} y_{2}\right) \in I-\{0\} \times S$. So, $x_{1} y_{1} \in I-\{0\}$ with $y_{1} \notin I$. As I is a P-weakly primal, $x_{1} \in P-\{0\}$, and then $\left(x_{1}, x_{2}\right) \in P \times S-\phi_{\omega}(J)$ is not ϕ_{ω}-prime to J. On the other hand, assume that $\left(x_{1}, y_{1}\right) \in P \times S-\phi_{w}(J)$, where $x_{1} \in P-\{0\}$ is not ϕ_{ω}-prime to J. As $x_{1} \in P-\{0\}, x_{1}$ is not weakly prime to I then there exists $r \in T-I$ such that $x_{1} r \in I-\{0\}$. Thus, $(r, 1) \in T \times S-I \times S$; and then $\left(x_{1}, x_{2}\right)(r, 1) \in I-\{0\} \times S=I \times S-\{0\} \times S=J-\phi_{\omega}(J)$. Therefore, $\left(x_{1}, y_{1}\right)$ is not ϕ_{ω}-prime to J.

The semiring of fractions is defined in [4] as follows: let R be a semiring, and S be the set of all multiplicatively cancellable elements of $R(1 \in S)$. Define a relation \sim on $R \times S$ as follows: for $(a, s),(b, t) \in R \times S,(a, s) \sim(b, t)$ if and only if $a t=b s$. Then \sim is an equivalence relation on $R \times S$. For $(a, s) \in R \times S$, let us denote the equivalence classes of \sim by $\frac{a}{s}$, and denote the set of all equivalence classes of
\sim by R_{S}. Then R_{S} is a semiring under the operations for which $\frac{a}{s}+\frac{b}{t}=\frac{a t+s b}{s t}$ and $\left(\frac{a}{s}\right)\left(\frac{b}{t}\right)=\frac{a b}{s t}$ for all $a, b \in R$ and $s, t \in S$. This new semiring R_{S} is called the semiring of fractions of R with respect to S; and its zero element is $\frac{0}{1}$. Its multiplicative identity element is $\frac{1}{1}$ and each element of S has a multiplicative inverse in R_{S}.

Throughout the paper, S will be the set of all multiplicatively cancellable elements of a semiring R. Now suppose that I is an ideal of a semiring R. The ideal generated by I in R_{S}, that is, the set of all finite sums $s_{1} a_{1}+\cdots+s_{n} a_{n}$ where $a_{i} \in R_{S}$ and $s_{i} \in I$, is called the extension of I to R_{S}, and is denoted by $I R_{S}$. Again, if J is an ideal of R_{S}, then the contraction of J in $R, J \cap R=\{r \in R: r / 1 \in J\}$ is clearly an ideal of R.

Let $\phi: \vartheta(R) \rightarrow \vartheta(R) \cup\{\emptyset\}$ be a function. Define $\phi_{S}: \vartheta\left(R_{S}\right) \rightarrow \vartheta\left(R_{S}\right) \cup\{\emptyset\}$ by $\phi_{S}(J)=\phi(J \cap R) R_{S}\left(\right.$ and $\phi_{S}(J)=\emptyset$ if $\left.\phi(J \cap R)=\emptyset\right)$.

Proposition 2.8. Let R be a commutative semiring, and let $\phi: \vartheta(R) \rightarrow$ $\vartheta(R) \cup\{\emptyset\}$ be a function. Assume P is an ideal of R and S is the set of all multiplicatively cancellable elements in R such that $P \cap S=\emptyset$. If P is a ϕ-prime ideal of R and $\phi(P) R_{S} \subseteq \phi_{S}\left(P R_{S}\right)$, then $P R_{S}$ is a ϕ_{S}-prime of R_{S}. Moreover, if $P R_{S} \neq \phi(P) R_{S}$, then $P R_{S} \cap R=P$.

Proof. Let $\frac{x}{s} \cdot \frac{y}{t} \in P R_{S}-\phi_{S}\left(P R_{S}\right)$, and let $x y u \in P$ for some $u \in S$, and for any $w \in S, x y w \notin \phi_{S}\left(P R_{S}\right) \cap R$. If $x y w \in \phi(P)$, then $\frac{x}{s} \cdot \frac{y}{t} \in \phi(P) R_{S} \subseteq \phi_{S}\left(P R_{S}\right)$, which is a contradiction. So $x(y u) \in P-\phi(P)$. As P is ϕ-prime, we have $x \in P$ or $y u \in P$. Hence, $\frac{x}{s} \in P R_{S}$ or $\frac{y}{t} \in P R_{S}$. Assume $x \in P R_{S} \cap R$; so there exists $s \in S$ with $x s \in P$. If $x s \notin \phi(P)$, then $x s \in P-\phi(P)$, which implies that $x \in P$, and if $x s \in \phi(P)$, then $x \in \phi(P) R_{S} \cap R$, and so $P R_{S} \cap R \subseteq P \cup\left(\phi(P) R_{S} \cap R\right)$. Thus, $P R_{S} \cap R \subseteq P$ or $P R_{S} \cap R \subseteq \phi(P) R_{S} \cap R$. By this and the second case, we conclude that $P R_{S}=\phi(P) R_{S}$.

Note that A is a ϕ-primal if $P=A$. Since $\phi_{S}\left(I R_{S}\right)=\phi\left(I R_{S} \cap R\right) R_{S}$, then we have $I \subseteq I R_{S} \cap R$.

Lemma 2.9. Let Iand A be k-deals of a commutative semiring R. Then,
(i) If I is a P_{ϕ}-primal ideal of R with $P \cap S=\emptyset$, and $\phi(P) R_{S} \subseteq \phi_{S}\left(P R_{S}\right)$ such that $\frac{a}{s} \in I R_{S}$ and $\frac{a}{s} \notin \phi_{S}\left(I R_{S}\right)$, then $a \in I-\phi(I)$.
(ii) If A is a ϕ-primal ideal of R with $A \cap S=\emptyset$, and $\phi(A) R_{S} \subseteq \phi_{S}\left(A R_{S}\right)$ such that $\frac{a}{s} \in A R_{S}$ and $\frac{a}{s} \notin \phi_{S}\left(A R_{S}\right)$, then $a \in A-\phi(A)$.

Proof. (i) Assume that I is a P_{ϕ}-primal ideal of R and $\frac{a}{s} \in I R_{S}-\phi_{S}\left(I R_{S}\right)$. Let $a \notin I-\phi(I)$. If $a \in \phi(I)$, then $\frac{a}{s} \in \phi(I) R_{S} \subseteq \phi_{S}\left(I R_{S}\right)$, which is a contradiction. So $a \notin \phi(I)$. If $a \notin I$, then there exists $t \in S$ such that $a t \in I$ and for any $w \in S$, $a w \notin \phi(I)$. Thus $a t \in I-\phi(I)$ with $a \notin I$, which contradicts with $S \cap P=\emptyset$.
(ii) Follows from (i) and Theorem 2.2.

Theorem 2.10. Let I be a k-ideal of a semiring R. If I is a P_{ϕ}-primal, S is the set of multiplicatively cancellable elements in $R, P \cap S=\emptyset$, and $\phi(P) R_{S} \subseteq$ $\phi_{S}\left(P R_{S}\right)$. Then $I R_{S}$ is a $P R_{S}-\phi_{S}$-primal ideal of R_{S}.

Proof. By Theorem 2.3 and Proposition 2.8, $P R_{S}$ is a ϕ_{S}-prime ideal of R_{S}. So it is enough to show that $P R_{S}-\phi_{S}\left(I R_{S}\right)$ is exactly the set of all elements in R_{S} that are not ϕ_{S}-prime to $I R_{S}$. Assume that $\frac{r}{s}$ is not ϕ_{S}-prime to $I R_{S}$; then there exists $\frac{x}{t} \in R_{S}-I R_{S}$ such that $\frac{r}{s} \cdot \frac{x}{t} \in I R_{S}-\phi_{S}\left(I R_{S}\right)$. By Lemma 2.9, $r x \in I-\phi(I)$ with $x \notin I$, and so r is not ϕ-prime to I; that is $r \in P$. Hence, $\frac{r}{s} \in P R_{S}-\phi_{S}\left(I R_{S}\right)$. On the other hand, let $\frac{x}{s} \in P R_{S}-\phi_{S}\left(I R_{S}\right), x u \in P$ for some $u \in S$ and $x w \notin \phi_{S}\left(I R_{S}\right) \cap R$ for all $w \in S$; then $x w \notin \phi(I)$; otherwise, $x w \in \phi(I)$ so $\frac{x}{s} \in \phi(I) R_{S} \subseteq \phi_{S}\left(I R_{S}\right)$ since $I \subseteq P$; and hence $x u \in P-\phi(I)$, $x u$ is not ϕ-prime to I. So there exists $y \in R-I$ such that $x u y \in I-\phi(I) ; \frac{x y}{s}$ $=\frac{x}{s} \cdot \frac{y}{1} \in I R_{S}-\phi_{S}\left(I R_{S}\right)$ with $\frac{y}{1} \notin I R_{S}$.

REFERENCES

[1] D. D. Anderson and M. Bataineh, Generalizations of prime ideals, Comm. Algebra 36 (2008), 686-696.
[2] S. Ebrahimi Atani, On k-weakly primary ideals over semirings, Sarajevo J. Math. 3 (2007), 9-13.
[3] S. Ebrahimi Atani, The ideal theory in quotients of commutative semirings, Glas. Mat. Ser. III 42 (2007), 301-308.
[4] S. Ebrahimi Atani, On primal and weakly primal ideals over commutative semirings, Glas. Mat. 43 (2008), 13-23.
[5] S. Ebrahimi Atani and A. Y. Darani, On weakly primal ideals (I), Demonstratio Math. 40 (2007), 23-32.
[6] L. Fuchs, On primal ideals, Proc. Amer. Math. Soc. 1 (1950), 1-6.
[7] L. Fuchs and E. Mosteig, Ideal theory in Prufer domains, J. Algebra 252 (2002), 411-430.
(received 29.06.2012; in revised form 14.08.2013; available online 15.12.2013)
Mathematics Department, Jordan University of Science and Technology, Irbid 22110, Jordan E-mail: msbataineh@just.edu.jo

[^0]: 2010 Mathematics Subject Classification: 13A15, 16Y60
 Keywords and phrases: Primal ideal; ϕ-prime ideal; weakly primal ideal; ϕ-primal ideal.

