PROPERTY ($g R$) UNDER NILPOTENT COMMUTING PERTURBATION

O. García, C. Carpintero, E. Rosas and J. Sanabria

Abstract

The property $(g R)$, introduced in [Aiena, P., Guillen, J. and Peña, P., Property ($g R$) and perturbations, to appear in Acta Sci. Math. (Szeged), 2012], is an extension to the context of B-Fredholm theory, of property (R), introduced in [Aiena, P., Guillen, J. and Peña, P., Property (R) for bounded linear operators, Mediterr. J. Math. 8 (4), 491-508, 2011]. In this paper we continue the study of property $(g R)$ and we consider its preservation under perturbations by finite rank and nilpotent operators. We also prove that if T is left polaroid (resp. right polaroid) and N is a nilpotent operator which commutes with T then $T+N$ is also left polaroid (resp. right polaroid).

1. Introduction and preliminaries

Throughout this paper $L(X)$ denotes the algebra of all bounded linear operators acting on an infinite-dimensional complex Banach space X. For $T \in L(X)$, we denote by $N(T)$ the null space of T and by $R(T)=T(X)$ the range of T. We denote by $\alpha(T):=\operatorname{dim} N(T)$ the nullity of T and by $\beta(T):=\operatorname{codim} R(T)=\operatorname{dim} X / R(T)$ the defect of T. Other two classical quantities in operator theory are the ascent $p=p(T)$ of an operator T, defined as the smallest non-negative integer p such that $N\left(T^{p}\right)=N\left(T^{p+1}\right)$ (if such an integer does not exist, we put $p(T)=\infty$), and the descent $q=q(T)$, defined as the smallest non-negative integer q such that $R\left(T^{q}\right)=R\left(T^{q+1}\right)$ (if such an integer does not exist, we put $\left.q(T)=\infty\right)$. It is well known that if $p(T)$ and $q(T)$ are both finite then $p(T)=q(T)$. Furthermore, $0<p(\lambda I-T)=q(\lambda I-T)<\infty$ if and only if λ is a pole of the resolvent, see [14, Prop. 50.2]. An operator $T \in L(X)$ is said to be Fredholm (respectively, upper semi-Fredholm, lower semi-Fredholm), if $\alpha(T), \beta(T)$ are both finite (respectively, $R(T)$ closed and $\alpha(T)<\infty, \beta(T)<\infty) . T \in L(X)$ is said to be semi-Fredholm if T is either an upper semi-Fredholm or a lower semi-Fredholm operator. If T is semi-Fredholm, the index of T is defined by ind $T:=\alpha(T)-\beta(T)$. Other two important classes of operators in Fredholm theory are the classes of semi-Browder operators. These classes are defined as follows. $T \in L(X)$ is said to be Browder

[^0](resp. upper semi-Browder, lower semi-Browder) if T is a Fredholm (respectively, upper semi-Fredholm, lower semi-Fredholm) and both $p(T), q(T)$ are finite (respectively, $p(T)<\infty, q(T)<\infty)$. A bounded operator $T \in L(X)$ is said to be upper semi-Weyl (respectively, lower semi-Weyl) if T is upper Fredholm operator (respectively, lower semi-Fredholm) and index ind $T \leq 0$ (respectively, ind $T \geq 0$). $T \in L(X)$ is said to be Weyl if T is both upper and lower semi-Weyl, i.e. T is a Fredholm operator having index 0 . The Fredholm spectrum, the Browder spectrum and the Weyl spectrum are defined, respectively, by
\[

$$
\begin{aligned}
\sigma_{\mathrm{f}}(T) & :=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not Fredholm }\}, \\
\sigma_{\mathrm{b}}(T) & :=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not Browder }\} \\
\sigma_{\mathrm{w}}(T) & :=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not Weyl }\} .
\end{aligned}
$$
\]

Since every Browder operator is Weyl then $\sigma_{\mathrm{w}}(T) \subseteq \sigma_{\mathrm{b}}(T)$. Analogously, the upper semi-Browder spectrum and the upper semi-Weyl spectrum are defined by

$$
\begin{aligned}
\sigma_{\mathrm{ub}}(T) & :=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not upper semi-Browder }\} \\
\sigma_{\mathrm{uw}}(T) & :=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not upper semi-Weyl }\}
\end{aligned}
$$

A bounded operator $R \in L(X)$ is said to be Riesz if $\lambda I-T$ is a Fredholm operator for all $\lambda \neq 0$, i.e. $\sigma_{f}(T) \subseteq\{0\}$. The classical Riesz-Schauder theory of compact operators shows that every compact operator is Riesz. Also quasi-nilpotent operators (in particular nilpotent operators) are Riesz, since $\sigma_{f}(Q) \subseteq \sigma(Q)=\{0\}$ for any operator quasi-nilpotent $Q \in L(X)$. Browder spectra and Weyl spectra are invariant under commuting Riesz perturbations (see [15, 16]), i.e. if R is a Riesz operator such that $T R=R T$,

$$
\sigma_{u b}(T)=\sigma_{u b}(T+R) \quad \text { and } \quad \sigma_{u w}(T)=\sigma_{u w}(T+R)
$$

Recall that $T \in L(X)$ is said to be bounded below if T is injective and has closed range. Denote by $\sigma_{\mathrm{ap}}(T)$ the classical approximate point spectrum defined by

$$
\sigma_{\mathrm{ap}}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not bounded below }\} .
$$

Note that if $\sigma_{\mathrm{S}}(T)$ denotes the surjectivity spectrum

$$
\sigma_{\mathrm{s}}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not onto }\}
$$

Obviously, $\sigma(T)=\sigma_{\mathrm{ap}}(T) \cup \sigma_{\mathrm{S}}(T)$. Furthermore $\sigma_{\mathrm{ap}}(T)=\sigma_{\mathrm{S}}\left(T^{*}\right)$ and $\sigma_{\mathrm{S}}(T)=$ $\sigma_{\mathrm{ap}}\left(T^{*}\right)$, where T^{*} is the dual of T.

Theorem 1.1. [1] If $T \in L(X)$ and Q is a quasi-nilpotent operator commuting with T then
(i) $\sigma(T)=\sigma(T+Q)$,
(ii) $\sigma_{a p}(T)=\sigma_{a p}(T+Q)$,
(iii) $\sigma_{s}(T)=\sigma_{s}(T+Q)$.

2. Semi B-Browder spectra under nilpotent perturbations

Given $n \in \mathbb{N}$, we denote by T_{n} the restriction of $T \in L(X)$ on the subspace $R\left(T^{n}\right)=T^{n}(X)$. According to [10, 11], T is said to be semi B-Fredholm (respectively, B-Fredholm, upper semi B-Fredholm, lower semi B-Fredholm), if for some integer $n \geq 0$ the range $R\left(T^{n}\right)$ is closed and T_{n}, viewed as an operator from the space $R\left(T^{n}\right)$ into itself, is a semi-Fredholm operator (respectively, Fredholm, upper semi-Fredholm, lower semi-Fredholm). Analogously, $T \in L(X)$ is said to be B Browder (respectively, upper semi B-Browder, lower semi B-Browder), if for some integer $n \geq 0$ the range $R\left(T^{n}\right)$ is closed and T_{n} is a Browder operator (respectively, upper semi-Browder, lower semi-Browder). If T_{n} is a semi-Fredholm operator, it follows from [11, Proposition 2.1] that also T_{m} is semi-Fredholm for every $m \geq n$, and ind $T_{m}=\operatorname{ind} T_{n}$. This enables us to define the index of a semi B-Fredholm operator T as the index of the semi-Fredholm operator T_{n}. Thus, a bounded operator $T \in L(X)$ is said to be a B-Weyl operator if T is a B-Fredholm operator having index $0 . T \in L(X)$ is said to be upper semi B-Weyl if T is upper semi B-Fredholm with index ind $T \leq 0$, and T is said to be lower semi B-Weyl if T is lower semi B-Fredholm with ind $T \geq 0$. Note that if T is B-Fredholm then also T^{*} is B-Fredholm with ind $T^{*}=-\operatorname{ind} T$.

The classes of operators defined above motivate the definitions of several spectra. The upper semi B-Browder spectrum is defined by

$$
\sigma_{\mathrm{ubb}}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not upper semi B-Browder }\} .
$$

The lower semi B-Browder spectrum is defined by

$$
\sigma_{\mathrm{lbb}}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not lower semi B-Browder }\}
$$

while the B-Browder spectrum is defined by

$$
\sigma_{\mathrm{bb}}(T)=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not B-Browder }\}
$$

Clearly, $\sigma_{\mathrm{bb}}(T)=\sigma_{\mathrm{ubb}}(T) \cup \sigma_{\mathrm{lbb}}(T)$. The B-Weyl spectrum is defined by

$$
\sigma_{\mathrm{bw}}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not B-Weyl }\}
$$

the upper semi B-Weyl spectrum and lower semi B-Weyl spectrum are defined, respectively, by

$$
\sigma_{\mathrm{ubw}}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not upper semi B-Weyl }\}
$$

and

$$
\sigma_{\mathrm{lbw}}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not lower semi B-Weyl }\}
$$

Definition 2.1. $T \in L(X)$ is said to be left (resp. right) Drazin invertible if $p=p(T)<\infty$ (resp. $q=q(T)<\infty)$ and $T^{p+1}(X)$ (resp. $T^{q}(X)$)is closed. $T \in L(X)$ is said to be Drazin invertible if $p(T)=q(T)<\infty$. If $\lambda I-T$ is left (resp. right) Drazin invertible and $\lambda \in \sigma_{a p}(T)$ (resp. $\lambda \in \sigma_{s}(T)$) then λ is said to be a left (resp. right) pole.

Clearly, $T \in L(X)$ is both right and left Drazin invertible if and only if T is Drazin invertible. In fact, if $0<p=p(T)=q(T)<\infty$, then $T^{p}(X)=T^{p+1}(X)$ is
the kernel of the spectral projection associated with the spectral set $\{0\}[14$, Prop. 50.2]. The left Drazin spectrum is then defined as

$$
\sigma_{\mathrm{ld}}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not left Drazin invertible }\}
$$

the right Drazin spectrum is defined as

$$
\sigma_{\mathrm{rd}}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not right Drazin invertible }\}
$$

and Drazin spectrum is defined as

$$
\sigma_{\mathrm{d}}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not Drazin invertible }\}
$$

Obviously, $\sigma_{\mathrm{d}}(T)=\sigma_{\mathrm{ld}}(T) \cup \sigma_{\mathrm{rd}}(T)$. Furthermore $\sigma_{\mathrm{ld}}(T)=\sigma_{\mathrm{rd}}\left(T^{*}\right)$ and $\sigma_{\mathrm{rd}}(T)=$ $\sigma_{\mathrm{ld}}\left(T^{*}\right)$, where T^{*} is the dual of T, see Theorem 2.1 of [3].

Theorem 2.2. [13] If $T \in L(X)$ then we have
(i) T is right Drazin invertible if and only if there exists a $k \in \mathbb{N}$ such that $T^{k}(X)$ is closed and T_{k} is onto. In this case $T^{j}(X)$ is closed and T_{j} is onto for all naturals $j \geq k$.
(ii) T is left Drazin invertible if and only if T is upper semi B-Browder.
(iii) T is right Drazin invertible if and only if T is lower semi B-Browder.
(iv) T is Drazin invertible if and only if T is B-Browder.

Corollary 2.3. If $T \in L(X)$ then we have

$$
\sigma_{u b b}(T)=\sigma_{l d}(T), \quad \sigma_{l b b}(T)=\sigma_{r d}(T) \quad \text { and } \quad \sigma_{b b}(T)=\sigma_{d}(T)
$$

It has been observed in [9], that the B-Browder spectrum is invariant under commuting finite dimensional perturbation. In the next propositions we prove that all Drazin spectra are invariant under nilpotent commuting perturbations.

Theorem 2.4. Let $T \in L(X)$ and N be a nilpotent operator which commutes with T. Then $\sigma_{r d}(T+N)=\sigma_{l b b}(T+N)=\sigma_{l b b}(T)=\sigma_{r d}(T)$.

Proof. Suppose that $\lambda \notin \sigma_{l b b}(T)$. By part (iii) of Theorem $2.2, \lambda I-T$ is right Drazin invertible and hence, $q=q(\lambda I-T)<\infty$ and $(\lambda I-T)^{q}(X)$ is closed. Let $n \in \mathbb{N}$ be such that $N^{n}=0$ and set $m_{1}=\max \{q, n\}$. We claim that

$$
\begin{equation*}
[(\lambda I-T)+N]^{2 k}(X) \subseteq(\lambda I-T)^{q}(X) \quad \text { for all } k \geq m_{1} \tag{1}
\end{equation*}
$$

To show this, let $y \in[(\lambda I-T)+N]^{2 k}(X)$ be arbitrary, so that there exists $x \in X$ for which $[(\lambda I-T)+N]^{2 k}(x)=y$. Then

$$
\begin{aligned}
y & =\sum_{i=0}^{2 k} \mu_{i, k} N^{i}\left((\lambda I-T)^{2 k-i}(x)\right) \\
& =\sum_{i=0}^{k} \mu_{i, k} N^{i}\left((\lambda I-T)^{2 k-i}(x)\right)+\sum_{i=k+1}^{2 k} \mu_{i, k} N^{i}\left((\lambda I-T)^{2 k-i}(x)\right) \\
& =\sum_{i=0}^{k} \mu_{i, k} N^{i}\left((\lambda I-T)^{2 k-i}(x)\right) \\
& =(\lambda I-T)^{k}\left[\sum_{i=0}^{k} \mu_{i, k} N^{i}\left((\lambda I-T)^{k-i}(x)\right)\right]
\end{aligned}
$$

Therefore $y \in(\lambda I-T)^{k}(X)$. Hence, since $k \geq q$,

$$
\begin{equation*}
[(\lambda I-T)+N]^{2 k}(X) \subseteq(\lambda I-T)^{k}(X)=(\lambda I-T)^{q}(X) \tag{2}
\end{equation*}
$$

To prove the opposite inclusion, observe, by using (2), that it also follows that

$$
\begin{aligned}
(\lambda I-T)^{q}(X) & =(\lambda I-T)^{4 k}(X)=[(\lambda I-T)+N-N]^{4 k}(X) \\
& \subseteq[(\lambda I-T)+N]^{2 k}(X)
\end{aligned}
$$

from which the equality (1) follows. Consequently, $[(\lambda I-T)]^{2 k}(X)$ is closed for all k sufficiently large. Now, from part (i) of Theorem 2.2 , we can choose k such that the restriction $(\lambda I-T)_{2 k}$ of $(\lambda I-T)$ to $M=(\lambda I-T)^{2 k}(X)=[(\lambda I-T)+N]^{2 k}(X)$ is onto. If $N_{2 k}$ denotes the restriction of N to M, then $(\lambda I-T)_{2 k}+N_{2 k}=[(\lambda I-T)+$ $N]_{2 k}$ is onto, so, by Theorem 2.2, part $(i),(\lambda I-T)+N$ is right Drazin invertible, or equivalently, lower semi B-Browder. This shows that $\sigma_{l b b}(T) \subseteq \sigma_{l b b}(T+N)$ and by symmetry the opposite inclusion holds, so the equality $\sigma_{l b b}(T+N)=\sigma_{l b b}(T)$.

By duality we have
Corollary 2.5. Let $T \in L(X)$ and N be a nilpotent operator which commutes with T. Then $\sigma_{l d}(T+N)=\sigma_{u b b}(T+N)=\sigma_{u b b}(T)=\sigma_{l d}(T)$ and $\sigma_{d}(T+N)=$ $\sigma_{b b}(T+N)=\sigma_{b b}(T)=\sigma_{d}(T)$.

REMARK 2.6. Theorem 2.4 and Corollary 2.5 answer positively to a question from [6], in particular it improves Theorem 4.3, where the invariance of the spectrum $\sigma_{l b b}(T)$, under commuting nilpotent perturbations, was proved assuming that T has SVEP, while the invariance of $\sigma_{u b b}(T)$ was proved assuming that T^{*} has SVEP.

3. Property ($g R$) under nilpotent perturbations

For an operator $T \in L(X)$ define

$$
\begin{aligned}
E(T) & =\{\lambda \in \text { iso } \sigma(T): 0<\alpha(\lambda I-T)\} \\
E^{a}(T) & =\left\{\lambda \in \text { iso } \sigma_{a p}(T): 0<\alpha(\lambda I-T)\right\} \\
\Pi_{00}(T) & =\sigma(T) \backslash \sigma_{b b}(T) \\
\Pi_{00}^{a}(T) & =\sigma_{a p}(T) \backslash \sigma_{u b b}(T)
\end{aligned}
$$

Definition 3.1. A bounded $T \in L(X)$ is said to satisfy:
(i) property $(g R)$ if $\sigma_{a p}(T) \backslash \sigma_{u b b}(T)=E(T)$;
(ii) property $\left(g R^{a}\right)$ if $\sigma_{a p}(T) \backslash \sigma_{u b b}(T)=E^{a}(T)$;
(iii) property (gw) if $\sigma(T)_{a p} \backslash \sigma_{u b w}(T)=E(T)$;
(iv) generalized a-Weyl's theorem if $\sigma_{a p}(T) \backslash \sigma_{u b w}(T)=E^{a}(T)$.

Also a-Browder's theorem admits a generalized version, the generalized aBrowder's theorem, which means that T satisfies $\sigma_{u b w}(T)=\sigma_{u b b}(T)$. However, a-Browder's theorem and generalized a-Browder's theorem are equivalent, for a proof see [4].

Theorem 3.2. [7] If $T \in L(X)$, then we have
(i) T satisfies property ($g w$) if and only if a-Browder's theorem and property ($g R$) holds for T;
(ii) T satisfies generalized a-Weyl's theorem if and only if a-Browder's theorem and property $\left(g R^{a}\right)$ holds for T.

ThEOREM 3.3. Let $T \in L(X)$ and N be a nilpotent operator which commutes with T. Then $E(T)=E(T+N)$ and $E^{a}(T)=E^{a}(T+N)$.

Proof. Suppose that $N^{n}=0$. It is easily seen that

$$
\begin{equation*}
N(\lambda I-T) \subseteq N(\lambda I-T+N)^{n} \tag{3}
\end{equation*}
$$

Indeed, if $x \in N(\lambda I-T)$ then for some suitable binomial coefficients $\mu_{n, j}$, we have

$$
(\lambda I-T+N)^{n} x=\sum_{j=1}^{n} \mu_{n, j}(\lambda I-T)^{j} N^{n-j} x=0
$$

hence $x \in N(\lambda I-T+N)^{n}$.
Now, let $\lambda \in E(T)$. Then $\lambda \in$ iso $\sigma(T)=$ iso $\sigma(T+N)$ and $\alpha(\lambda I-T)>0$. Suppose that $\alpha(\lambda I-T+N)=0$. Then $\alpha(\lambda I-T+N)^{k}=0$ for all $k \in \mathbb{N}$. From the inclusion (3), we have $\alpha(\lambda I-T)=0$ and this is impossible. Therefore $\alpha(\lambda I-T+N)>0$. Consequently, $E(T) \subseteq E(T+N)$ and, again by symmetry, the opposite inclusion holds. Therefore, $E(T)=E(T+N)$. Similarly we can prove that $E^{a}(T)=E^{a}(T+N)$.

Theorem 3.4. Let $T \in L(X)$ and N be a nilpotent operator which commutes with T. Then T satisfies the property $(g R)$ if only if $T+N$ satisfies the property ($g R$).

Proof. By Theorem 3.3 and Theorem 2.4, it follows that

$$
E(T+N)=E(T)=\sigma_{a p}(T) \backslash \sigma_{u b b}(T)=\sigma_{a p}(T+N) \backslash \sigma_{u b b}(T+N)
$$

hence $T+N$ satisfies property $(g R)$. By symmetry the reciprocal holds.
Theorem 3.5. Let $T \in L(X)$ and N be a nilpotent operator which commutes with T. Then T satisfies the property $\left(g R^{a}\right)$ if only if $T+N$ satisfies the property ($g R^{a}$).

Proof. By Theorem 3.3 and Theorem 2.4, it follows that

$$
E^{a}(T+N)=E^{a}(T)=\sigma_{a p}(T) \backslash \sigma_{u b b}(T)=\sigma_{a p}(T+N) \backslash \sigma_{u b b}(T+N)
$$

hence $T+N$ satisfies property $\left(g R^{a}\right)$. By symmetry the reciprocal holds.
Definition 3.6. $T \in L(X)$ is said to be left (resp. right) polaroid if $\sigma_{a p}(T)$ is empty or every isolated point of $\sigma_{a p}(T)$ is a left pole (resp. $\sigma_{s}(T)$ is empty or every isolated point of $\sigma_{s}(T)$ is a right pole).

Theorem 3.7. If $T \in L(X)$ is a left polaroid and N is a nilpotent operator commuting with T, then T is a left polaroid if only if $T+N$ is a left polaroid.

Proof. Obviously, by Corollary 2.3, we have iso $\sigma_{a p}(T)=\sigma_{a p}(T) \backslash \sigma_{u b b}(T)$. Therefore,

$$
\text { iso } \begin{aligned}
\sigma_{a p}(T+N) & =\text { iso } \sigma_{a p}(T) \\
& =\sigma_{a p}(T) \backslash \sigma_{u b b}(T) \\
& =\sigma_{a p}(T+N) \backslash \sigma_{u b b}(T+N)
\end{aligned}
$$

Thus $T+N$ is left polaroid. By symmetry the reciprocal holds.
Remark 3.8. The result of Theorem 3.9 improves Corollary 2.12 of [2], where it was proved that $T+N$ is a left polaroid assuming that T is a left polaroid and T^{*} has SVEP at the points $\lambda \notin \sigma_{u w}(T)$.

Theorem 3.9. If $T \in L(X)$ is a right polaroid and N is a nilpotent operator commuting with T, then T is a right polaroid if only if $T+N$ is a right polaroid.

Proof. Obviously, by Corollary 2.3, we have iso $\sigma_{s}(T)=\sigma_{s}(T) \backslash \sigma_{l b b}(T)$. Therefore,

$$
\text { iso } \begin{aligned}
\sigma_{s}(T+N) & =\operatorname{iso} \sigma_{s}(T) \\
& =\sigma_{s}(T) \backslash \sigma_{l b b}(T) \\
& =\sigma_{s}(T+N) \backslash \sigma_{l b b}(T+N)
\end{aligned}
$$

Thus $T+N$ is a right polaroid. By symmetry the reciprocal holds.
Remark 3.10. The result of Theorem 3.9 improves Corollary 2.12 of [2], where it was proved that $T+N$ is a right polaroid assuming that T is a right polaroid and T has SVEP at the points $\lambda \notin \sigma_{u w}(T)$.

As in the above theorems, for the $(g w)$ property introduced in [8], we have the following result.

Theorem 3.11. Let $T \in L(X)$ and N be a nilpotent operator which commutes with T. Then T satisfies the property ($g w$) if only if $T+N$ satisfies the property ($g w$).

Proof. Suppose that T satisfies property (gw). Then T satisfies generalized a-Browder's theorem, or equivalently a-Browder's theorem, i.e. $\sigma_{u b}(T)=\sigma_{u w}(T)$. Since these spectra are invariant under N, we have that $T+N$ satisfies a-Browder's theorem. Then, from Theorems 3.4 and 3.2 , it follows that $T+N$ satisfies property (gw). By symmetry the reciprocal holds.

As in the above theorems, for the generalized a-Weyl theorem introduced in [12], we have the following result.

Theorem 3.12. Let $T \in L(X)$ and N be a nilpotent operator which commutes with T. Then T satisfies the generalized a-Weyl Theorem if only if $T+N$ satisfies the generalized a-Weyl Theorem.

Proof. Suppose that T satisfies generalized a-Weyl's theorem. Then since a-Browder's theorem and property $(g R)$ are invariant under N, it follows from Theorem 3.2, that $T+N$ satisfies the generalized a-Weyl's theorem. By symmetry the reciprocal holds.

REFERENCES

[1] Aiena, P., Fredholm and Local Spectral Theory with Application to Multipliers, Kluwer Acad. Publ., 2004.
[2] Aiena, P. and Aponte, E., Polaroid type operators under perturbations, preprint.
[3] Aiena, P. Aponte, E. and Balzan, E., Weyl type theorems for left and right polaroid operators, Integral Eq. Operator Theory 66 (1) (2010), 1-20.
[4] Aiena, P. Biondi, M. T. C. and Carpintero, C., On Drazin invertibility, Proc. Amer. Math. Soc. 136 (2008), 2839-2848.
[5] Aiena, P. Guillen, J. and Peña, P., Property (R) for bounded linear operators, Mediterr. J. Math. 8 (4) (2011), 491-508.
[6] Aiena, P. Guillen, J. and Peña, P., Property ($g R$) and perturbations, to appear in Acta Sci. Math. (Szeged) (2012).
[7] Aiena, P. and Miller, T.L., On generalized a-Browder's theorem, Studia Math. 180 (3) (2007), 285-300.
[8] Amouch, M. and Berkani, M., On the property ($g w$), Mediterr. J. Math. 5 (2008), 371-378.
[9] Berkani, M., B-Weyl spectrum and poles of the resolvent, Math. Anal. Appl. 272 (1) (2002), 596-603.
[10] Berkani, M., Restriction of an operator to the range of its powers, Studia Math. 140 (2) (2000), 163-175.
[11] Berkani, M. and Sarih, M., On semi B-Fredholm operators, Glasgow Math. J. 43 (2001), 457-465.
[12] Berkani, M. and Koliha, J., Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359-376.
[13] Carpintero, C. García, O. Rosas, E. and Sanabria, J., B-Browder spectra an localized SVEP, Rend. Circolo Mat. Palermo, 57 (2) (2008), 241-255.
[14] Heuser, H., Functional Analysis, Marcel Dekker, 1982.
[15] Rakočević, V., Semi-Browder operators and perturbations, Studia Math. 122 (2) (1997), 131-137.
[16] Schechter, H. and Whitley, R., Best Fredholm perturbation theorem, Studia Math. 90 (1980), 175-190.
(received 03.07.2012; in revised form 03.10.2012; available online 01.02.2013)
Departamento de Matemáticas, Escuela de Ciencias, Universidad UDO, Cumaná (Venezuela) E-mail: ogarciam554@gmail.com, carpintero.carlos@gmail.com, ennisrafael@gmail.com, jesanabri@gmail.com

[^0]: 2010 Math. Subject Classification: 47A10, 47A11, 47A53, 47A55
 Keywords and phrases: Property $(g R)$; semi B-Fredholm operator; perturbation.

