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APPROXIMATION OF FUNCTIONS BELONGING TO THE
GENERALIZED LIPSCHITZ CLASS BY C1 ·Np SUMMABILITY

METHOD OF CONJUGATE SERIES OF FOURIER SERIES

Vishnu Narayan Mishra, Kejal Khatri and Lakshmi Narayan Mishra

Abstract. In the present study, a new theorem on the degree of approximation of func-

tion f̃ , conjugate to a periodic function f belonging to weighted W (Lr, ξ(t))-class using semi-
monotonicity on the generating sequence {pn} has been established.

1. Introduction

In 1941, Alexits [1] (later Zygmund [22] and Zamansky [20], too) proved a very
interesting result pertaining to the degree of approximation of conjugate functions.
The degree of approximation of functions belonging to Lip α, Lip(α, r), Lip(ξ(t), r)
and W (Lr, ξ(t))-classes, (r ≥ 1) by Nörlund (Np) matrices and general summability
matrices has been proved by various investigators like Khan [6], Mohapatra and
Sahney [15,16], Qureshi [18], Mohapatra and Chandra [12–14], Holland et al. [5],
Das et al. [3], Mittal et al. [9-11], Chandra [2], Leindler [8], Rhoades et al. [19]
and Nigam and Sharma [17]. Recently, Lal [7] has proved a theorem on the degree
of approximation of function f belonging to weighted W (Lr, ξ(t))-class by C1 ·Np

summability method of its Fourier series of a 2π-periodic function f where ξ(t) is a
positive increasing function in t. Lal [7] has assumed monotonicity on the generating
sequence {pn}. The approximation of function f̃ , conjugate to a periodic function
f ∈ W (Lr, ξ(t)) (r ≥ 1) using product C1 · Np-summability has not been studied
so far. In this paper, we obtain a new theorem on the degree of approximation
of function f̃ , conjugate to a periodic function f ∈ W (Lr, ξ(t))-class using semi-
monotonicity on the generating sequence {pn}.

Let
∑∞

n=0 an be a given infinite series with the sequence of nth partial sums
{sn}. Let {pn} be a non-negative sequence of constants, real or complex, and let
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us write

Pn =
n∑

k=0

pk 6= 0 ∀n ≥ 0, p−1 = 0 = P−1 and Pn →∞ as n →∞.

The sequence to sequence transformation t̃Nn =
∑n

ν=0
pn−ν s̃n

Pn
defines the sequence

{t̃Nn } of Nörlund means of the sequence {s̃n}, generated by the sequence of co-
efficients {pn}. The series

∑∞
n=0 an is said to be Np summable to the sum s if

limn→∞ t̃Nn exists and is equal to s. In the special case in which

pn =
(

n + α− 1
α− 1

)
=

Γ(n + α)
Γ(n + 1)Γ(α)

; (α > 0),

the Nörlund summability Np reduces to the familiar Cα summability.
The product of C1 summability with a Np summability defines C1 ·Np summa-

bility. Thus the C1 ·Np mean is given by t̃CN
n (f) = 1

n+1

∑n
k=0 P−1

k

∑k
ν=0 pk−ν s̃ν(f).

If t̃CN
n (f) → s as n → ∞, then the infinite series

∑∞
n=0 an or the sequence

{s̃n} is said to be C1 ·Np summable to the sum s.

s̃n → s =⇒ Np(s̃n) = t̃Nn = P−1
n

n∑
ν=0

pn−ν s̃n → s, as n →∞, Np method is regular,

=⇒ C1(Np(s̃n)) = t̃CN
n → s, as n →∞, C1 method is regular,

=⇒ C1 ·Np method is regular.

Let f(x) be a 2π-periodic and Lebesgue integrable function. The Fourier series of
f(x) is given by

f(x) ∼ a0

2
+

∞∑
n=1

(an cosnx + bn sin nx) ≡
∞∑

n=0
An(f ; x) (1.1)

with n-th partial sums sn(f ; x).
The conjugate series of Fourier series (1.1) is given by

∞∑
n=1

(bn cosnx− an sin nx) ≡
∞∑

n=1
Bn(f ; x). (1.2)

A function f(x) ∈ Lipα if

|f(x + t)− f(x)| = O(|t|α) for 0 ≤ α ≤ 1, t ≥ 0,

and f(x) ∈ Lip(α, r) for 0 ≤ x ≤ 2π, if
( ∫ 2π

0

|f(x + t)− f(x)|r dx

)1/r

= O(|t|α), 0 ≤ α ≤ 1, r ≥ 1, t ≥ 0,

f(x) ∈ Lip(ξ(t), r) if
( ∫ 2π

0

|f(x + t)− f(x)|r dx

)1/r

= O(ξ(t)), r ≥ 1, t ≥ 0,
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f(x) ∈ W (Lr, ξ(t)) [19] if

ωr(t; f) =
( ∫ 2π

0

|(f(x + t)− f(x)) sinβ(x/2)|r dx

)1/r

= O(ξ(t)),

β ≥ 0, r ≥ 1, t ≥ 0, where ξ(t) is a positive increasing function of t.
If β = 0 then W (Lr, ξ(t)) reduces to the class Lip(ξ(t), r), if ξ(t) = tα, (0 ≤

α ≤ 1) then Lip(ξ(t), r) class coincides with the class Lip(α, r) and if r →∞ then
Lip(α, r) reduces to the class Lip α.

L∞-norm of a function f : R → R is defined by ‖f‖∞ = sup{|f(x)| : x ∈ R}.
Lr-norm of f is defined by ‖f‖r =

( ∫ 2π

0
|f(x)|r dx

)1/r, r ≥ 1.
The degree of approximation of a function f : R → R by trigonometric poly-

nomial tn of order n under sup norm ‖ ‖∞ is defined by [21]: ‖tn − f‖∞ =
sup{|tn − f(x)| : x ∈ R}, and En(f) of a function f ∈ Lr is given by

En(f) = min
n
‖tn(f)− f(x)‖r.

The conjugate function f̃(x) is defined for almost every x by

f̃(x) =
−1
2π

∫ π

0

ψ(t) cot(t/2) dt = lim
h→0

(−1
2π

∫ π

h

ψ(t) cot(t/2) dt

)
.

We note that t̃Nn and t̃CN
n are also trigonometric polynomials of degree (or order) n

and the series, conjugate to a Fourier series, is not necessarily a Fourier series [21].
Hence a separate study of conjugate series is desirable and attracted the attention
of researchers.

Abel’s Transformation: The formula
n∑

k=m

ukvk =
n−1∑
k=m

Uk(vk − vk+1)− Um−1vm + Unvn, (1.3)

where 0 ≤ m ≤ n, Uk = u0 + u1 + u2 + · · · + uk, if k ≥ 0, U−1 = 0, which can
be verified, is known as Abel’s transformation and will be used extensively in what
follows.

If vm, vm+1, . . . , vn are non-negative and non-increasing, the left-hand side of
(1.3) does not exceed 2vm maxm−1≤k≤n |Uk| in absolute value. In fact,

∣∣∣
n∑

k=m

ukvk

∣∣∣ ≤ max |Uk|
{ n−1∑

k=m

(vk − vk+1 + vm + vn

}
= 2vm max |Uk|. (1.4)

We write throughout

ψ(t) = f(x + t)− f(x− t), Wn =
1

2π(n + 1)

n∑
k=0

P−1
k

k∑
ν=0

(ν + 1) |pν − pν−1|,

J̃(n, t) =
1

2π(n + 1)

n∑
k=0

P−1
k

k∑
ν=0

pν
cos (k − ν + 1/2)t

sin(t/2)
, (1.5)

τ = [1/t], where τ denotes the greatest integer not exceeding 1/t. Furthermore, C
denotes an absolute positive constant, not necessarily the same at each occurrence.
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2. Main theorem

In this section we state our main result.

Theorem 1. Let f̃ be the conjugate to a 2π-periodic function f belonging to
W (Lr, ξ(t))-class. Then its degree of approximation by C1 ·Np means of conjugate
series of Fourier series (1.2) is given by

‖t̃CN
n (f)− f̃(x)‖r = O

(
(n + 1)β+1/rξ

( 1
n + 1

))
, (2.1)

provided {pn} satisfies
Wn < C, (2.2)

and ξ(t) satisfies the following conditions:

{ξ(t/t)} is non-increasing in t, (2.3)
(∫ π/(n+1)

0

( t |ψ(t)|
ξ(t)

)r

sinβr(t/2) dt

)1/r

= O((n + 1)−1) and (2.4)

(∫ π

π/(n+1)

( t−δ|ψ(t)|
ξ(t)

)r

dt

)1/r

= O((n + 1)δ), (2.5)

where δ is an arbitrary number such that s(β − δ)− 1 ≥ 0, r−1 + s−1 = 1, 1 ≤ r ≤
∞; conditions (2.4) and (2.5) hold uniformly in x.

Remark 1. ξ( π
n+1 ) ≤ π ξ( 1

n+1 ), for ( π
n+1 ) ≥ ( 1

n+1 ).

Remark 2. Condition Wn < C implies (n + 1)pn < CPn [4].
Remark 3. The product transform C1 ·Np plays an important role in signal

theory as a double digital filter [11] and theory of machines in Mechanical Engi-
neering.

Remark 4. The condition 1/ sinβ(t) = O(1/tβ), 1/(n + 1) ≤ t ≤ π used by
Lal [7] is not valid since sin t → 0 as t → π.

Remark 5. There is a fatal error in the proof of Theorem 2 of Lal [7, p. 349].
In the calculation of |I1| the author of [7] obtains

∫ 1/(n+1)

ε

dt

t(1+β)s
=

[ t1−βs−s

1− βs− s

]
for some 0 < ε <

1
n + 1

;

note that −βs− s + 1 < 0. Therefore one has 1
βs+s−1

[
1

εβs+s−1 − (n + 1)βs+s−1

]
,

which need not be O
(
(n + 1)βs+s−1

)
, since ε might be O(1/nγ) for some γ > 1.

3. Lemmas

We need the following lemmas for the proof of our theorem.
Lemma 1. |J̃(n, t)| = O(τ) for 0 < t ≤ π/(n + 1).
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Proof. For 0 < t ≤ π/(n + 1), sin(t/2) ≥ (t/π) and | cos nt| ≤ 1, and we have

|J̃(n, t)| =
∣∣∣∣

1
2π(n + 1)

n∑
k=0

P−1
k

k∑
ν=0

pν
cos(k − ν + 1/2)t

sin(t/2)

∣∣∣∣

≤ 1
2π(n + 1)

n∑
k=0

P−1
k

k∑
ν=0

pν
| cos(k − ν + 1/2)t|

| sin(t/2)|

≤ 1
2t(n + 1)

n∑
k=0

P−1
k

k∑
ν=0

pν =
1

2t(n + 1)

n∑
k=0

P−1
k Pk = O(τ).

This completes the proof of Lemma 1.

Lemma 2. Let {pn} be a non-negative sequence satisfying (2.2). Then

|J̃(n, t)| = O(τ) + O
( τ2

(n + 1)

)(
n∑

k=τ

P−1
k

k−1∑
ν=0

|∆pν |
)

uniformly in 0 < t ≤ π.
(3.1)

Proof. We have

J̃(n, t) =
1

2π(n + 1)

n∑
k=0

P−1
k

k∑
ν=0

pν
cos(k − ν + 1/2)t

sin(t/2)

=
1

2π(n + 1)

(
τ−1∑
k=0

+
n∑

k=τ

)
P−1

k

k∑
ν=0

pν
cos(k − ν + 1/2)t

sin(t/2)

= J̃1(n, t) + J̃2(n, t), (say), (3.2)

where

|J̃1(n, t)| =
∣∣∣∣

1
2π(n + 1)

τ−1∑
k=0

P−1
k

k∑
ν=0

pν
cos(k − ν + 1/2)t

sin(t/2)

∣∣∣∣

≤ 1
2π(n + 1)

τ−1∑
k=0

P−1
k

k∑
ν=0

pν
| cos(k − ν + 1/2)t|

| sin(t/2)|

≤ 1
2t(n + 1)

τ−1∑
k=0

P−1
k

k∑
ν=0

pν = O
(

τ2

(n+1)

)
, (3.3)

and using Abel’s transformation and sin(t/2) ≥ (t/π), for 0 < t ≤ π, we get

|J̃2(n, t)| =
∣∣∣∣

1
2π(n + 1)

n∑
k=τ

P−1
k

k∑
ν=0

pν
cos(k − ν + 1/2)t

sin(t/2)

∣∣∣∣

≤ 1
2t(n + 1)

n∑
k=τ

P−1
k

{
k−1∑
ν=0

|∆pν |
∣∣∣∣
(

ν∑
γ=0

cos(k − γ + 1/2)t
)∣∣∣∣

+
∣∣∣∣
(

k∑
γ=0

cos(k − γ + 1/2)t
)∣∣∣∣ pk

}

=
O(t−1)

2t(n + 1)

(
n∑

k=τ

P−1
k

k−1∑
ν=0

|∆pν |+
n∑

k=τ

P−1
k pk

)
,
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by virtue of the fact that
∑µ

k=λ exp(−ikt) = O(t−1), 0 ≤ λ ≤ k ≤ µ. Hence,

|J̃2(n, t)| = O
( τ2

(n + 1)

)(
n∑

k=τ

P−1
k

k−1∑
ν=0

|∆pν |+
n∑

k=τ

P−1
k pk

(k+1)
(k+1)

)

= O
( τ2

(n + 1)

)(
n∑

k=τ

P−1
k

k−1∑
ν=0

|∆pν |+ (n + 1)
τ

)
,

|J̃(n, t)| = O(τ) + O
( τ2

(n + 1)

)(
n∑

k=τ

P−1
k

k−1∑
ν=0

|∆pν |
)

, (3.4)

in view of Remark 2. Combining (3.2)–(3.4) yields (3.1). This completes the proof
of Lemma 2.

4. Proof of Theorem 1

Let s̃n(f ;x) denote the partial sum of series (1.2). We have

s̃n(f ;x)− f̃(x) =
1
2π

∫ π

0

ψ(t)
cos(n + 1/2)t

sin(t/2)
dt.

Denoting C1 ·Np means of s̃n(f ; x) by t̃CN
n (f), we write

t̃CN
n (f)− f̃(x) =

∫ π

0

ψ(t)
1

2π(n + 1)

n∑
k=0

P−1
k

k∑
ν=0

pν
cos(k − ν + 1/2)t

sin(t/2)
dt

=
∫ π

0

ψ(t)J̃(n, t) dt

=
[∫ π/(n+1)

0

+
∫ π

π/(n+1)

]
ψ(t)J̃(n, t) dt

= I1 + I2 say. (4.1)

Clearly,

|ψ(x + t)− ψ(t)| ≤ |f(u + x + t)− f(u + x)|+ |f(u− x− t)− f(u− x)|.
Hence, by Minkowski’s inequality, we have

( ∫ 2π

0

|(ψ(x + t)− ψ(t)) sinβ(x/2)|r dx

) 1/r

≤
( ∫ 2π

0

|(f(u + x + t)− f(u + x)) sinβ(x/2)|r dx

)1/r

+
( ∫ 2π

0

|(f(u− x− t)− f(u− x)) sinβ(x/2)|r dx)1/r

= O(ξ(t)).

Then f ∈ W (Lr, ξ(t)) =⇒ ψ(t) ∈ W (Lr, ξ(t)).
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Using Hölder’s inequality, ψ(t) ∈ W (Lr, ξ(t)), condition (2.4), sin(t/2) ≥
(t/π), for 0 < t ≤ π, Lemma 1, Remark 2 and Second Mean Value Theorem
for integrals, we have

|I1| ≤
[∫ π/(n+1)

0

( t|ψ(t) sinβ(t/2)|
ξ(t)

)r

dt

]1/r[∫ π/(n+1)

0

(ξ(t)|J̃(n, t)|
t sinβ(t/2)

)s

dt

]1/s

= O
( 1

n + 1

)[ ∫ π/(n+1)

0

( ξ(t)
t2+β

)s

dt

]1/s

= O
{( 1

n + 1

)
ξ
( π

n + 1

)}[∫ π/(n+1)

0

( 1
t2+β

)s

dt

]1/s

= O
(
(n + 1)β+1/rξ

( 1
n + 1

))
, r−1 + s−1 = 1. (4.2)

Using Lemma 2, we have

|I2| = O

[∫ π

π/(n+1)

|ψ(t)|
t

dt

]
+ O

[∫ π

π/(n+1)

|ψ(t)|
t(n + 1)

(
τ

n∑
k=τ

P−1
k

k−1∑
ν=0

|∆pν |
)

dt

]

= O(I21) + O(I22).

Using Hölder’s inequality, conditions (2.3) and (2.5), | sin t| ≤ 1, sin(t/2) ≥ (t/π),
for 0 < t ≤ π, Remark 2 and Second Mean Value Theorem for integrals, we have

|I21| ≤
[∫ π

π/(n+1)

( t−δ|ψ(t)| sinβ(t/2)
ξ(t)

)r

dt

]1/r[∫ π

π/(n+1)

( ξ(t)
t−δ+1 sinβ(t/2)

)s

dt

]1/s

= O
(
(n + 1)δ

)[ ∫ π

π/(n+1)

( ξ(t)
t−δ+1+β

)s

dt

]1/s

= O
(
(n + 1)δ

)[ ∫ (n+1)/π

1/π

( ξ(1/y)
yδ−1−β

)s dy

y2

]1/s

= O
(
(n + 1)δ

ξ
(

π
n+1

)

π/(n + 1)

)[∫ (n+1)/π

1/π

dy

y(δ−β)s+2

]1/s

= O
(
(n + 1)δ+1ξ

( 1
n + 1

))( (n + 1)(β−δ)s−1 − (π)(−β+δ)s+1

(β − δ)s− 1

)1/s

= O
(
(n + 1)β+1/rξ

( 1
n + 1

))
, r−1 + s−1 = 1. (4.3)

Similarly as above, using conditions (2.2), (2.3) and (2.5), | sin t| ≤ 1, sin(t/2) ≥
(t/π), for 0 < t ≤ π, Remark 2 and Second Mean Value Theorem for integrals, we
have

|I22| ≤
[∫ π

π/(n+1)

( t−δ|ψ(t)| sinβ(t/2)
ξ(t)

)r

dt

]1/r

×
[∫ π

π/(n+1)

(
ξ(t)

t−δ+1 sinβ(t/2)
1

n + 1

(
τ

n∑
k=τ

P−1
k

k−1∑
ν=0

|∆pν |
))s

dt
]1/s
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= O
(
(n + 1)δ−1

)[∫ π

π/(n+1)

(
ξ(t)

t−δ+1+β

(
τ

n∑
k=τ

P−1
k

k−1∑
ν=0

|∆pν |
))s

dt

]1/s

= O
(
(n + 1)δ−1

)[∫ π

π/(n+1)

(
ξ(t)

t−δ+1+β

(
n∑

k=τ

P−1
k

k−1∑
ν=0

(ν + 1)|∆pν |
))s

dt

]1/s

= O
(
(n + 1)δ−1

)[∫ π

π/(n+1)

(
ξ(t)

t−δ+1+β

(
n∑

k=0

P−1
k

k∑
ν=0

(ν + 1)|∆pν |
))s

dt

]1/s

= O
(
(n + 1)δ−1

)[ ∫ π

π/(n+1)

(
ξ(t)

t−δ+1+β
Wn 2π (n + 1)

)s

dt

]1/s

= O
(
(n + 1)δ

)[ ∫ π

π/(n+1)

(
ξ(t)

t−δ+1+β

)s

dt

]1/s

= O
(
(n + 1)δ

)[ ∫ (n+1)/π

1/π

(
ξ(1/y)
yδ−1−β

)s
dy

y2

]1/s

= O
(
(n + 1)β+1/rξ

( 1
n + 1

))
, r−1 + s−1 = 1. (4.4)

Collecting (4.1)–(4.4), we have

|t̃CN
n (f)− f̃(x)| = O

(
(n + 1)β+1/rξ

( 1
n + 1

))
. (4.5)

Now, using the L r-norm of a function, we get

‖t̃CN
n (f)− f̃(x)‖r =

[∫ 2 π

0

|t̃CN
n (f)− f̃(x)|rdx

]1/r

= O

[∫ 2π

0

(
(n + 1)β+1/rξ

( 1
n + 1

))r

dx

]1/r

= O

(
(n + 1)β+1/rξ

( 1
n + 1

)( ∫ 2π

0

dx

)1/r)

= O
(
(n + 1)β+1/rξ

( 1
n + 1

))
.

This completes the proof of Theorem 1.

5. Applications

The following corollaries can be derived from Theorem 1.

Corollary 1. If ξ(t) = tα, 0 < α ≤ 1, then the class Lip(ξ(t), r), r ≥ 1,
reduces to the class Lip(α, r), 1

r < α < 1 and the degree of approximation of a
function f̃(x), conjugate to a 2π-periodic function f belonging to the class Lip(α, r),
is given by

|t̃CN
n (f)− f̃(x)| = O

(
(n + 1)−α+1/r

)
. (5.1)



Approximation of functions belonging to the generalized Lipschitz class 163

Proof. Putting β = 0 in Theorem 1, we have

‖t̃CN
n (f)− f̃(x)‖r =

[∫ 2π

0

|t̃CN
n (f)− f̃(x)|rdx

]1/r

= O
(
(n + 1)1/rξ

( 1
n + 1

))

= O
(
(n + 1)−α+1/r

)
.

Thus we get

|t̃CN
n (f)− f̃(x)| ≤

[∫ 2 π

0

|t̃CN
n (f)− f̃(x)|rdx

]1/r

= O
(
(n + 1)−α+1/r

)
,

r ≥ 1. This completes the proof of Corollary 1.

Corollary 2. If ξ(t) = tα for 0 < α < 1, and r → ∞ in Corollary 1, then
f ∈ Lip α. In this case, using (5.1) we get that

‖t̃CN
n (f)− f̃(x)‖∞ = O

(
(n + 1)−α

)
.

Proof. For r →∞, we get

‖t̃CN
n (f)− f̃(x)‖∞ = sup

0≤x≤2π
|t̃CN

n (f)− f̃(x)| = O
(
(n + 1)−α

)
.

This completes the proof of Corollary 2.
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