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ON I AND I∗-EQUAL CONVERGENCE
AND AN EGOROFF-TYPE THEOREM

Pratulananda Das, Sudipta Dutta and Sudip Kumar Pal

Abstract. In this paper we extend the notion of equal convergence of Császár and
Laczkovich with the help of ideals of the set of positive integers and introduce the ideas of I
and I∗-equal convergence and prove certain properties. Throughout the investigation two classes
of ideals, one satisfying “Chain Condition” and another called P -ideals play a very important
role. We also introduce certain related notions of convergence and prove an Egoroff-type theorem
for I∗-equal convergence.

1. Introduction

We start by recalling the definition of asymptotic density as follows: If N
denotes the set of natural numbers and K ⊂ N then Kn denotes the set {k ∈ K :
k ≤ n} and |Kn| stands for the cardinality of the set Kn. The asymptotic density
of the subset K is defined by

d(K) = lim
n→∞

|Kn|
n

provided the limit exists.
Using this idea of asymptotic density, the idea of convergence of a real sequence

had been extended to statistical convergence by Fast [22] (see also [33]) as follows:
A sequence {xn}n∈N of points in a metric space (X, ρ) is said to be statistically
convergent to ` if for arbitrary ε > 0, the set K(ε) = {k ∈ N : d(xk, `) ≥ ε} has
asymptotic density zero. A lot of investigations have been done on this convergence
and applications of these ideas in fields like Fourier Analysis, Measure Theory,
Summability Theory, Functional Analysis etc. after the initial works by Fridy
[23, 24] and Šalat [32] (for more reference see [2]).
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On the other hand, in [26] an interesting generalization of the notion of statis-
tical convergence was proposed (though it was investigated before using filters in
[25]). Namely it is easy to check that the family Id = {A ⊂ N : d(A) = 0} forms a
non-trivial admissible (or free) ideal of N (recall that I ⊂ 2N is called an ideal if (i)
A,B ∈ I implies A ∪B ∈ I and (ii) A ∈ I, B ⊂ A implies B ∈ I. I is called non-
trivial if I 6= {∅} and N /∈ I. I is admissible (or free) if it contains all singletons.
If I is a proper non-trivial ideal then the family of sets F (I) = {M ⊂ N : there
exists A ∈ I : M = N \A} is a filter in X. It is called the filter associated with the
ideal). There have been several deep and impressive investigations on structures of
ideals over the years (see for example [18, 20, 21, 34, 35, 36, 37]). Thus one may
consider an arbitrary ideal I of N and define ideal (I) convergence of a sequence
by replacing the sets of density zero by the members of the ideal. For the last ten
years a lot of work has been done on ideal convergence and applications of ideals
in double sequences, nets, sequences of continuous functions etc. (see for example
[2, 7, 8, 12, 13, 14, 15, 17, 27, 28] where many more references can be found).

In particular, in [2] certain types of statistical and ideal convergence notions
were introduced for sequences of real measurable functions extending the well
known ideas of pointwise and uniform convergence (see also [28]) and a statisti-
cal version of Egoroff theorem was presented which was subsequently extended to
an ideal version very recently by Mrożek [29].

The interesting notion of equal convergence was introduced by Császár and
Laczkovich in [10] for real functions (also known as quasi normal convergence [6])
which was shown to be between the notions of pointwise convergence and uniform
convergence. A detailed investigation was carried out by Császár and Laczkovich
in [10] and [11] on this convergence. The notion of equal convergence was later
extended to uniform equal convergence by Papanastassiou in [30] (for more inves-
tigations in this line see also [19]) where he presented an Egoroff-type theorem for
real valued measurable functions (for another version of Egoroff’s theorem one can
see [31]).

As a natural continuation of the above mentioned investigations, in this pa-
per, we first unify the two approaches and extend the notion of equal convergence
of Császár and Laczkovich with the help of ideals of the set of positive integers
which actually produces two different ideas, namely, the ideas of I and I∗-equal
convergence and initiate certain investigations in line of [10]. We also concentrate
on their inter-relationship and prove certain results where a class of ideals called
P -ideals play a very important role. Finally we introduce the notion of I∗-uniform
equal convergence of sequences of real valued functions using ideals and prove an
Egoroff type theorem for a sequence of real valued measurable functions following
the line of [30]. Our result gives an I-analogue of the main result of [30] which
gives a more general version of that Egoroff-type theorem.

2. Preliminaries

Throughout the paper N will denote the set of all positive integers and I will
stand for a proper admissible ideal of N.
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A sequence {xn}n∈N of real numbers is said to be I-convergent to x ∈ R if for
each ε > 0 the set A(ε) = {n ∈ N : |xn − x| ≥ ε} ∈ I [26]. The sequence {xn}n∈N
is said to be I∗-convergent to x ∈ R if there is a set M ∈ F (I), M = {m1 < m2 <
· · · < mk < · · · } such that limk→∞xmk

= x [26].

An admissible ideal I ⊂ 2N is called a P -ideal (or said to satisfy the condition
(AP)) if for any sequence {A1, A2, . . . } of mutually disjoint sets of I there is a
sequence {B1, B2, . . . } of sets such that Ai∆Bi (i = 1, 2, . . . ) is finite and B =⋃

j∈NBj ∈ I. Several examples of P -ideals can be seen from [26] and its importance
in summability can be seen from [26], [13].

We also introduce the following definition which will be helpful in certain
situations.

We say that I satisfies the “Chain Condition” (or CC in short) if there exists
a sequence {Ck}k∈N ⊂ I with C1 ⊂ C2 ⊂ C3 ⊂ · · · , such that for any A ∈ I there
exists k ∈ N such that A ⊂ Ck([20, 21]).

It should be noted that the “Chain Condition” is independent of the notion
of P -ideal. The ideal of finite sets as well as the ideal defined in Theorem 3.5 are
examples of ideals which have the “Chain Condition” but while the first ideal also
is a P -ideal the second ideal is not a P -ideal. These ideals are also called countably
generated ideals. Moreover, it is known (see e.g. Farah’s book [21]) that there are
only three pairwise nonisomorphic countably generated ideals.

We now recall the very important notion of equal convergence and another
related notion of discrete convergence of sequences of real valued functions intro-
duced in [10] which we intend to generalize using the notion of ideals. Let X be a
nonempty set and let fn, f be real valued functions defined on X. f is called the
discrete limit of the sequence {fn}n∈N if for every x ∈ X, there exists n0 = n0(x)
such that f(x) = fn(x) for n ≥ n0. The terminology is motivated by the fact that
this condition means precisely the convergence of the sequence {fn(x)}n∈N to f(x)
with respect to the discrete topology of the real line. f is said to be the equal
limit of the sequence {fn}n∈N ([10], it is called quasinormal limit in [6]) if there is
a sequence of positive numbers {εn}n∈N tending to zero such that for every x ∈ X,
there exists n0 = n0(x) with |fn(x) − f(x)| < εn for n ≥ n0. {fn}n∈N is said to
converge to f uniformly equally ([19], [30]) if there is a sequence of positive numbers
{εn}n∈N tending to zero and a M1 ∈ N such that for all x ∈ X, the cardinality of
the set {n ∈ N : |fn(x)− f(x)| ≥ εn} can not exceed M1.

We also recall that the ideas of pointwise convergence and uniform convergence
of a sequence of real valued functions have already been extended through ideals in
[2] which will be needed throughout the paper. A sequence {fn}n∈N of real valued
functions is said to be I-pointwise convergent to f if for all x ∈ X the sequence
{fn(x)}n∈N is I-convergent to f(x) and in this case we write fn

I→ f . The sequence
{fn}n∈N is said to be I-uniformly convergent to f if for any ε > 0 there exists A ∈ I
such that for all n ∈ Ac and for all x ∈ X, |fn(x)− f(x)| < ε. In this case we write
fn

I−u→ f .
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3. I and I∗-equal convergence

We first present the notion of I-equal convergence (which was introduced as
I-quasinormal convergence in [16]).

Definition 3.1. Let X be a non empty set and let fn, f be real valued
functions defined on X. We say that f is the I-equal limit of the sequence {fn}n∈N
if there exists a sequence {εn}n∈N of positive reals with I-limn→∞εn = 0 such that
for any x ∈ X, the set {n ∈ N : |fn(x) − f(x)| ≥ εn} ∈ I. In this case we write
fn

I−e→ f .

Below we observe that it is weaker than I-uniform convergence which will also
be needed in many results of this paper. Later we will give examples (Example 3.1)
to show that the notion of I-equal convergence is strictly stronger than the notion
of I-pointwise convergence and weaker than the notion of I-uniform convergence.

Theorem 3.1. fn
I−u→ f implies fn

I−e→ f .

Proof. We know that fn
I−u→ f if and only if supx∈X |fn(x) − f(x)| I→ 0. Let

ε > 0 be given. Then A = {n ∈ N : supx∈X |fn(x)− f(x)| ≥ ε} ∈ I.
Now define

εn =
{ 1

n if n ∈ A

supx∈X |fn(x)− f(x)|+ 1
n if n ∈ Ac.

Then clearly εn
I→ 0 and |fn(x)−f(x)| < εn for all n ∈ Ac which implies fn

I−e→ f .
We will now recall some results from [16]. We give the results with complete

proofs as we are using here a different name and for the easy reference for the
readers the following equivalent characterization of I-equal convergence (inspired
by Theorem 5.1 [10] and Theorem 1.2 [6]) which will also be needed to establish
Example 3.1.

Theorem 3.2. ([16]) Let I be an ideal satisfying the Chain Condition. Let
f , fn, n = 1, 2, . . . be real valued functions defined on a set X. The following
conditions are equivalent.

(i) fn
I−e→ f on X.

(ii) There are sets Xk ⊂ X such that X =
⋃

k∈NXk and fn
I−u→ f on Xk for

every k = 1, 2, . . . .
(iii) There are sets Xk ⊂ X such that X =

⋃
k∈NXk, X1 ⊂ X2 ⊂ · · · and

fn
I−u→ f on Xk for every k = 1, 2, . . . .
If X is a topological space and fn, n = 1, 2, . . . are continuous, then (i), (ii)

and (iii) are equivalent to
(iv) There are closed sets Xk ⊂ X, k = 1, 2, . . . , X =

⋃
k∈NXk, X1 ⊂ X2 ⊂

· · · and fn
I−u→ f on Xk for every k = 1, 2, . . . .
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Proof. (i) ⇒ (iii). Assume (i), i.e. fn
I−e→ f . Then there is a sequence

{εn}n∈N of positive real numbers with I-limn→∞εn = 0 and for every x ∈ X there
is a set Ax ∈ I such that |fn(x) − f(x)| < εn for all n ∈ Ac

x. Since I satisfies
the Chain Condition, there exists a sequence {Ck}k∈N in I with C1 ⊂ C2 ⊂ · · ·
such that for every A ∈ I there exists some Ck ∈ I with A ⊂ Ck. Now define
Xk = {x ∈ X : |fn(x) − f(x)| < εn for all n ∈ Cc

k}, k ∈ N. Then clearly
X1 ⊂ X2 ⊂ · · · . Further observe that for any x ∈ X, if Ax ∈ I is the set witnessing
I-equal convergence as defined above, then Ax ⊂ Ck for some k ∈ N. Consequently
x ∈ Xk. Hence X =

⋃
k∈NXk. It is now easy to observe that fn

I−u→ f on Xk. This
proves (iii).

(ii) ⇒ (i). Now assume (ii), i.e. suppose that X =
⋃

k∈NXk and |fn(x) −
f(x)| ≤ εin for all x ∈ Xi when n /∈ M(i) ∈ I, where I-limn→∞εin = 0 for a
fixed i. We can select sets Mk ∈ I such that M1 ⊂ M2 ⊂ · · · ⊂ Mk ⊂ · · · and
εkn < 1

k whenever n /∈ Mk, for k = 1, 2, . . . . Define

εn =





1 if n ∈ M2

1
k if n ∈ Mk+1 \Mk

1
n if n /∈ ⋃

k∈NMk.

Then I-limn→∞εn = 0 and furthermore |fn(x) − f(x)| ≤ εin < εn for x ∈ Xi and
if n /∈ M(i) ∪Mi ∈ I which shows that fn

I−e→ f . So (i) follows. Since (iii) ⇒ (ii),
so it now follows that (i), (ii), (iii) are equivalent.

Now let X be a topological space and fn, n = 1, 2, . . . be continuous. Evidently
(iv) implies (iii). Assume (i). Let us define Xk = {x ∈ X : |fn(x) − fm(x)| ≤
εn+εm for all m,n ∈ Cc

k}, k ∈ N. Suppose as before I satisfies the Chain Condition
with the sequence {Ck}k∈N in I. Clearly Xk is closed for k = 1, 2, . . . as fn’s are
continuous functions and X1 ⊂ X2 ⊂ X3 ⊂ · · · . If x ∈ X then from the proof of
(i) ⇒ (iii), it readily follows that x ∈ Xk for some k ∈ N and fn

I−u→ f on each
Xk. So (iv) is proved. Hence (i), (ii), and (iii) are equivalent to (iv).

Remark 3.1. It should be noted that for the implication (ii) ⇒ (i), it is not
necessary to assume that the ideal I satisfies the Chain Condition. It is not clear
whether the implication (i) ⇒ (ii) holds for every ideal and we leave it as an open
problem.

We are now in a position to give an example which establishes the fact that
I-equal convergence is stronger than I-pointwise convergence.

Example 3.1. ([16]) This example shows that there exist functions f and fn,
n = 1, 2, . . . such that fn

I→ f but fn
I−e9 f . Let I (I 6= Ifin) be an admissible

ideal satisfying the Chain Condition. Let C be an infinite member of I. Let
Q = {rk : k ∈ N ∪ {0}} be a one to one enumeration of rational numbers. Let

f(x) =
{

0 if x ∈ R \Q
2−k if x = rk, k = 0, 1, 2, . . . .

Clearly, f is not continuous on any interval. For every n ∈ Cc (where c stands
for the complement) choose a positive real δn ≤ 2−n such that δn ≤ 1

2 |ri − rj |,
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i = 0, 1, 2, . . . , n, j = 0, 1, 2, . . . , n, i 6= j. Let

fn(x) =





0 if x ∈ R \⋃n
i=0(ri − δi, ri + δi)

2−i for x = ri , i = 0, 1, 2, . . . , n

2−i
(
1− |x−ri|

δi

)
for x ∈ (ri − δi, ri + δi) , i = 0, 1, 2, . . . , n

for n ∈ Cc and fn = n for each n ∈ C.

Clearly fn
I→ f (though fn does not converge to f pointwise) on R. But

fn
I−e9 f on R, for otherwise if fn

I−e→ f on R then by Theorem 3.2, R =
⋃∞

k=0Ek

where Ek’s are closed and fn
I−u→ f on every Ek for k = 0, 1, 2 . . . . By the Baire

category theorem, there is k such that Int Ek 6= ∅, i.e. there are a < b such that
[a, b] ⊆ Ek. Since each fn is continuous and fn

I−u→ f on [a, b], it follows that f
being the I-uniform limit of continuous functions on [a, b] is continuous on [a, b]
(see [2]), which is a contradiction. We do not know whether an example can be
constructed corresponding to any arbitrary ideal I and leave it as an open problem.

When Kostyrko et al. [26] extended the notion of usual and statistical conver-
gence using ideals, they observed that it can be done in two ways and so introduced
the notions of I and I∗-convergence of sequences. One of the most interesting prob-
lem was to investigate the relation between these two concepts. Subsequently such
investigations have been carried out in many contexts (see for example [12], [13]).
In this section we intend to proceed with similar investigations in respect of I and
I∗-equal convergence.

Definition 3.2. f is said to be the I∗-pointwise limit of {fn}n∈N if for each
x ∈ X, there exists a set M = {m1 < m2 < · · · < mk < · · · } ∈ F (I) such that
f(x) is the pointwise limit of the subsequence {fmk

(x)}k∈N. In this case we write

fn
I∗→ f .

Definition 3.3. f is said to be the I∗-uniform limit of {fn}n∈N if there exists
a set M = {m1 < m2 < · · · < mk < · · · } ∈ F (I) such that f is the uniform limit

of the subsequence {fmk
}k∈N. In this case we write fn

I∗−u→ f .

Definition 3.4. f is said to be the I∗-equal limit of {fn}n∈N if there exists
a set M = {m1 < m2 < · · · < mk < · · · } ∈ F (I) such that f is the equal limit of

the subsequence {fmk
}k∈N. In this case we write fn

I∗−e→ f .

Theorem 3.3. Let I be a P-ideal. Let f, fn, n = 1, 2, . . . be real valued
functions defined on a set X. The following conditions are equivalent.

(i) fn
I∗−e→ f on X.

(ii) There are sets Xk ⊂ X such that X =
⋃

k∈NXk and fn
I∗−u→ f on Xk for

every k = 1, 2, . . . .
(iii) There are sets Xk ⊂ X such that X =

⋃
k∈NXk, X1 ⊂ X2 ⊂ · · · and

fn
I∗−u→ f on Xk for every k = 1, 2, . . . .
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If X is a topological space and fn, n = 1, 2, . . . are continuous, then (i), (ii),
(iii) are equivalent to

(iv) There are closed sets Xk ⊂ X, k = 1, 2, . . . , X =
⋃

k∈NXk, X1 ⊂ X2 ⊂
· · · and fn

I∗−u→ f on Xk for every k = 1, 2, . . . .

Proof. (i) ⇒ (iii). Assume (i), i.e. fn
I∗−e→ f . Then there is a set M =

{p1 < p2 < p3 < · · · } ∈ F (I) such that for all x ∈ X, f(x) is the equal limit of the
sequence {fpn

}n∈N. Hence there exists a sequence {εpn
}n∈N of positive real numbers

with limn→∞εpn
= 0 and for every x ∈ X there is a number k > 0 such that

|fpn(x)−f(x)| < εpn for all n ≥ k. Now define Xk = {x ∈ X : |fpn(x)−f(x)| < εpn

for all n ≥ k}, k ∈ N. Then clearly X1 ⊂ X2 ⊂ X3 ⊂ · · · . Further observe that
for any x ∈ X, x ∈ Xk for some k ∈ N. Hence X =

⋃
k∈NXk. It is now easy to

observe that fn
I∗−u→ f on Xk for every k. This proves (iii).

Evidently, (iii) ⇒ (ii).

(ii) ⇒ (i). Let Xk ⊂ X, X =
⋃

k∈NXk and fn
I∗−u→ f on Xk for every

k = 1, 2, . . . Then |fpi
n
(x) − f(x)| ≤ εpi

n
for all x ∈ Xi when n ≥ k(i) with

limn→∞εpi
n

= 0 for a fixed i and {pi
n}n∈N = Mi ∈ F (I). Now since I is a P-ideal

then there exists a set M0 ∈ F (I) such that M0\Mi is finite for all i and a sequence
{εpn}n∈N of positive real numbers with limn→∞εpn = 0 such that for every x ∈ X,
|fpn(x) − f(x)| < εpn for all pn ∈ M0 = {p1 < p2 < p3 < · · · } except for finite

indices. Hence fn
I∗−e→ f . So (i) follows. So it now follows that (i), (ii), (iii) are

equivalent.

Evidently (iv) ⇒ (iii).

(i) ⇒ (iv). Now let X be a topological space and fn, n = 1, 2, . . . be contin-
uous. Assume (i). Let us define Xk = {x ∈ X : |fpn(x)− fpm(x)| ≤ εpn + εpm for
all m,n ≥ k}, k ∈ N. Clearly Xk is closed for k = 1, 2, . . . as fn’s are continuous
functions and X1 ⊂ X2 ⊂ X3 ⊂ · · · . If x ∈ X then from the proof of (i) ⇒ (iii),

it readily follows that x ∈ Xk for some k ∈ N and fn
I∗−u→ f on each Xk. So (iv)

is proved. Hence (i), (ii) and (iii) are equivalent to (iv).

Remark 3.2. Note that the implications (i) ⇒ (iii), (iii) ⇒ (ii), (iv) ⇒ (iii),
(i) ⇒ (iv) are true for any arbitrary ideal. Comparing Theorem 3.2 and Theorem
3.3 it is interesting to observe that in order to prove similar results for I-equal
convergence and I∗-equal convergence two different assumptions on the ideal are
required. We do not know whether they can be proved under same assumption or
can actually be proved without any assumption which we leave as an open problem.

Example 3.2. Let I (I 6= Ifin) be an admissible ideal and Q = {rk : k ∈
N ∪ {0}} be a one to one enumeration of rational numbers. Taking the function
f(x), C the same as in Example 3.1 and defining the sequence of functions {fn}n∈N
as follows:
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fn = 0 for each n ∈ C and for n ∈ Cc

fn(x) =





0 if x ∈ R \⋃n
i=0(ri − δi, ri + δi)

2−i for x = ri, i = 0, 1, 2, . . . , n

2−i
(
1− |x−ri|

δi

)
for x ∈ (ri − δi, ri + δi), i = 0, 1, 2, . . . , n,

it can be shown that fn
I∗→ f but fn

I∗−e9 f .

Theorem 3.4. Let I be an admissible ideal. If fn
I∗−e→ f then fn

I−e→ f .

Proof. The proof is straightforward and so is omitted.
However the converse is not generally true as shown by the following Theorem.

Theorem 3.5. There exist an admissible ideal I ⊂ 2N and a sequence {gn}n∈N
such that gn

I−e→ f but gn
I∗−e9 f .

Proof. Consider a function f and a sequence of functions {fn}n∈N defined on
X such that fn

u→ f and fn 6= f for any n ∈ N. Let ε > 0 be given. Then there
exists an m ∈ N such that for all x ∈ X, |fn(x) − f(x)| < ε for all n > m. Let
N =

⋃∞
j=1∆j be a decomposition of N such that each ∆j is infinite and ∆i∩∆j = ∅

for i 6= j. Denote by I the class of all A ⊂ N that intersect only a finite number of
∆j ’s. Then I is a non-trivial admissible ideal. Define a sequence {gn}n∈N by

gn = fj if n ∈ ∆j .

Then for all x ∈ X, the set {n ∈ N : |gn(x)− f(x)| ≥ ε} ⊂ ∆1 ∪∆2 ∪ · · · ∪∆m ∈ I
which shows that gn

I−u→ f . Hence gn
I−e→ f (by Theorem 3.1).

Suppose now that gn
I∗−e→ f . Proceeding as in Theorem 3.1 (ii) [26] we can

arrive at a contradiction.

Theorem 3.6. Let X be a countable set and I be a P -ideal (i.e. it satisfies

the condition (AP)). Then fn
I−e→ f implies fn

I∗−e→ f .

Proof. Since fn
I−e→ f , there exists a sequence {εn}n∈N of positive reals with

εn
I→ 0 such that for each x ∈ X there exists M(x) ∈ F (I) and for all n ∈ M(x),

|fn(x) − f(x)| < εn. Since I is a P -ideal, εn
I→ 0 implies εn

I∗→ 0. Hence there
exists a set A ∈ F (I) such that {εn}n∈A → 0. Since X is countable we can
write X = {x1, x2, x3, . . . }. Now from hypothesis, for every xi there exists a set
Mi = M(xi) ∈ F (I) such that |fn(xi) − f(xi)| < εn for all n ∈ Mi. Since I is a
P -ideal, there exists a set M0 ∈ F (I) such that M0 \Mi is finite for all i. Therefore

|fn(x)− f(x)| < εn for all n ∈ M0 ∩A except for finite indices. Hence fn
I∗−e→ f .

Open Problem. It is not clear whether the result remains true when X is
uncountable and we leave it as an open problem.

Theorem 3.7. If I-equal and I∗-equal convergence coincide then I is a
P -ideal.
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Proof. Consider a function f and a sequence of functions {fn}n∈N defined on
X such that fn

u→ f and fn 6= f for any n ∈ N. Let ε > 0 be given. Then there
exists a m ∈ N such that |fn(x)−f(x)| < ε for all n > m and ∀x ∈ X. Let {An}n∈N
be a disjoint family of non-empty sets from I. Define a sequence {gn}n∈N by

gn =
{

fj if n ∈ Aj

f if n /∈ Aj for any j ∈ N.

Then for all x ∈ X, observe that for ε > 0 given, A = A1 ∪A2 ∪A3 ∪ · · · ∪Am ∈ I
and for all n ∈ Ac we have |gn(x) − f(x)| < ε. Hence gn

I−u→ f which implies

gn
I−e→ f (by Theorem 3.1). Consequently by our assumption gn

I∗−e→ f . So there
exists a set B ∈ I such that M = N \ B = {m1 < m2 < · · · < mk < · · · } and
gmk

e→ f . Now proceeding as in Theorem 3.2 (ii) [26] we can derive the result.
Let Φ be an arbitrary class of real valued functions defined on X. We denote by

ΦI−e the class of all functions defined on X which are I-equal limits of sequences of
functions belonging to Φ. Also for any function class Φ on X we recall the following
definitions from [11].

Definition 3.5. (a) Φ is called a lattice if Φ contains all constants and
f, g ∈ Φ implies max(f, g) ∈ Φ and min(f, g) ∈ Φ.

(b) Φ is called a translation lattice if it is a lattice and f ∈ Φ, c ∈ R implies
f + c ∈ Φ.

(c) Φ is called a congruence lattice if it is a translation lattice and f ∈ Φ
implies −f ∈ Φ.

(d) Φ is called a subtractive lattice if it is a lattice and f, g ∈ Φ implies
f − g ∈ Φ.

(e) Φ is called an ordinary class if it is a subtractive lattice, f, g ∈ Φ implies
f · g ∈ Φ and f ∈ Φ , f(x) 6= 0, for all x ∈ X implies 1/f ∈ Φ.

Theorem 3.8. If Φ is an ordinary class then ΦI−e is also so.

Proof. The proof is patterned after Proposition 3 [10]. It is obvious that ΦI−e

is a subtractive lattice. Suppose f, g ∈ ΦI−e. Then there exist two sequences
{fn}n∈N and {gn}n∈N in Φ and Ax ∈ I such that |fn(x)− f(x)| < 1

n2 and |gn(x)−
g(x)| < 1

n2 for every x ∈ X and for all n ∈ Ac
x. Now |fn(x)gn(x) − f(x)g(x)| ≤

|fn(x) − f(x)||gn(x)| + |f(x)||gn(x) − g(x)| ≤ 1
n2 (|g(x)| + 1) + 1

n2 (|f(x)|) < 1
n for

n /∈ Ax∪{1, 2, 3, . . . , n0} where n0 = max{2[|g(x)|+1], 2[|f(x)|]}. Therefore f ·g is
the I-equal limit of {fn · gn}n∈N. Hence f · g ∈ ΦI−e. Let f ∈ ΦI−e, f(x) 6= 0 for
all x ∈ X. Then f2 ∈ ΦI−e. Therefore there exists a sequence {fn}n∈N ⊂ Φ and
Ax ∈ I such that for all n ∈ Ac

x, |fn(x) − f2(x)| < 1
n3 . If gn = max{fn, 1

n}, then
gn ∈ Φ and gn ≥ 1

n , also |gn(x)−f2(x)| < 1
n3 when n /∈ Ax∪{1, 2, 3, . . . , n0} where

n0 = 2[f(x)−2] + 1. Thus for hn = gn
−1 we have hn ∈ Φ and |hn(x) − f(x)−2| ≤

|gn(x)− f(x)2||gn(x)−1||f(x)−2| < 1
n3 · n · n = 1

n for all n /∈ Ax ∪ {1, 2, 3, . . . , n0} .
Therefore f−2 ∈ ΦI−e. Hence f−1 = f · f−2 ∈ ΦI−e. Hence ΦI−e is an ordinary
class.
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4. On an Egoroff-type theorem for I∗-equal convergence

We first introduce the following definition.

Definition 4.1. {fn}n∈N is said to converge to f I∗-uniformly equally if there
exists a sequence {εn}n∈N of positive reals with limn εn = 0, M = M({εn}) ∈ F (I)
and k({εn}) ∈ N such that |{n ∈ M : |fn(x)− f(x)| ≥ εn}| is at most k = k({εn})
for all x ∈ X.

Clearly, I∗-equal convergence is weaker than I∗-uniform equal convergence
which is again weaker than I∗-uniform convergence.

Example 4.1 Let A ∈ I. Let {fn}n∈N be the sequence of functions on R
defined by: fn is the characteristic function of [n, n + 1

n ] for all n ∈ N \ A, fn is
the constant function 1 on R for all n ∈ A. Now clearly supx∈R|fn(x)| = 1 for all
n and so {fn}n∈N cannot converge to the constant function f ≡ 0, I∗-uniformly.
But since for any sequence {εn}n∈N of positive real numbers with limn εn = 0,
{n ∈ N \ A : fn(x) ≥ εn} has cardinality at most 1 for all x ∈ R, so {fn}n∈N
obviously converges to f ≡ 0 I∗-uniformly equally. Note that if A is infinite (i.e.
for all ideals containing Ifin properly) then {fn}n∈N does not converge to f ≡ 0
uniformly equally and so equally.

From now on (X, S, µ) will stand for a measure space and {fn}n∈N, f are
always real valued measurable functions on X.

Definition 4.2. A sequence {fn}n∈N of measurable functions on X is said to
converge to a measurable function f I∗-almost uniformly equally if there exists a
sequence {εn}n∈N of positive reals with limn εn = 0, M = M({εn}) ∈ F (I) such
that for every δ > 0, there exists a Aδ ∈ S with µ(Aδ) < δ and a k = k({εn}, δ) ∈ N
such that |{n ∈ M : |fn(x)− f(x)| ≥ εn}| is at most k for all x ∈ X \Aδ.

For measurable functions {fn}n∈N, f on X and a sequence {εn}n∈N of positive
real numbers, modifying similar notions from [30], we define

Af
x({εn})M = {n ∈ M : |fn(x)− f(x)| ≥ εn}, M ⊂ N, x ∈ X,

Bf
k ({εn})M = {x ∈ X : |Af

x({εn})M | > k}, k = 1, 2, . . . , M ⊂ N.

Clearly {Bf
k ({εn})M}k∈N is a decreasing sequence of measurable sets for a fixed

M ⊂ N. Also if M1 ⊂ M2 then

Ax
f ({εn})M1 ⊂ Ax

f ({εn})M2 , Bk
f ({εn})M1 ⊂ Bk

f ({εn})M2

for all x ∈ X, k = 1, 2, . . . .

Definition 4.3. {fn}n∈N is said to satisfy the I∗-quasi vanishing restriction
with respect to f if there exists a sequence {εn}n∈N of positive reals with limn εn = 0
and M ∈ F (I) such that limk µ(Bf

k ({εn})M ) = 0.

We are now in a position to prove the following Egoroff-type theorem.
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Theorem 4.1. (cf. Theorem 2.7 [30]) Let {fn}n∈N, f be all measurable. The
following are equivalent:

(i) {fn}n∈N converges to f I∗-almost uniformly equally.
(ii) {fn}n∈N converges to f I∗-equally almost everywhere and there exists a

sequence {γn}n∈N of positive reals with limn γn = 0 and M ∈ F (I), m0 ∈ N such
that µ(Bf

m0
({γn})M ) < ∞.

(iii) {fn}n∈N satisfies I∗-quasi vanishing restriction with respect to f .

Proof. (i) ⇒ (ii). First suppose that {fn}n∈N converges I∗-almost uniformly
equally to f . Then there exists a sequence {εn}n∈N of positive reals with limn εn = 0
and M = M({εn}) ∈ F (I) such that for every δ > 0, there exists a Aδ ∈ S with
µ(Aδ) < δ and a k = k({εn}, δ) ∈ N such that

|{n ∈ M : |fn(x)− f(x)| ≥ εn}| ≤ k({εn}, δ) for all x ∈ X \Aδ.

Hence Bf
k({εn},δ)({εn})M ⊂ Aδ and so µ(Bf

k({εn},δ)({εn})M ) < δ which proves the
second part of (ii). Now proceeding as in usual measure theory one can show that
{fn}n∈N converges to f I∗-equally almost everywhere.

(ii) ⇒ (iii). Suppose that the conditions in (ii) hold. Since {fn}n∈N converges
to f I∗-equally almost everywhere so there is a set G ∈ S with µ(G) = 0 such that
we can find a sequence {εn}n∈N of positive real numbers with limn εn = 0 and a set
M1({εn}) ∈ F (I) and for each x ∈ X \ G, there exists a finite set Px ⊂ M1 such
that |fn(x)− f(x)| < εn for all n ∈ M1 \ Px.

Set λn = max{εn, γn}. Then 0 ≤ εn, γn ≤ λn and limn λn = 0. Now for
x ∈ X \G,

|fn(x)− f(x)| < λn for all n ∈ M1 \ Px. (1)
Since λn ≥ γn ≥ 0 for every n ∈ N, so we have

{n ∈ M : |fn(x)− f(x)| ≥ λn} ⊂ {n ∈ M : |fn(x)− f(x)| ≥ γn}
which implies that Bf

k ({λn})M ⊂ Bf
k ({γn})M for all k = 1, 2, . . . , where M ∈ F (I)

is the set coming from our assumption. Further by our assumption there is a
m0 ∈ N for which µ(Bf

m0
({γn})M ) < ∞ and so µ(Bf

m0
({λn})M ) < ∞.

Let M0 = M∩M1. Then M0 ∈ F (I). Also since Bf
m0

({λn})M0 ⊂ Bf
m0

({λn})M

so we have µ(Bf
m0

({λn})M0) < ∞. Clearly (1) implies that |fn(x)− f(x)| < λn for
all n ∈ M0 \ Px and so if |Px| = l(x) then it follows that x /∈ Bf

l(x)({λn})M0 and so

x /∈ ⋂∞
k=1B

f
k ({λn})M0 . Since this is true for each x ∈ X \G, so

⋂∞
k=1B

f
k ({λn})M0 ⊂

G and therefore µ(
⋂∞

k=1B
f
k ({λn})M0) = 0.

But as {Bf
k ({λn})M0}k∈N is a decreasing sequence of measurable sets and we

have µ(Bf
m0

({λn})M0) < ∞ so limk (µ(Bf
k ({λn})M0) = 0.

This shows that {fn}n∈N satisfies I∗-quasi vanishing restriction with respect
to f .

(iii) ⇒ (i). Finally, suppose that {fn}n∈N satisfies the I∗-quasi vanishing
restriction with respect to f . Then there are a sequence {εn}n∈N of positive real
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numbers with limn εn = 0 and M ∈ F (I) such that limk µ(Bf
k ({εn})M ) = 0. So

given δ > 0, we can find a k ∈ N such that µ(Bf
k ({εn})M ) < δ. Take Aδ =

Bf
k ({εn})M . Then µ(Aδ) < δ. Also if x ∈ X \Aδ then x /∈ Bf

k ({εn})M and so

|{n ∈ M : |fn(x)− f(x)| ≥ εn}| ≤ k.

This shows that {fn}n∈N converges to f I∗-almost uniformly equally.
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