ON AN INEQUALITY OF PAUL TURÁN

B. A. Zargar

Abstract

Let $P(z)$ be a polynomial and $P^{\prime}(z)$ its derivative. In this paper, we shall obtain certain compact generalizations and sharp refinements of some results of Govil, Malik, Turán and others concerning the maximum modulus of $P(z)$ and $P^{\prime}(z)$ on the unit circle $|z|=1$, which also yields a number of other interesting results for various choices of parameters.

1. Introduction and statement of results

Let $P(z)$ be a polynomial of degree n and $P^{\prime}(z)$ be its derivative. It was shown by Tuŕan [8] that if $P(z)$ has all its zeros in $|z| \leqslant 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geqslant \frac{n}{2} \max _{|z|=1}|P(z)| . \tag{1}
\end{equation*}
$$

The inequality (1) is sharp with equality for the polynomial $P(z)=(z+1)^{n}$.
As an extension of (1), Malik [5] showed that if $P(z)$ has all its zeros in $|z| \leqslant k$, where $k \leqslant 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geqslant \frac{n}{1+k} \max _{|z|=1}|P(z)| \tag{2}
\end{equation*}
$$

The estimate (2) is sharp with equality for the polynomial $P(z)=(z+k)^{n}$.
The inequality (1) has been refined by Aziz and Dawood [1] who under the same hypothesis proved that

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geqslant \frac{n}{2}\left\{\max _{|z|=1}|P(z)|+\min _{|z|=1}|P(z)|\right\} \tag{3}
\end{equation*}
$$

The result is best possible and equality in (3) holds for $P(z)=\alpha z^{n}+\beta$, where $|\beta| \leqslant|\alpha|$.

In the literature, there exists some extensions and generalizations of inequalities (1), (2) and (3) (for reference see [4] and [7]). Aziz and Shah [2] have generalized the inequality (1) by proving the following result.

[^0]Theorem A. If $P(z)$ is a polynomial of degree n having all its zeros in the disk $|z| \leqslant k \leqslant 1$ with s-fold zero at the origin, $0<s \leqslant n$, then

$$
\max _{|z|=1}\left|P^{\prime}(z)\right| \geqslant \frac{n+k s}{1+k} \max _{|z|=1}|P(z)|
$$

The result is sharp and the extremal polynomial is $P(z)=z^{s}(z+k)^{n-s}$.
Recently, Aziz and Zargar [3] have obtained the following refinement of Theorem A.

Theorem B. If $P(z)$ is a polynomial of degree n, having all its zeros in the disk $|z| \leqslant k, k \leqslant 1$ with t-fold zero at the origin, $0<t \leqslant n$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geqslant \frac{n+k t}{1+k} \max _{|z|=1}|P(z)|+\frac{n-t}{(1+k) k^{t}} \min _{|z|=k}|P(z)| \tag{4}
\end{equation*}
$$

The result is sharp and equality in (4) holds for the polynomial $P(z)=z^{t}(z+k)^{n-t}$.
In this paper, we shall first present the following generalization of Theorem B (which is obtained as a special case for $R=1$).

Theorem 1. If $P(z)$ is a polynomial of degree n having all its zeros in the disk $|z| \leqslant k, k \leqslant 1$ with t-fold zero at the origin, $0 \leqslant t \leqslant n$, then for every $R \geqslant k$,

$$
\max _{|z|=R}\left|P^{\prime}(z)\right| \geqslant \frac{n R+k t}{R(R+k)} \max _{|z|=R}|P(z)|+\frac{R^{t-1}}{k^{t}}\left(\frac{n R+k t}{R+k}-t\right) \min _{|z|=k}|P(z)|
$$

The result is best possible and equality holds for the polynomial $P(z)=z^{t}(z+k)^{n-t}$.
The following result follows by taking $R=k$ in Theorem 1 .
Corollary 1. If $P(z)$ is a polynomial of degree n having all its zeros in the disk $|z| \leqslant k, 0<k \leqslant 1$ with t-fold zero at the origin, $0 \leqslant t \leqslant n$, then

$$
\begin{equation*}
\max _{|z|=k}\left|P^{\prime}(z)\right| \geqslant \frac{1}{2 k}\left\{(n+t) \max _{|z|=k}|P(z)|+(n-t) \min _{|z|=k}|P(z)|\right\} \tag{5}
\end{equation*}
$$

The result is best possible with equality for the polynomial $P(z)=z^{t}(z+k)^{n-t}$.
Note that the inequality (3) follows from (5) by taking $k=1$ and $t=0$.
We next present the following generalization of Theorem 1 which includes Theorem B as a special case.

ThEOREM 2. If $P(z)$ is a polynomial of degree n having all its zeros in the disk $|z| \leqslant k, 0<k \leqslant 1$ with t-fold zero at the origin, $0 \leqslant t \leqslant n$, then for $r \leqslant R$, $r R \geqslant k^{2}$,

$$
\begin{align*}
\max _{|z|=R}\left|P^{\prime}(z)\right| \geqslant \frac{R^{t-1}}{r^{t}} \frac{n R+k t}{R+k}\left(\frac{R+k}{r+k}\right)^{n-t} & \max _{|z|=r}|P(z)| \\
& +\frac{R^{t-1}}{k^{t}}\left(\frac{n R+k t}{R+k}-t\right) \min _{|z|=k}|P(z)| \tag{6}
\end{align*}
$$

The result is best possible and equality in (6) holds for the polynomial $P(z)=$ $c z^{t}(z+k)^{n-t}, c \neq 0$.

Finally, we present the following compact generalization of inequalities (4) and (5), which is an improvement of Theorem 2 and yields a number of other interesting results for various choices of parameters t, r and R.

Theorem 3. If $P(z)$ is a polynomial of degree n having all its zeros in the disk $|z| \leqslant k, 0<k \leqslant 1$ with t-fold zero at the origin, $0 \leqslant t \leqslant n$, then for $r \leqslant R$, $r R \geqslant k^{2}$,

$$
\begin{align*}
\max _{|z|=R}\left|P^{\prime}(z)\right| \geqslant\left(\frac{R+k}{r+k}\right)^{n-t} & {\left[\frac{R^{t-1}}{r^{t}} \frac{n R+k t}{R+k} \max _{|z|=r}|P(z)|\right.} \\
& \left.+\frac{R^{t-1}}{k^{t}}\left(\frac{n R+k t}{R+k}-t\left(\frac{r+k}{R+k}\right)^{n-t}\right) \min _{|z|=k}|P(z)|\right] \tag{7}
\end{align*}
$$

The result is best possible and equality in (7) holds for the polynomial $P(z)=$ $c z^{t}(z+k)^{n-t}, c \neq 0$.

Since $n \geqslant t$ and $R \geqslant r$, we see that

$$
\frac{n R+k t}{R+k} \geqslant t \geqslant t\left(\frac{r+k}{R+k}\right)^{n-t}
$$

This implies

$$
\frac{n R+k t}{R+k}-t\left(\frac{r+k}{R+k}\right)^{n-t} \geqslant 0
$$

Using this fact in (7), the following result immediately follows from Theorem 3.
Corollary 2. If $P(z)$ is a polynomial of degree n having all its zeros in the disk $|z| \leqslant k, 0<k \leqslant 1$ with t-fold zero at the origin, $0 \leqslant t \leqslant n$, then for $r \leqslant R$, $r R \geqslant k^{2}$,

$$
\begin{equation*}
\max _{|z|=R}\left|P^{\prime}(z)\right| \geqslant\left(\frac{R+k}{r+k}\right)^{n-t}\left[\frac{R^{t-1}}{r^{t}} \frac{n R+k t}{R+k} \max _{|z|=r}|P(z)|\right] . \tag{8}
\end{equation*}
$$

The result is sharp and equality in (8) holds for the polynomial $P(z)=z^{t}(z+k)^{n-t}$.
If we take $t=0$ in Theorem 3, we obtain
Corollary 3. If $P(z)$ is a polynomial of degree n having all its zeros in the disk $|z| \leqslant k, 0<k \leqslant 1$, then for $r \leqslant R, R r \geqslant k^{2}$,

$$
\max _{|z|=R}\left|P^{\prime}(z)\right| \geqslant\left(\frac{R+k}{r+k}\right)^{n}\left[\frac{n}{R+k} \max _{|z|=r}|P(z)|+\frac{n}{R+k} \min _{|z|=k}|P(z)|\right]
$$

The following result follows by taking $r=1$ in Theorem 3 .

Corollary 4. If $P(z)$ is a polynomial of degree n having all its zeros in the disk $|z| \leqslant k, 0<k \leqslant 1$ with t-fold zero at the origin, $0 \leqslant t \leqslant n$, then for $k \leqslant R$,

$$
\begin{aligned}
\max _{|z|=R}\left|P^{\prime}(z)\right| \geqslant\left(\frac{R+k}{1+k}\right)^{n-t} & {\left[R^{t-1} \frac{n R+k t}{R+k} \max _{|z|=1}|P(z)|\right.} \\
& \left.+\frac{R^{t-1}}{k^{t}}\left(\frac{n R+k t}{R+k}-t\left(\frac{1+k}{R+k}\right)^{n-t}\right) \min _{|z|=k}|P(z)|\right]
\end{aligned}
$$

For the proofs of Theorems 2 and 3, we need the following lemma, which may be of independent interest.

Lemma. If $P(z)$ is a polynomial of degree n, having all its zeros in $|z| \leqslant k$, $k>0$ with t-fold zero at the origin, then for $|z|=1, r R \geqslant k^{2}$ and $r \leqslant R$,

$$
\begin{equation*}
|P(r z)| \leqslant \frac{r^{t}}{R^{t}}\left(\frac{r+k}{R+k}\right)^{n-t}|P(R z)| \tag{9}
\end{equation*}
$$

Equality in (9) holds for the polynomial $P(z)=z^{t}(z+k)^{n-t}$.
Proof. Since $P(z)$ has all of its zeros in $|z| \leqslant k$ and t-fold zero at the origin, we can write

$$
\begin{equation*}
P(z)=z^{t} H(z) \tag{10}
\end{equation*}
$$

where $H(z)$ is a polynomial of degree $n-t$ having all of its zeros in $|z| \leqslant k$, so that

$$
H(z)=c \prod_{j=1}^{n-t}\left(z-R_{j} e^{i \theta_{j}}\right)
$$

where $R_{j} \leqslant k, j=1,2, \ldots, n-t$. This implies that for each $\theta, 0 \leqslant \theta<2 \pi$,

$$
\begin{equation*}
\left|\frac{H\left(r e^{i \theta}\right)}{H\left(R e^{i \theta}\right)}\right|=\prod_{j=1}^{n-t}\left|\frac{r e^{i\left(\theta-\theta_{j}\right)}-R_{j}}{R e^{i\left(\theta-\theta_{j}\right)}-R_{j}}\right| \tag{11}
\end{equation*}
$$

Now for $R \geqslant r, R r \geqslant R_{j}^{2}$ and for each $\theta, 0 \leqslant \theta<2 \pi$, it can be easily verified that

$$
\left|\frac{r e^{i\left(\theta-\theta_{j}\right)}-R_{j}}{R e^{i\left(\theta-\theta_{j}\right)}-R_{j}}\right|^{2} \leqslant\left(\frac{r+R_{j}}{R+R_{j}}\right)^{2}
$$

Since $R_{j} \leqslant k$ for all $j=1,2, \ldots, n-t$, it follows from (11) that if $r \leqslant R$ and $r R \geqslant k^{2}$, then

$$
\left|\frac{H\left(r e^{i \theta}\right)}{H\left(R e^{i \theta}\right)}\right| \leqslant\left(\frac{r+k}{R+k}\right)^{n-t}
$$

Using (10), it follows that

$$
\left|\frac{P\left(r e^{i \theta}\right)}{P\left(R e^{i \theta}\right)}\right|=\frac{r^{t}}{R^{t}}\left|\frac{H\left(r e^{i \theta}\right)}{H\left(R e^{i \theta}\right)}\right| \leqslant \frac{r^{t}}{R^{t}}\left(\frac{r+k}{R+k}\right)^{n-t}
$$

Hence, for $R \geqslant r, R r \geqslant k^{2}$ and for each $\theta, 0 \leqslant \theta<2 \pi$, we have

$$
\left|P\left(r e^{i \theta}\right)\right| \leqslant \frac{r^{t}}{R^{t}}\left(\frac{r+k}{R+k}\right)^{n-t}\left|P\left(R e^{i \theta}\right)\right|
$$

wherefrom the desired result follows immediately.

2. Proofs of the theorems

Proof of Theorem 1. Let $m=\min _{|z|=k}|P(z)|$. Then $m \leqslant|P(z)|$ for $|z|=k$ gives $m\left|\frac{z}{k}\right|^{t} \leqslant|P(z)|$ for $|z|=k$. Since all the zeros of $P(z)$ lie in $|z| \leqslant k \leqslant 1$ with t-fold zero at the origin, it follows (by Rouchés Theorem for $m>0$) that for every complex number α such that $|\alpha|<1$, the polynomial $G(z)=P(z)+\frac{\alpha m}{k^{t}} z^{t}$ has all of its zeros in $|z| \leqslant k$ with t-fold zero at the origin. Hence, the polynomial $F(z)=G(R z)$ has all of its zeros in $|z| \leqslant \frac{k}{R} \leqslant 1$, with t-fold zero at the origin, so that we can write

$$
\begin{equation*}
F(z)=z^{t} H(z) \tag{12}
\end{equation*}
$$

where $H(z)$ is a polynomial of degree $n-t$, having all of its zeros in $|z| \leqslant \frac{k}{R} \leqslant 1$. From (12), we have

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{F(z)}=t+\frac{z H^{\prime}(z)}{H(z)} \tag{13}
\end{equation*}
$$

If $z_{1}, z_{2}, \ldots, z_{n-t}$ are the zeros of $H(z)$, then $\left|z_{j}\right| \leqslant \frac{k}{R} \leqslant 1$ for all $j=1,2, \ldots, n-t$, and from (13), we obtain

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{e^{i \theta} F^{\prime}\left(e^{i \theta}\right)}{F\left(e^{i \theta}\right)}\right\}=t+\operatorname{Re}\left\{\frac{e^{i \theta} H^{\prime}\left(e^{i \theta}\right)}{H\left(e^{i \theta}\right)}\right\}=t+\sum_{j=1}^{n-t} \operatorname{Re}\left(\frac{1}{1-z_{j} e^{-i \theta}}\right) \tag{14}
\end{equation*}
$$

for points $e^{i \theta}, 0 \leqslant \theta<2 \pi$ which are not zeros of $H(z)$.
Now, if $|w| \leqslant \frac{k}{R} \leqslant 1$, then it can be easily verified that $\operatorname{Re}\left(\frac{1}{1-w}\right) \geqslant \frac{1}{1+\frac{k}{R}}$.
Using this fact in (14), we see that

$$
\left|\frac{F^{\prime}\left(e^{i \theta}\right)}{F\left(e^{i \theta}\right)}\right| \geqslant \operatorname{Re}\left\{e^{i \theta} \frac{F^{\prime}\left(e^{i \theta}\right)}{F\left(e^{i \theta}\right)}\right\} \geqslant t+\frac{n-t}{1+\frac{k}{R}}=\frac{t k+n R}{R+k}
$$

for points $e^{i \theta}, 0 \leqslant \theta<2 \pi$ which are not zeros of $H(z)$. This implies that

$$
\begin{equation*}
\left|F^{\prime}\left(e^{i \theta}\right)\right| \geqslant \frac{t k+n R}{R+k}\left|F\left(e^{i \theta}\right)\right| \tag{15}
\end{equation*}
$$

for points $e^{i \theta}, 0 \leqslant \theta<2 \pi$, other than zeros of $F(z)$. Since (15) is trivially true for points $e^{i \theta}$ which are the zeros of $F(z)$, it follows that

$$
\begin{equation*}
\left|F^{\prime}(z)\right| \geqslant \frac{t k+n R}{R+k}|F(z)| \quad \text { for } \quad|z|=1 \tag{16}
\end{equation*}
$$

Replacing $F(z)$ by $G(R z)$ in (16), we get

$$
\begin{equation*}
\left|G^{\prime}(R z)\right| \geqslant \frac{t k+n R}{R(R+k)}|G(R z)| \quad \text { for } \quad|z|=1 \tag{17}
\end{equation*}
$$

Using that $G(z)=P(z)+\frac{\alpha m}{k^{t}} z^{t}$, it follows that

$$
\begin{equation*}
\left|P^{\prime}(R z)+\frac{\alpha m t R^{t-1}}{k^{t}} z^{t-1}\right| \geqslant \frac{t k+n R}{R(R+k)}\left|P(R z)+\frac{\alpha m R^{t}}{k^{t}} z^{t}\right| \tag{18}
\end{equation*}
$$

for $|z|=1$ and for every $\alpha,|\alpha|<1$. Choosing the argument on the RHS of (18) such that

$$
\left|P(R z)+\frac{\alpha m R^{t}}{k^{t}} z^{t}\right|=|P(R z)|+\frac{|\alpha| m R^{t}}{k^{t}} \quad \text { for } \quad|z|=1
$$

from (18), we obtain

$$
\left|P^{\prime}(R z)\right|+\frac{m t R^{t-1}}{k^{t}}|\alpha| \geqslant \frac{t k+n R}{R(R+k)}\left\{|P(R z)|+\frac{|\alpha| m R^{t}}{k^{t}}\right\}
$$

for $|z|=1$ and $|\alpha|<1$. Letting $|\alpha| \rightarrow 1$, we conclude that

$$
\begin{equation*}
\left|P^{\prime}(R z)\right| \geqslant \frac{t k+n R}{R(R+k)}|P(R z)|+\frac{R^{t-1}}{k^{t}}\left\{\frac{t k+n R}{R+k}-t\right\} m \tag{19}
\end{equation*}
$$

for $|z|=1$, which gives

$$
\max _{|z|=R}\left|P^{\prime}(z)\right| \geqslant \frac{t k+n R}{R(R+k)} \max _{|z|=R}|P(z)|+\frac{R^{t-1}}{k^{t}}\left\{\frac{t k+n R}{R+k}-t\right\} \min _{|z|=k}|P(z)| .
$$

This completes the proof of Theorem 1.
Proof of Theorem 2. Proceeding similarly as in the proof of Theorem 1, it follows from (19) that

$$
\left|P^{\prime}(R z)\right| \geqslant \frac{t k+n R}{R(R+k)}|P(R z)|+\frac{R^{t-1}}{k^{t}}\left\{\frac{t k+n R}{R+k}-t\right\} m
$$

for $|z|=1$. Applying the above Lemma, it follows that

$$
\left|P^{\prime}(R z)\right| \geqslant \frac{t k+n R}{R(R+k)} \frac{R^{t}}{k^{t}}\left(\frac{R+k}{r+k}\right)^{n-t}|P(r z)|+\frac{R^{t-1}}{k^{t}}\left\{\frac{t k+n R}{R+k}-t\right\} m
$$

for $|z|=1$. This implies that

$$
\begin{aligned}
\max _{|z|=R}\left|P^{\prime}(z)\right| \geqslant \frac{R^{t-1}}{r^{t}} \frac{t k+n R}{R+k}\left(\frac{R+k}{r+k}\right)^{n-t} & \max _{|z|=r}|P(z)| \\
& +\frac{R^{t-1}}{k^{t}}\left(\frac{t k+n R}{R+k}-t\right) \min _{|z|=k}|P(z)|
\end{aligned}
$$

which completes the proof of Theorem 2.
Proof of Theorem 3. We proceed similarly as in the proof of Theorem 1. It follows from (17) that

$$
\left|G^{\prime}(R z)\right| \geqslant \frac{t k+n R}{R(R+k)}|G(R z)| \quad \text { for } \quad|z|=1
$$

Now, applying the above Lemma to $G(z)$, we get

$$
\begin{equation*}
\left|G^{\prime}(R z)\right| \geqslant \frac{t k+n R}{R(R+k)} \frac{R^{t}}{r^{t}}\left(\frac{R+k}{r+k}\right)^{n-t}|G(r z)| \quad \text { for } \quad|z|=1 \tag{20}
\end{equation*}
$$

where $r \leqslant R$ and $r R \geqslant k^{2}$. Since $G(z)=P(z)+\frac{\alpha m}{k^{t}} z^{t}$, it follows from (20) that

$$
\begin{equation*}
\left|P^{\prime}(R z)+\frac{\alpha m t R^{t-1}}{k^{t}} z^{t-1}\right| \geqslant \frac{t k+n R}{R(R+k)} \frac{R^{t}}{r^{t}}\left(\frac{R+k}{r+k}\right)^{n-t}\left|P(r z)+\frac{\alpha m t}{k^{t}}(r z)^{t}\right| \tag{21}
\end{equation*}
$$

for $|z|=1$ and for every α with $|\alpha|<1$. Choosing the argument of α such that

$$
\left|P(r z)+\frac{\alpha m t}{k^{t}}(r z)^{t}\right|=|P(r z)|+|\alpha| \frac{m}{k^{t}} r^{t} \quad \text { for } \quad|z|=1
$$

it follows from (21) that

$$
\begin{aligned}
\left.\left|P^{\prime}(R z)\right| \geqslant \frac{t K+n R}{R(R+k)}\left(\frac{R+k}{r+k}\right)^{n-t} \frac{R^{t}}{r^{t}} \right\rvert\, & P(r z) \mid \\
& +\frac{|\alpha|}{k^{t}} R^{t-1}\left[\frac{t k+n R}{R+k}\left(\frac{R+k}{r+k}\right)^{n-t}-t\right] m
\end{aligned}
$$

for $|z|=1$. Letting $|\alpha| \rightarrow 1$, we get

$$
\begin{aligned}
&\left|P^{\prime}(R z)\right| \geqslant \frac{t k+n R}{R(R+k)}\left(\frac{R+k}{r+k}\right)^{n-t} \frac{R^{t}}{r^{t}}|P(r z)| \\
& \quad+\frac{R^{t-1}}{k^{t}}\left(\frac{R+k}{r+k}\right)^{n-t}\left[\frac{t k+n R}{R+k}-t\left(\frac{r+k}{R+k}\right)^{n-t}\right] m
\end{aligned}
$$

for $|z|=1$. This implies that

$$
\begin{aligned}
\max _{|z|=R}\left|P^{\prime}(z)\right| \geqslant\left(\frac{R+k}{r+k}\right)^{n-t} & \left\{\frac{R^{t-1}(t k+n R)}{r^{t}(R+k)} \max _{|z|=r}|P(z)|\right. \\
& \left.+\frac{R^{t-1}}{k^{t}}\left[\frac{t k+n R}{R+k}-t\left(\frac{r+k}{R+k}\right)^{n-t}\right] \min _{|z|=k}|P(z)|\right\}
\end{aligned}
$$

which proves the desired result.

REFERENCES

[1] A. Aziz, Q. M. Dawood, Inequalities for a polynomial and its derivatives, J. Approx. Theory 54 (1988), 306-313.
[2] A. Aziz, W. M. Shah, Inequalities for a polynomial and its derivative, Math. Ineq. Appl. 7 (2004), 379-391.
[3] A. Aziz, B. A. Zargar, Inequalities for the maximum modulus of the derivative of a polynomial, J. Ineq. Pure Appl. Math. 8 (2007).
[4] K. K. Dewan, Inequalities for a polynomial and its derivative II, Math. Anal. Appl. 190 (1995), 625-629.
[5] M. A. Malik, On the derivative of a polynomial, J. London Math. Soc. 1 (1969), 57-60.
[6] G. V. Milovanović, D. S. Mitrinović, Th. M. Rassias, Topics in Polynomials, Extremal Properties, Inequalities and Zeros, World Sci. Publ. Co., Singapore, 1994.
[7] Q. I. Rahman, G. Schmeisser, Analytic Theory of Polynomials, Clarendon Press, Oxford, 2002.
[8] P. Turán, Über die Ableitung von Polynomen, Compositio Math. 7 (1939), 89-95.
(received 23.07.2012; in revised form 15.03.2013; available online 10.09.2013)
P.G. Department of Mathematics, University of Kashmir, Srinagar

E-mail: bazargar@gmail.com

[^0]: 2010 Mathematics Subject Classification: 30C10, 30C15
 Keywords and phrases: Inequalities; zeros of polynomials; derivative; maximum modulus.
 The author is thankful to UGC for financial assistance.

