COUPLED FIXED POINT THEOREMS IN G_{b}-METRIC SPACES

Shaban Sedghi, Nabi Shobkolaei, Jamal Rezaei Roshan and Wasfi Shatanawi

Abstract

T. G. Bhaskar and V. Lakshmikantham [Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006) 1379-1393], V. Lakshmikantham and Lj . B. Ćirić [Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009) 4341-4349] introduced the concept of a coupled coincidence point of a mapping F from $X \times X$ into X and a mapping g from X into X. In this paper we prove a coupled coincidence fixed point theorem in the setting of a generalized b-metric space. Three examples are presented to verify the effectiveness and applicability of our main result.

1. Introduction

Mustafa and Sims [25] introduced a new notion of generalized metric space called a G-metric space. Mustafa, Sims and others studied fixed point theorems for mappings satisfying different contractive conditions $[1,2,6,10,11,19,22,23$, $25,27,28,32,35,36,39]$. Abbas and Rhoades [1] obtained some common fixed point theorems for non-commuting maps without continuity satisfying different contractive conditions in the setting of generalized metric spaces. Lakshmikantham et al. in $[7,21]$ introduced the concept of a coupled coincidence point for a mapping F from $X \times X$ into X and a mapping g from X into X, and studied coupled fixed point theorems in partially ordered metric spaces. In [33], Sedghi et al. proved a coupled fixed point theorem for contractive mappings in complete fuzzy metric spaces. On the other hand, the concept of b-metric space was introduced by Czerwik in [13]. After that, several interesting results for the existence of fixed point for single-valued and multivalued operators in b-metric spaces have been obtained [3 , $5,8,9,12,14,15,16,18,20,30,31,34,37,38]$. Pacurar [29] proved some results on sequences of almost contractions and fixed points in b-metric spaces. Recently, Hussain and Shah [17] obtained results on KKM mappings in cone b-metric spaces.

Aghajani et al., in a submitted paper [4], extended the notion of G-metric space to the concept of G_{b}-metric space. Very recently, Mustafa et al. [24] have obtained

[^0]some coupled coincidence point theorems for nonlinear (ψ, φ)-weakly contractive mappings in partially ordered G_{b}-metric spaces.

In this paper, we prove a coupled coincidence fixed point theorem in the setting of a generalized b-metric space. First, we present some basic properties of G_{b}-metric spaces.

Following is the definition of generalized b-metric spaces or G_{b}-metric spaces.
Definition 1.1. [24] Let X be a nonempty set and $s \geq 1$ be a given real number. Suppose that a mapping $G: X \times X \times X \rightarrow \mathbb{R}^{+}$satisfies:
$\left(\mathrm{G}_{b} 1\right) G(x, y, z)=0$ if $x=y=z$,
$\left(\mathrm{G}_{b} 2\right) 0<G(x, x, y)$ for all $x, y \in X$ with $x \neq y$,
$\left(\mathrm{G}_{b} 3\right) G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$,
$\left(\mathrm{G}_{b} 4\right) G(x, y, z)=G(p\{x, y, z\})$, where p is a permutation of x, y, z (symmetry),
$\left(\mathrm{G}_{b} 5\right) \quad G(x, y, z) \leq s(G(x, a, a)+G(a, y, z))$ for all $x, y, z, a \in X$ (rectangle inequality).
Then G is called a generalized b-metric and the pair (X, G) is called a generalized b-metric space or G_{b}-metric space.

It should be noted that the class of G_{b}-metric spaces is effectively larger than that of G-metric spaces given in [25]. Indeed, each G-metric space is a G_{b}-metric space with $s=1$. The following example shows that a G_{b}-metric on X need not be a G-metric on X.

Example 1.1. [24] Let (X, G) be a G-metric space, and $G_{*}(x, y, z)=$ $G^{p}(x, y, z)$, where $p>1$ is a real number. Note that G_{*} is a G_{b}-metric with $s=2^{p-1}$. In [24], it is proved that $\left(X, G_{*}\right)$ is not necessarily a G-metric space.

Example 1.2. [24] Let $X=\mathbb{R}$ and $d(x, y)=|x-y|^{2}$. We know that (X, d) is a b-metric space with $s=2$. Let $G(x, y, z)=d(x, y)+d(y, z)+d(z, x)$, then (X, G) is not a G_{b}-metric space.

However, $G(x, y, z)=\max \{d(x, y), d(y, z), d(z, x)\}$ is a G_{b}-metric on \mathbb{R} with $s=2$. Similarly, if $d(x, y)=|x-y|^{p}$ is selected with $p \geq 1$, then $G(x, y, z)=$ $\max \{d(x, y), d(y, z), d(z, x)\}$ is a G_{b}-metric on \mathbb{R} with $s=2^{p-1}$.

Now we present some definitions and propositions in G_{b}-metric spaces.
Definition 1.2. [24] A G_{b}-metric G is said to be symmetric if $G(x, y, y)=$ $G(y, x, x)$ for all $x, y \in X$.

Definition 1.3. [24] Let (X, G) be a G_{b}-metric space. Then, for $x_{0} \in X$, $r>0$, the G_{b}-ball with center x_{0} and radius r is

$$
B_{G}\left(x_{0}, r\right)=\left\{y \in X \mid G\left(x_{0}, y, y\right)<r\right\}
$$

Definition 1.4. [24] Let X be a G_{b}-metric space and let $d_{G}(x, y)=$ $G(x, y, y)+G(x, x, y)$. Then d_{G} defines a b-metric on X, which is called the b metric associated with G.

Proposition 1.2. [24] Let X be a G_{b}-metric space. For any $x_{0} \in X$ and $r>0$, if $y \in B_{G}\left(x_{0}, r\right)$ then there exists a $\delta>0$ such that $B_{G}(y, \delta) \subseteq B_{G}\left(x_{0}, r\right)$.

From the above proposition the family of all G_{b}-balls

$$
\Lambda=\left\{B_{G}(x, r) \mid x \in X, r>0\right\}
$$

is a base of a topology $\tau(G)$ on X, which is called the G_{b}-metric topology.
Definition 1.5. [24] Let X be a G_{b}-metric space. A sequence $\left(x_{n}\right)$ in X is said to be:
(1) G_{b}-Cauchy sequence if, for each $\varepsilon>0$, there exists a positive integer n_{0} such that, for all $m, n, l \geq n_{0}, G\left(x_{n}, x_{m}, x_{l}\right)<\varepsilon$;
(2) G_{b}-convergent to a point $x \in X$ if, for each $\varepsilon>0$, there exists a positive integer n_{0} such that, for all $m, n \geq n_{0}, G\left(x_{n}, x_{m}, x\right)<\varepsilon$.

Using the above definitions, one can easily prove the following proposition.
Proposition 1.4. [24] Let X be a G_{b}-metric space and $\left(x_{n}\right)$ be a sequence in X. Then the following are equivalent:
(1) the sequence $\left(x_{n}\right)$ is G_{b}-Cauchy;
(2) for any $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that $G\left(x_{n}, x_{m}, x_{m}\right)<\varepsilon$, for all $m, n \geq n_{0}$.

Definition 1.6. [24] A $G_{b^{-}}$metric space X is called complete if every $G_{b^{-}}$ Cauchy sequence is G_{b}-convergent in X.

Mustafa and Sims proved that each G-metric function $G(x, y, z)$ is jointly continuous in all three of its variables (see [26, Proposition 8]). But in general a G_{b}-metric function $G(x, y, z)$ for $s>1$ is not jointly continuous in all three of its variables. Now we recall an example of a discontinuous G_{b}-metric.

Example 1.3. [24] Let $X=\mathbb{N} \cup\{\infty\}$ and let $D: X \times X \rightarrow \mathbb{R}^{+}$be defined by

$$
D(m, n)= \begin{cases}0, & \text { if } m=n, \\ \left|\frac{1}{m}-\frac{1}{n}\right|, & \text { if one of } m, n \text { is even and the other is even or } \infty, \\ 5, & \text { if one of } m, n \text { is odd and the other is odd }(\text { and } m \neq n) \\ & \text { or } \infty,\end{cases}
$$

Then it is easy to see that for all $m, n, p \in X$, we have

$$
D(m, p) \leq \frac{5}{2}(D(m, n)+D(n, p))
$$

Thus, (X, D) is a b-metric space with $s=\frac{5}{2}$ (see [16, Example 2]). Let $G(x, y, z)=$ $\max \{D(x, y), D(y, z), D(z, x)\}$. It is easy to see that G is a G_{b}-metric with $s=\frac{5}{2}$. In [24], it is proved that $G(x, y, z)$ is not a continuous function.

Definition 1.7. Let (X, G) and $\left(X^{\prime}, G^{\prime}\right)$ be G_{b}-metric spaces, and let f : $X \rightarrow X^{\prime}$ be a mapping. Then f is said to be continuous at a point $a \in X$ if and only if for every $\varepsilon>0$, there is $\delta>0$ such that $x, y \in X$ and $G(a, x, y)<\delta$ implies $G^{\prime}(f(a), f(x), f(y))<\varepsilon$. A function f is continuous at X if and only if it is continuous at all $a \in X$.

Definition 1.8. [7] Let X be a nonempty set. An element $(x, y) \in X \times X$ is called a coupled fixed point of a mapping $F: X \times X \rightarrow X$ if $F(x, y)=x$ and $F(y, x)=y$.

Definition 1.9. [21] Let X be a nonempty set. An element $(x, y) \in X \times X$ is called a coupled coincidence point of mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ if $F(x, y)=g x$ and $F(y, x)=g y$.

Definition 1.10. [21] Let X be a nonempty set. Then we say that the mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ are commutative if $g F(x, y)=F(g x, g y)$.

2. Common fixed point results

Let Φ denote the class of all functions $\phi:[0, \infty) \rightarrow[0, \infty)$ such that ϕ is increasing, continuous, $\phi(t)<\frac{t}{2}$ for all $t>0$ and $\phi(0)=0$. It is easy to see that for every $\phi \in \Phi$ we can choose a $0<k<\frac{1}{2}$ such that $\phi(t) \leq k t$.

We start our work by proving the following two crucial lemmas.
Lemma 2.1. Let (X, G) be a G_{b}-metric space with $s \geq 1$, and suppose that $\left(x_{n}\right)$ is G_{b}-convergent to x. Then we have

$$
\frac{1}{s} G(x, y, y) \leq \liminf _{n \rightarrow \infty} G\left(x_{n}, y, y\right) \leq \limsup _{n \rightarrow \infty} G\left(x_{n}, y, y\right) \leq s G(x, y, y)
$$

In particular, if $x=y$, then we have $\lim _{n \rightarrow \infty} G\left(x_{n}, y, y\right)=0$.
Proof. Using the rectangle inequality in (X, G), it is easy to see that

$$
G\left(x_{n}, y, y\right) \leq s G\left(x_{n}, x, x\right)+s G(x, y, y)
$$

and

$$
\frac{1}{s} G(x, y, y) \leq G\left(x, x_{n}, x_{n}\right)+G\left(x_{n}, y, y\right)
$$

Taking the upper limit as $n \rightarrow \infty$ in the first inequality and the lower limit as $n \rightarrow \infty$ in the second inequality we obtain the desired result.

Lemma 2.2. Let (X, G) be a G_{b}-metric space and let $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be two mappings such that

$$
\begin{equation*}
G(F(x, y), F(u, v), F(z, w)) \leq \phi(G(g x, g u, g z)+G(g y, g v, g w)) \tag{1}
\end{equation*}
$$

for some $\phi \in \Phi$ and for all $x, y, z, w, u, v \in X$. Assume that (x, y) is a coupled coincidence point of the mappings F and g. Then

$$
F(x, y)=g x=g y=F(y, x)
$$

Proof. Since (x, y) is a coupled coincidence point of the mappings F and g, we have $g x=F(x, y)$ and $g y=F(y, x)$. Assume $g x \neq g y$. Then by (1), we get

$$
G(g x, g y, g y)=G(F(x, y), F(y, x), F(y, x)) \leq \phi(G(g x, g y, g y)+G(g y, g x, g x))
$$

Also by (1), we have

$$
G(g y, g x, g x)=G(F(y, x), F(x, y), F(x, y)) \leq \phi(G(g y, g x, g x)+G(g x, g y, g y))
$$

Therefore

$$
G(g x, g y, g y)+G(g y, g x, g x) \leq 2 \phi(G(g x, g y, g y)+G(g y, g x, g x))
$$

Since $\phi(t)<\frac{t}{2}$, we get

$$
G(g x, g y, g y)+G(g y, g x, g x)<G(g x, g y, g y)+G(g y, g x, g x)
$$

which is a contradiction. So $g x=g y$, and hence $F(x, y)=g x=g y=F(y, x)$.
The following is the main result of this section.
Theorem 2.1. Let (X, G) be a complete G_{b}-metric space. Let $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be two mappings such that

$$
\begin{equation*}
G(F(x, y), F(u, v), F(z, w)) \leq \frac{1}{s^{2}} \phi(G(g x, g u, g z)+G(g y, g v, g w)) \tag{2}
\end{equation*}
$$

for some $\phi \in \Phi$ and all $x, y, z, w, u, v \in X$. Assume that F and g satisfy the following conditions:

1. $F(X \times X) \subseteq g(X)$,
2. $g(X)$ is complete, and
3. g is continuous and commutes with F.

Then there is a unique x in X such that $g x=F(x, x)=x$.
Proof. Let $x_{0}, y_{0} \in X$. Since $F(X \times X) \subseteq g(X)$, we can choose $x_{1}, y_{1} \in X$ such that $g x_{1}=F\left(x_{0}, y_{0}\right)$ and $g y_{1}=F\left(y_{0}, x_{0}\right)$. Again since $F(X \times X) \subseteq g(X)$, we can choose $x_{2}, y_{2} \in X$ such that $g x_{2}=F\left(x_{1}, y_{1}\right)$ and $g y_{2}=F\left(y_{1}, x_{1}\right)$. Continuing this process, we can construct two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in X such that $g x_{n+1}=$ $F\left(x_{n}, y_{n}\right)$ and $g y_{n+1}=F\left(y_{n}, x_{n}\right)$. For $n \in \mathbb{N} \cup\{0\}$, by (2) we have

$$
\begin{aligned}
G\left(g x_{n-1}, g x_{n}, g x_{n}\right) & =G\left(F\left(x_{n-2}, y_{n-2}\right), F\left(x_{n-1}, y_{n-1}\right), F\left(x_{n-1}, y_{n-1}\right)\right) \\
& \leq \frac{1}{s^{2}} \phi\left(G\left(g x_{n-2}, g x_{n-1}, g x_{n-1}\right)+G\left(g y_{n-2}, g y_{n-1}, g y_{n-1}\right)\right)
\end{aligned}
$$

Similarly, by (2) we have

$$
\begin{aligned}
G\left(g y_{n-1}, g y_{n}, g y_{n}\right) & =G\left(F\left(y_{n-2}, x_{n-2}\right), F\left(y_{n-1}, x_{n-1}\right), F\left(y_{n-1}, x_{n-1}\right)\right) \\
& \leq \frac{1}{s^{2}} \phi\left(G\left(g y_{n-2}, g y_{n-1}, g y_{n-1}\right)+G\left(g x_{n-2}, g x_{n-1}, g x_{n-1}\right)\right)
\end{aligned}
$$

Hence, we have that

$$
\begin{aligned}
a_{n} & :=G\left(g x_{n-1}, g x_{n}, g x_{n}\right)+G\left(g y_{n-1}, g y_{n}, g y_{n}\right) \\
& \leq \frac{2}{s^{2}} \phi\left(G\left(g x_{n-2}, g x_{n-1}, g x_{n-1}\right)+G\left(g y_{n-2}, g y_{n-1}, g y_{n-1}\right)\right) \\
& =\frac{2}{s^{2}} \phi\left(a_{n-1}\right)
\end{aligned}
$$

holds for all $n \in \mathbb{N}$. Thus, we get a $k, 0<k<\frac{1}{2}$ such that

$$
a_{n} \leq \frac{2}{s^{2}} \phi\left(a_{n-1}\right) \leq \frac{2 k}{s^{2}} a_{n-1} \leq \frac{2 k}{s} a_{n-1}=q a_{n-1}
$$

for $q=\frac{2 k}{s}$. Hence we have

$$
a_{n} \leq \frac{2 k}{s} a_{n-1} \leq \cdots \leq\left(\frac{2 k}{s}\right)^{n} a_{0}
$$

Let $m, n \in \mathbb{N}$ with $m>n$. By Axiom $G_{b} 5$ of definition of G_{b}-metric spaces, we have

$$
\begin{aligned}
& G\left(g x_{n-1}, g x_{m}, g x_{m}\right)+G\left(g y_{n-1}, g y_{m}, g y_{m}\right) \\
& \quad \leq s\left(G\left(g x_{n-1}, g x_{n}, g x_{n}\right)+G\left(g x_{n}, g x_{m}, g x_{m}\right)\right) \\
& \quad \quad+s\left(G\left(g y_{n-1}, g y_{n}, g y_{n}\right)+G\left(g y_{n}, g y_{m}, g y_{m}\right)\right) \\
& \quad=s\left(G\left(g x_{n-1}, g x_{n}, g x_{n}\right)+G\left(g y_{n-1}, g y_{n}, g y_{n}\right)\right) \\
& \quad \quad+s\left(G\left(g x_{n}, g x_{m}, g x_{m}\right)+G\left(g y_{n}, g y_{m}, g y_{m}\right)\right) \\
& \quad \leq \\
& \vdots \\
& \quad \leq \\
& \quad s a_{n}+s^{2} a_{n+1}+s^{3} a_{n+2}+\cdots+s^{m-n} a_{m-1}+s^{m-n} a_{m} \\
& \leq \\
& \quad s q^{n} a_{0}+s^{2} q^{n+1} a_{0}+\cdots+s^{m-n} q^{m-1} a_{0}++s^{m-n} q^{m} a_{0} \\
& \leq \\
& \quad s q^{n} a_{0}\left(1+s q+s^{2} q^{2}+\cdots\right) \\
& \quad \leq \frac{s q^{n} a_{0}}{1-s q} \longrightarrow 0,
\end{aligned}
$$

since $s q=2 k<1$. Thus $\left(g x_{n}\right)$ and $\left(g y_{n}\right)$ are G_{b}-Cauchy in $g(X)$. Since $g(X)$ is complete, we get $\left(g x_{n}\right)$ and $\left(g y_{n}\right)$ are G_{b}-convergent to some $x \in X$ and $y \in X$ respectively. Since g is continuous, we have that $\left(g g x_{n}\right)$ is G_{b}-convergent to $g x$ and $\left(g g y_{n}\right)$ is G_{b}-convergent to $g y$. Also, since g and F commute, we have

$$
g g x_{n+1}=g\left(F\left(x_{n}, y_{n}\right)\right)=F\left(g x_{n}, g y_{n}\right)
$$

and

$$
g g y_{n+1}=g\left(F\left(y_{n}, x_{n}\right)\right)=F\left(g y_{n}, g x_{n}\right)
$$

Thus

$$
\begin{aligned}
G\left(g g x_{n+1}, F(x, y), F(x, y)\right) & =G\left(F\left(g x_{n}, g y_{n}\right), F(x, y), F(x, y)\right) \\
& \leq \frac{1}{s^{2}} \phi\left(G\left(g g x_{n}, g x, g x\right)+G\left(g g y_{n}, g y, g y\right)\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$, and using Lemma 2.1, we get that

$$
\begin{aligned}
\frac{1}{s} G(g x, F(x, y), F(x, y)) & \leq \limsup _{n \rightarrow \infty} G\left(F\left(g x_{n}, g y_{n}\right), F(x, y), F(x, y)\right) \\
& \leq \limsup _{n \rightarrow \infty} \frac{1}{s^{2}} \phi\left(G\left(g g x_{n}, g x, g x\right)+G\left(g g y_{n}, g y, g y\right)\right) \\
& \leq \frac{1}{s^{2}} \phi(s(G(g x, g x, g x)+G(g y, g y, g y))=0
\end{aligned}
$$

Hence, $g x=F(x, y)$. Similarly, we may show that $g y=F(y, x)$. By Lemma 2.2, (x, y) is a coupled fixed point of the mappings F and g, i.e.,

$$
g x=F(x, y)=F(y, x)=g y .
$$

Thus, using Lemma 2.1 we have

$$
\begin{aligned}
\frac{1}{s} G(x, g x, g x) & \leq \limsup _{n \rightarrow \infty} G\left(g x_{n+1}, g x, g x\right) \\
& =\limsup _{n \rightarrow \infty} G\left(F\left(x_{n}, y_{n}\right), F(x, y), F(x, y)\right) \\
& \leq \limsup _{n \rightarrow \infty} \frac{1}{s^{2}} \phi\left(G\left(g x_{n}, g x, g x\right)+G\left(g y_{n}, g y, g y\right)\right) \\
& \leq \frac{1}{s^{2}} \phi(s(G(x, g x, g x)+G(y, g y, g y)))
\end{aligned}
$$

Hence, we get

$$
G(x, g x, g x) \leq \frac{1}{s} \phi(s(G(x, g x, g x)+G(y, g y, g y)))
$$

Similarly, we may show that

$$
G(y, g y, g y) \leq \frac{1}{s} \phi(s(G(x, g x, g x)+G(y, g y, g y)))
$$

Thus,

$$
\begin{aligned}
G(x, g x, g x)+G(y, g y, g y) & \leq \frac{2}{s} \phi(s(G(x, g x, g x)+G(y, g y, g y))) \\
& \leq 2 k G(x, g x, g x)+G(y, g y, g y)
\end{aligned}
$$

Since $2 k<1$, the last inequality happens only if $G(x, g x, g x)=0$ and $G(y, g y, g y)=0$. Hence $x=g x$ and $y=g y$. Thus we get

$$
g x=F(x, x)=x
$$

To prove the uniqueness, let $z \in X$ with $z \neq x$ such that

$$
z=g z=F(z, z)
$$

Then

$$
\begin{aligned}
G(x, z, z) & =G(F(x, x), F(z, z), F(z, z)) \leq \frac{1}{s^{2}} \phi(2 G(g x, g z, g z)) \\
& <\frac{1}{s^{2}} 2 k G(x, z, z) \leq 2 k G(x, z, z)
\end{aligned}
$$

Since $2 k<1$, we get $G(x, z, z)<G(x, z, z)$, which is a contradiction. Thus, F and g have a unique common fixed point. -

Corollary 2.1. Let (X, G) be a G_{b}-metric space. Let $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be two mappings such that

$$
\begin{equation*}
G(F(x, y), F(u, v), F(u, v)) \leq \frac{k}{s^{2}}(G(g x, g u, g u)+G(g y, g v, g v)) \tag{3}
\end{equation*}
$$

for all $x, y, u, v \in X$. Assume F and g satisfy the following conditions:

1. $F(X \times X) \subseteq g(X)$,
2. $g(X)$ is complete, and
3. g is continuous and commutes with F.

If $k \in\left(0, \frac{1}{2}\right)$, then there is a unique x in X such that $g x=F(x, x)=x$.

Proof. Follows from Theorem 2.1 by taking $z=u, v=w$ and $\phi(t)=k t$.

Corollary 2.2. Let (X, G) be a complete G_{b}-metric space. Let $F: X \times X \rightarrow$ X be a mapping such that

$$
G(F(x, y), F(u, v), F(u, v)) \leq \frac{k}{s^{2}}(G(x, u, u)+G(y, v, v))
$$

for all $x, y, u, v \in X$. If $k \in\left[0, \frac{1}{2}\right)$, then there is a unique x in X such that $F(x, x)=x$.

REmark 2.1. Since every G_{b}-metric is a G-metric when $s=1$, so our results can be viewed as generalizations and extensions of corresponding results in [35] and several other comparable results.

Now, we introduce some examples for Theorem 2.1.
Example 2.1. Let $X=[0,1]$. Define $G: X \times X \times X \rightarrow \mathbb{R}^{+}$by

$$
G(x, y, z)=(|x-y|+|x-z|+|y-z|)^{2}
$$

for all $x, y, z \in X$. Then (X, G) is a complete G_{b}-metric space with $s=2$, according to Example 1.1. Define a map $F: X \times X \rightarrow X$ by $F(x, y)=\frac{x}{128}+\frac{y}{256}$ for $x, y \in X$. Also, define $g: X \rightarrow X$ by $g(x)=\frac{x}{4}$ for $x \in X$ and $\phi(t)=\frac{t}{4}$ for $t \in \mathbb{R}^{+}$. We have
that

$$
\begin{aligned}
G(& F(x, y), F(u, v), F(z, w)) \\
= & (|F(x, y)-F(u, v)|+|F(u, v)-F(z, w)|+|F(z, w)-F(x, y)|)^{2} \\
= & \left(\left|\frac{x}{128}+\frac{y}{256}-\frac{u}{128}-\frac{v}{256}\right|+\left|\frac{u}{128}+\frac{v}{256}-\frac{z}{128}-\frac{w}{256}\right|\right. \\
& \left.\quad+\left|\frac{z}{128}+\frac{w}{256}-\frac{x}{128}-\frac{y}{256}\right|\right)^{2} \\
\leq & \left(\frac{1}{128}|x-u|+\frac{1}{256}|y-v|+\frac{1}{128}|u-z|+\frac{1}{256}|v-w|+\frac{1}{128}|z-x|\right. \\
& \left.\quad+\frac{1}{256}|w-y|\right)^{2} \\
= & \left(\frac{1}{32}\left(\left|\frac{x}{4}-\frac{u}{4}\right|+\left|\frac{u}{4}-\frac{z}{4}\right|+\left|\frac{z}{4}-\frac{x}{4}\right|\right)+\frac{1}{64}\left(\left|\frac{y}{4}-\frac{v}{4}\right|+\left|\frac{v}{4}-\frac{w}{4}\right|+\left|\frac{w}{4}-\frac{y}{4}\right|\right)\right)^{2} \\
\leq & \frac{2}{32^{2}}\left(\left|\frac{x}{4}-\frac{u}{4}\right|+\left|\frac{u}{4}-\frac{z}{4}\right|+\left|\frac{z}{4}-\frac{x}{4}\right|\right)^{2}+\frac{2}{64^{2}}\left(\left|\frac{y}{4}-\frac{v}{4}\right|+\left|\frac{v}{4}-\frac{w}{4}\right|+\left|\frac{w}{4}-\frac{y}{4}\right|\right)^{2} \\
= & \frac{2}{32^{2}} G(g x, g u, g z)+\frac{2}{64^{2}} G(g y, g v, g w) \\
\leq & \frac{2}{32^{2}}(G(g x, g u, g z)+G(g y, g v, g w)) \\
\leq & \frac{1}{4} \frac{G(g x, g u, g z)+G(g y, g v, g w)}{4} \\
= & \frac{1}{2^{2}} \phi(G(g x, g u, g z)+G(g y, g v, g w))
\end{aligned}
$$

holds for all $x, y, u, v, z, w \in X$. It is easy to see that F and g satisfy all the hypothesis of Theorem 2.1. Thus F and g have a unique common fixed point. Here $F(0,0)=g(0)=0$.

Example 2.2. Let X and G be as in Example 2.1. Define a map

$$
F: X \times X \rightarrow X \quad \text { by } \quad F(x, y)=\frac{1}{16} x^{2}+\frac{1}{16} y^{2}+\frac{1}{8}
$$

for $x, y \in X$. Then $F(X \times X)=\left[\frac{1}{8}, \frac{1}{4}\right]$. Also,

$$
\begin{aligned}
& G(F(x, y), F(u, v), F(u, v)) \\
& \quad=(2|F(x, y)-F(u, v)|)^{2}=\frac{1}{64}\left(\left|x^{2}-u^{2}+y^{2}-v^{2}\right|\right)^{2} \\
& \quad \leq \frac{1}{64}\left(\left|x^{2}-u^{2}\right|+\left|y^{2}-v^{2}\right|\right)^{2} \leq \frac{1}{32}\left(\left|x^{2}-u^{2}\right|^{2}+\left|y^{2}-v^{2}\right|^{2}\right) \\
& \quad \leq \frac{1}{32}\left(4|x-u|^{2}+4|y-v|^{2}\right)=\frac{1}{32}(G(x, u, u)+G(y, v, v)) \\
& \quad \leq \frac{\frac{1}{8}}{2^{2}}(G(x, u, u)+G(y, v, v))
\end{aligned}
$$

Then by Corollary 2.2, F has a unique fixed point. Here $x=4-\sqrt{15}$ is the unique fixed point of F, that is, $F(x, x)=x$.

Now we present an example for the main result in an asymmetric G_{b}-metric space.

Example 2.3. Let $X=\{0,1,2\}$ and let

$$
\begin{gathered}
A=\{(2,0,0),(0,2,0),(0,0,2)\}, \quad B=\{(2,2,0),(2,0,2),(0,2,2)\} \\
\text { and } C=\{(x, x, x): x \in X\} .
\end{gathered}
$$

Define $G: X^{3} \rightarrow \mathbb{R}^{+}$by

$$
G(x, y, z)= \begin{cases}1, & \text { if }(x, y, z) \in A \\ 3, & \text { if }(x, y, z) \in B \\ 4, & \text { if }(x, y, z) \in X^{3}-(A \cup B \cup C) \\ 0, & \text { if } x=y=z\end{cases}
$$

It is easy to see that (X, G) is an asymmetric G_{b}-metric space with coefficient $s=\frac{3}{2}$. Also, (X, G) is complete. Indeed, for each $\left(x_{n}\right)$ in X such that $G\left(x_{n}, x_{m}, x_{m}\right) \rightarrow 0$, then there is a $k \in \mathbb{N}$ such that for each $n \geq k, x_{n}=x_{m}=x$ for an $x \in X$, so $G\left(x_{n}, x_{n}, x\right) \rightarrow 0$.

Define mappings F and g by

$$
\begin{gathered}
F=\left(\begin{array}{ccccccccc}
(0,0) & (0,1) & (1,0) & (1,1) & (1,2) & (2,1) & (2,2) & (2,0) & (0,2) \\
0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right) \\
g=\left(\begin{array}{ccc}
0 & 1 & 2 \\
0 & 2 & 2
\end{array}\right)
\end{gathered}
$$

We see that $F(X \times X) \subseteq g X, g$ is continuous and commutes with F, and $g(X)$ is complete.

Define $\phi:[0, \infty) \rightarrow[0, \infty)$ by $\phi(t)=\frac{27}{4} \ln \left(\frac{2 t}{27}+1\right)$. Since

$$
(F(x, y), F(u, v), F(z, w)),(g x, g u, g z),(g y, g v, g w) \in A \cup B
$$

we have

$$
G(F(x, y), F(u, v), F(z, w)), G(g x, g u, g z), G(g y, g v, g w) \in\{0,1,3\}
$$

Hence, one can easily check that the contractive condition (2) is satisfied for every $x, y, z, u, v, w \in X$.

Thus, all the conditions of Theorem 2.1 are fulfilled and F and g have a unique common fixed point. Here $F(0,0)=g(0)=0$.

Acknowledgement. The authors would like to thank the referees for their thorough and careful review and very useful comments that helped to improve the paper.

REFERENCES

[1] M. Abbas and B. E. Rhoades, Common fixed point results for non-commuting mappings without continuity in generalized metric spaces, Appl. Math. Comput. 215 (2009) 262-269.
[2] M. Abbas, T. Nazir and P. Vetro, Common fixed point results for three maps in G-metric spaces, Filomat 25:4 (2011), 1-17.
[3] A. Aghajani, M. Abbas and J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, in press.
[4] A. Aghajani, M. Abbas and J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered Gb-metric spaces, Filomat, in press.
[5] H. Aydi, M.F. Bota, E. Karapinar and S. Mitrović, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl. 2012:88 (2012).
[6] H. Aydi, W. Shatanawi and C.Vetro, On generalized weakly G-contraction mapping in G metric spaces, Comput. Math. Appl. 62 (2011) 4222-4229.
[7] T.G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006) 1379-1393.
[8] M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metrics, Studia Univ. "Babes Bolyai", Mathematica, Vol. LIV, No. 3, (2009).
[9] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Modern Math. 4(3) (2009), 285-301.
[10] B.S. Choudhury and P. Maity, Coupled fixed point results in generalized metric spaces, Math. Comput. Modelling 54 (1-2) (2011) 73-79.
[11] R. Chugh, T. Kadian, A. Rani and B.E. Rhoades, Property P in G-metric spaces, Fixed Point Theory Appl. 2010 (2010), 12 p., Art. ID 401684.
[12] A. S. Cvetković, M.P. Stanić, S. Dimitrijević and S. Simić, Common fixed point theorems for four mappings on cone metric type space, Fixed Point Theory Appl. 2011 (2011), Art. ID 589725.
[13] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena 46 (2) (1998) 263-276.
[14] H. Huang and S. Xu, Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed Point Theory Appl. 2012:220 (2012).
[15] N. Hussain, D. Đorić, Z. Kadelburg and S. Radenović, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl. 2012:126 (2012).
[16] N. Hussain, V. Parvaneh, J.R. Roshan and Z. Kadelburg, Fixed points of cyclic $(\psi, \varphi, L, A, B)-$ contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl. 2013:256 (2013).
[17] N. Hussain and M.H. Shah, KKM mappings in cone b-metric spaces, Comput. Math. Appl. 62 (2011) 1677-1684.
[18] M. Jovanović, Z. Kadelburg and S. Radenović, Common fixed point results in metric-type spaces, Fixed Point Theory Appl., Vol. 2010, Article ID 978121.
[19] Z. Kadelburg, H.K. Nashine and S. Radenović, Common coupled fixed point results in partially ordered G-metric spaces, Bull. Math. Anal. Appl. 4(2) (2012) 51-63.
[20] M.A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. 73 (9) (2010), 3123-3129.
[21] V. Lakshmikantham and Lj.B. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009) 4341-4349.
[22] Z. Mustafa, A new structure for generalized metric spaces with applications to fixed point theory, Ph.D. Thesis, The University of Newcastle, Callaghan, Australia, 2005.
[23] Z. Mustafa, H. Obiedat and F. Awawdeh, Some common fixed point theorems for mapping on complete G-metric spaces, Fixed Point Theory Appl. 2008 (2008), 12 p., Art. ID 189870.
[24] Z. Mustafa, J.R. Roshan and V. Parvaneh, Coupled coincidence point results for (ψ, φ) weakly contractive mappings in partially ordered G_{b}-metric spaces, Fixed Point Theory Appl. 2013:206 (2013).
[25] Z. Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed point results in G-metric spaces, Int. J. Math. Math. Sci. 2009 (2009) p. 10, Art. ID 283028.
[26] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006) 289-297.
[27] Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl. 2009 (2009) 10 p., Art. ID 917175.
[28] Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces, in: Proceedings of the International Conference on Fixed Point Theory and Appl., Yokohama, Japan, 2004, pp. 189-198.
[29] M. Pacurar, Sequences of almost contractions and fixed points in b-metric spaces, Anal. Univ. de Vest, Timisoara, Ser. Matematica Informatica 48, 3 (2010) 125-137.
[30] V. Parvaneh, J.R. Roshan and S. Radenović, Existence of tripled coincidence points in ordered b-metric spaces and an application to a system of integral equations, Fixed Point Theory Appl. 2103:130 (2013).
[31] J.R. Roshan, V. Parvaneh, S. Sedghi, N. Shobe and W. Shatanawi, Common fixed points of almost generalized (ψ, φ)-contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl. 2103:159 (2013).
[32] R. Saadati, S.M. Vaezpour, P. Vetro and B.E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Math. Comput. Modelling. 52 (2010) 797-801.
[33] S. Sedghi, I. Altun and N. Shobe, Coupled fixed point theorems for contractions in fuzzy metric spaces, Nonlinear Anal. 72 (2010) 1298-1304.
[34] M. H. Shah, S. Simić, N. Hussain, A. Sretenović and S. Radenović, Common fixed points theorems for occasionally weakly compatible pairs on cone metric type spaces, J. Comput. Anal. Appl. 14 (2) (2012) 290-297.
[35] W. Shatanawi, Coupled fixed point theorems in generalized metric spaces, Hacet. J. Math. Stat. 40(3) (2011) 441-447.
[36] W. Shatanawi, Fixed point theory for contractive mappings satisfying Φ-maps in G-metric spaces, Fixed Point Theory Appl. 2010 (2010) 9 p., Art. ID 181650.
[37] S. L. Singh and B. Prasad, Some coincidence theorems and stability of iterative procedure, Comput. Math. Appl. 55 (2008) 2512-2520.
[38] M. P. Stanić, A.S. Cvetković, S. Simić and S. Dimitrijević, Common fixed point under contractive condition of Ciric's type on cone metric type spaces, Fixed Point Theory Appl. 2012:35 (2012).
[39] K.P.R. Rao, K. BhanuLakshmi, Z. Mustafa and V.C.C. Raju, Fixed and related fixed point theorems for three maps in G-metric spaces, J. Adv. Stud. Topology, 3 (4) (2012) 12-19.
(received 23.09.2012; in revised form 06.11.2013; available online 15.12.2013)
Sh. Sedghi, Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
E-mail: sedghi_gh@yahoo.com, sedghi.gh@qaemshahriau.ac.ir
N. Shobkolaei, Department of Mathematics, Science and Research Branch, 14778 93855, Tehran, Iran
E-mail: nabi_shobe@yahoo.com
J. R. Roshan, Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
E-mail: Jmlroshan@gmail.com, jml.roshan@qaemshahriau.ac.ir
W. Shatanawi, Department of Mathematics, Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan
E-mail: swasfi@hu.edu.jo

[^0]: 2010 Mathematics Subject Classification: 54H25, 47H10, 54E50
 Keywords and phrases: Common fixed point; coupled coincidence fixed point, b-metric space; G-metric space; generalized b-metric space.

