A COMPANION OF GRÜSS TYPE INEQUALITY FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS

Mohammad W. Alomari

Abstract

In this paper we derive a new companion of Grüss' type inequality for RiemannStieltjes integral. Applications to the approximation problem of the Riemann-Stieltjes are also pointed out.

1. Introduction

In 1935, G. Grüss proved the following famous inequality regarding the integral of the product of two functions and the product of the integrals:

$$
\begin{array}{r}
\left|\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x\right)\left(\frac{1}{b-a} \int_{a}^{b} g(x) d x\right)\right| \\
\leq \frac{1}{4}(\Phi-\phi)(\Gamma-\gamma)
\end{array}
$$

provided that f and g are two integrable functions on $[a, b]$ and satisfying the condition $\phi \leq f(x) \leq \Phi$ and $\gamma \leq g(x) \leq \Gamma$, for all $x \in[a, b]$. The constant $\frac{1}{4}$ is best possible in the sense that it cannot be replaced by a smaller one.

In [16], Dragomir and Fedotov have established the following functional:

$$
\begin{equation*}
\mathcal{D}(f ; u):=\int_{a}^{b} f(x) d u(x)-\frac{u(b)-u(a)}{b-a} \int_{a}^{b} f(t) d t \tag{1.1}
\end{equation*}
$$

provided that the Stieltjes integral $\int_{a}^{b} f(x) d u(x)$ and the Riemann integral $\int_{a}^{b} f(t) d t$ exist.

In the same paper, the authors have proved the following inequality:
Theorem 1. Let $f, u:[a, b] \rightarrow \mathbb{R}$ be such that u is of bounded variation on $[a, b]$ and f is Lipschitzian with the constant $K>0$. Then we have

$$
|\mathcal{D}(f ; u)| \leq \frac{1}{2} K(b-a) \bigvee_{a}^{b}(u),
$$

The constant $\frac{1}{2}$ is sharp in the sense that it cannot be replaced by a smaller quantity.

[^0]Also, in [7], Dragomir has obtained the following inequality:
Theorem 2. Let $f, u:[a, b] \rightarrow \mathbb{R}$ be such that u is Lipschitzian on $[a, b]$, i.e.,

$$
|u(y)-u(x)| \leq L|x-y|, \forall x, y \in[a, b], \quad(L>0)
$$

and f is Riemann integrable on $[a, b]$. If $m, M \in \mathbb{R}$, are such that $m \leq f(x) \leq M$, for any $x \in[a, b]$, then the inequality

$$
|\mathcal{D}(f ; u)| \leq \frac{1}{2} L(M-m)(b-a)
$$

holds true. The constant $\frac{1}{2}$ is sharp in the sense that it cannot be replaced by a smaller quantity.

For other recent inequalities for the Riemann-Stieltjes integral, see [1-7, 9-16, 18] and the references therein.

Motivated by [17], S.S. Dragomir in [10] has proved the following companion of the Ostrowski inequality for mappings of bounded variation:

Theorem 3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a mapping of bounded variation on $[a, b]$. Then we have the inequalities:

$$
\left|\frac{f(x)+f(a+b-x)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq\left[\frac{1}{4}+\left|\frac{x-\frac{3 a+b}{4}}{b-a}\right|\right] \cdot \bigvee_{a}^{b}(f)
$$

for any $x \in\left[a, \frac{a+b}{2}\right]$, where $\bigvee_{a}^{b}(f)$ denotes the total variation of f on $[a, b]$. The constant $1 / 4$ is best possible.

The aim of this paper, is to study a companion functional of (1.1). Namely, we introduce the functional

$$
\mathcal{G S}(f ; u):=\int_{a}^{\frac{a+b}{2}} \frac{f(x)+f(a+b-x)}{2} d u(x)-\frac{u\left(\frac{a+b}{2}\right)-u(a)}{b-a} \int_{a}^{b} f(t) d t,
$$

provided that the Stieltjes integral $\int_{a}^{b} \frac{f(x)+f(a+b-x)}{2} d u(x)$, and the Riemann integral $\int_{a}^{b} f(t) d t$ exist. Therefore, several bounds for $\mathcal{G} \mathcal{S}(f ; u)$ are obtained. More specifically, the integrand f is assumed to be of r - H-Hölder type and the integrator u is to be of bounded variation, Lipschitzian and monotonic.

2. The case of bounded variation integrators

The following result holds:
Theorem 4. Let $f:[a, b] \rightarrow \mathbb{R}$ be an r-H-Hölder type mapping on $[a, b]$, where r and $H>0$ are given, and $u:[a, b] \rightarrow \mathbb{R}$ be a mapping of bounded variation on $[a, b]$. Then the following inequality holds

$$
\begin{equation*}
|\mathcal{G S}(f ; u)| \leq \frac{H}{r+1}(b-a)^{r} \bigvee_{a}^{\frac{a+b}{2}}(u) \tag{2.1}
\end{equation*}
$$

Proof. It is well-known that for a continuous function $p:[a, b] \rightarrow \mathbb{R}$ and a function $\nu:[a, b] \rightarrow \mathbb{R}$ of bounded variation, one has the inequality

$$
\left|\int_{a}^{b} p(t) d \nu(t)\right| \leq \sup _{t \in[a, b]}|p(t)| \cdot \bigvee_{a}^{b}(\nu)
$$

Therefore, as u is of bounded variation on $[a, b]$, we have

$$
\begin{align*}
& \left|\int_{a}^{\frac{a+b}{2}} \frac{f(x)+f(a+b-x)}{2} d u(x)-\frac{u\left(\frac{a+b}{2}\right)-u(a)}{b-a} \int_{a}^{b} f(t) d t\right| \\
& =\left|\int_{a}^{\frac{a+b}{2}}\left[\frac{f(x)+f(a+b-x)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right] d u(x)\right| \\
& \leq \sup _{x \in\left[a, \frac{a+b}{2}\right]}\left|\frac{f(x)+f(a+b-x)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \cdot \bigvee_{a}^{\frac{a+b}{2}}(u) \\
& =\frac{1}{b-a} \sup _{x \in\left[a, \frac{a+b}{2}\right]}\left|\int_{a}^{b}\left[\frac{f(x)+f(a+b-x)}{2}-f(t)\right] d t\right| \cdot \bigvee_{a}^{\frac{a+b}{2}}(u) \tag{2.2}
\end{align*}
$$

As f is of r - H-Hölder type, then we have

$$
\begin{align*}
& \left|\int_{a}^{b}\left[\frac{f(x)+f(a+b-x)}{2}-f(t)\right] d t\right|=\left|\int_{a}^{b} \frac{f(x)-f(t)+f(a+b-x)-f(t)}{2} d t\right| \\
& \quad \leq \frac{1}{2} \int_{a}^{b}|f(x)-f(t)| d t+\frac{1}{2} \int_{a}^{b}|f(a+b-x)-f(t)| d t \\
& \quad \leq \frac{H}{2}\left[\int_{a}^{b}|x-t|^{r} d t+\int_{a}^{b}|a+b-x-t|^{r} d t\right] \\
& \quad=\frac{H}{r+1}\left[(x-a)^{r+1}+(b-x)^{r+1}\right] \tag{2.3}
\end{align*}
$$

It follows that

$$
\begin{align*}
\left.\sup _{x \in\left[a, \frac{a+b}{2}\right]} \right\rvert\, & \left.\int_{a}^{b}\left[\frac{f(x)+f(a+b-x)}{2}-f(t)\right] d t \right\rvert\, \\
& \leq \frac{H}{r+1} \cdot \sup _{x \in\left[a, \frac{a+b}{2}\right]}\left[(x-a)^{r+1}+(b-x)^{r+1}\right] \leq \frac{H}{r+1}(b-a)^{r+1} \tag{2.4}
\end{align*}
$$

Combining (2.2) and (2.4), we get the desired result in (2.1).
Remark 1. We remark that if $\bigvee_{a}^{\frac{a+b}{2}}(u)=\bigvee_{\frac{a+b}{2}}^{b}(u)$, then (2.1) becomes

$$
|\mathcal{G S}(f ; u)| \leq \frac{H}{2(r+1)}(b-a)^{r} \cdot \bigvee_{a}^{b}(u)
$$

Corollary 1. Let u be as in Theorem 4 and $f:[a, b] \rightarrow \mathbb{R}$ be an LLipschitzian mapping on $[a, b]$. Then the following inequality holds

$$
|\mathcal{G S}(f ; u)| \leq \frac{1}{2} L(b-a) \cdot \bigvee_{a}^{\frac{a+b}{2}}(u)
$$

Corollary 2. Assume that f is as in Theorem 4. Let $u \in C^{(1)}[a, b]$. Then we have the inequality

$$
|\mathcal{G S}(f ; u)| \leq \frac{H}{r+1}(b-a)^{r} \cdot\left\|u^{\prime}\right\|_{1,\left[a, \frac{a+b}{2}\right]}
$$

where $\|\cdot\|_{1}$ is the L_{1} norm, namely $\left\|u^{\prime}\right\|_{1,\left[a, \frac{a+b}{2}\right]}:=\int_{a}^{\frac{a+b}{2}}\left|u^{\prime}(t)\right| d t$.
Corollary 3. Assume that f is as in Theorem 4. Let $u:[a, b] \rightarrow \mathbb{R}$ be a Lipschitzian mapping with the constant $L>0$. Then we have the inequality

$$
|\mathcal{G S}(f ; u)| \leq \frac{L H}{2(r+1)}(b-a)^{r+1}
$$

Corollary 4. Assume that f is as in Theorem 4. Let $u:[a, b] \rightarrow \mathbb{R}$ be a monotonic mapping. Then we have the inequality

$$
|\mathcal{G S}(f ; u)| \leq \frac{H}{r+1}(b-a)^{r} \cdot\left|u\left(\frac{a+b}{2}\right)-u(a)\right|
$$

REmark 2. For the last three inequalities, one may deduce several inequalities for L-Lipschitzian mappings by setting $r=1$ and replace H by L. We left the details to the reader.

Remark 3. In Theorem 4, if $f(x)$ is assumed to be symmetric over $\left[a, \frac{a+b}{2}\right]$, i.e., $f(x)=f(a+b-x)$, then we have

$$
\left|\int_{a}^{\frac{a+b}{2}} f(x) d u(x)-\frac{u\left(\frac{a+b}{2}\right)-u(a)}{b-a} \int_{a}^{b} f(t) d t\right| \leq \frac{H}{r+1}(b-a)^{r} \cdot \bigvee_{a}^{\frac{a+b}{2}}(u)
$$

3. The case of Lipschitzian integrators

THEOREM 5. Let $f:[a, b] \rightarrow \mathbb{R}$ be an r-H-Hölder type mapping on $[a, b]$, and $u:[a, b] \rightarrow \mathbb{R}$ be an L-Lipschitzian mapping on $[a, b]$, where r and $H, L>0$ are given. Then the following inequality holds

$$
|\mathcal{G S}(f ; u)| \leq \frac{L H}{(r+1)(r+2)}(b-a)^{r+1}
$$

Proof. It is well-known that for a Riemann integrable function $p:[a, b] \rightarrow \mathbb{R}$ and L-Lipschitzian function $\nu:[a, b] \rightarrow \mathbb{R}$, one has the inequality

$$
\left|\int_{a}^{b} p(t) d \nu(t)\right| \leq L \int_{a}^{b}|p(t)| d t
$$

Therefore, as u is L-Lipschitzian on $[a, b]$, we have

$$
\begin{aligned}
& \left|\int_{a}^{\frac{a+b}{2}} \frac{f(x)+f(a+b-x)}{2} d u(x)-\frac{u\left(\frac{a+b}{2}\right)-u(a)}{b-a} \int_{a}^{b} f(t) d t\right| \\
& =\left|\int_{a}^{\frac{a+b}{2}}\left[\frac{f(x)+f(a+b-x)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right] d u(x)\right| \\
& \leq L \int_{a}^{\frac{a+b}{2}}\left|\frac{f(x)+f(a+b-x)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| d x \\
& =\frac{L}{b-a} \int_{a}^{\frac{a+b}{2}}\left|\int_{a}^{b}\left[\frac{f(x)+f(a+b-x)}{2}-f(t)\right] d t\right| d x
\end{aligned}
$$

As f is of r - H-Hölder type, by (2.3) we get

$$
\left|\int_{a}^{b}\left[\frac{f(x)+f(a+b-x)}{2}-f(t)\right] d t\right| \leq \frac{H}{r+1}\left[(x-a)^{r+1}+(b-x)^{r+1}\right]
$$

It follows that

$$
\begin{aligned}
& \left|\int_{a}^{\frac{a+b}{2}} \frac{f(x)+f(a+b-x)}{2} d u(x)-\frac{u\left(\frac{a+b}{2}\right)-u(a)}{b-a} \int_{a}^{b} f(t) d t\right| \\
& \leq \frac{L}{b-a} \int_{a}^{\frac{a+b}{2}}\left|\int_{a}^{b}\left[\frac{f(x)+f(a+b-x)}{2}-f(t)\right] d t\right| d x \\
& \leq \frac{L}{b-a} \cdot \frac{H}{r+1} \int_{a}^{\frac{a+b}{2}}\left[(x-a)^{r+1}+(b-x)^{r+1}\right] d x \\
& =\frac{L H}{(r+1)(r+2)}(b-a)^{r+1}
\end{aligned}
$$

and the theorem is proved.
Corollary 5. Let u be as in Theorem 5 and $f:[a, b] \rightarrow \mathbb{R}$ be a K-Lipschitzian mapping on $[a, b]$. Then the following inequality holds

$$
|\mathcal{G S}(f ; u)| \leq \frac{1}{6} L K(b-a)^{2}
$$

Remark 4. In Theorem 5, if $f(x)$ is assumed to be symmetric over $\left[a, \frac{a+b}{2}\right]$, i.e., $f(x)=f(a+b-x)$, then we have

$$
\left|\int_{a}^{\frac{a+b}{2}} f(x) d u(x)-\frac{u\left(\frac{a+b}{2}\right)-u(a)}{b-a} \int_{a}^{b} f(t) d t\right| \leq \frac{L H}{(r+1)(r+2)}(b-a)^{r+1}
$$

4. The case of monotonic integrators

THEOREM 6. Let $f:[a, b] \rightarrow \mathbb{R}$ be an r-H-Hölder type mapping on $[a, b]$, and $u:[a, b] \rightarrow \mathbb{R}$ be a monotonic mapping on $[a, b]$, where r and $H>0$ are given. Then the following inequality holds

$$
|\mathcal{G S}(f ; u)| \leq \frac{H}{r+1}\left(1+\frac{1}{2^{r+1}}\right)(b-a)^{r}\left[u\left(\frac{a+b}{2}\right)-u(a)\right]
$$

Proof. It is well-known that for a monotonic non-decreasing function $\nu:[a, b] \rightarrow$ \mathbb{R} and continuous function $p:[a, b] \rightarrow \mathbb{R}$, one has the inequality

$$
\left|\int_{a}^{b} p(t) d \nu(t)\right| \leq \int_{a}^{b}|p(t)| d \nu(t)
$$

Therefore, as u is monotonic non-decreasing on $[a, b]$, we have

$$
\begin{aligned}
& \left|\int_{a}^{\frac{a+b}{2}} \frac{f(x)+f(a+b-x)}{2} d u(x)-\frac{u\left(\frac{a+b}{2}\right)-u(a)}{b-a} \int_{a}^{b} f(t) d t\right| \\
& =\left|\int_{a}^{\frac{a+b}{2}}\left[\frac{f(x)+f(a+b-x)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right] d u(x)\right| \\
& =\frac{1}{b-a}\left|\int_{a}^{\frac{a+b}{2}}\left[\int_{a}^{b}\left(\frac{f(x)+f(a+b-x)}{2}-f(t)\right) d t\right] d u(x)\right| \\
& \leq \frac{1}{b-a} \int_{a}^{\frac{a+b}{2}}\left|\int_{a}^{b}\left[\frac{f(x)+f(a+b-x)}{2}-f(t)\right] d t\right| d u(x) .
\end{aligned}
$$

As f is of r - H-Hölder type, by (2.3) we get

$$
\left|\int_{a}^{b}\left[\frac{f(x)+f(a+b-x)}{2}-f(t)\right] d t\right| \leq \frac{H}{r+1}\left[(x-a)^{r+1}+(b-x)^{r+1}\right] .
$$

It follows that

$$
\begin{align*}
& \left|\int_{a}^{\frac{a+b}{2}} \frac{f(x)+f(a+b-x)}{2} d u(x)-\frac{u\left(\frac{a+b}{2}\right)-u(a)}{b-a} \int_{a}^{b} f(t) d t\right| \\
& \leq \frac{1}{b-a} \int_{a}^{\frac{a+b}{2}}\left|\int_{a}^{b}\left[\frac{f(x)+f(a+b-x)}{2}-f(t)\right] d t\right| d u(x) \\
& \leq \frac{1}{b-a} \cdot \frac{H}{r+1} \int_{a}^{\frac{a+b}{2}}\left[(x-a)^{r+1}+(b-x)^{r+1}\right] d u(x) \tag{4.1}
\end{align*}
$$

Now, using Riemann-Stieltjes integral we have

$$
\int_{a}^{\frac{a+b}{2}}(x-a)^{r+1} d u(x)=\frac{(b-a)^{r+1}}{2^{r+1}} u\left(\frac{a+b}{2}\right)-(r+1) \int_{a}^{\frac{a+b}{2}}(x-a)^{r} u(x) d x
$$

and

$$
\begin{aligned}
\int_{a}^{\frac{a+b}{2}} & (b-x)^{r+1} d u(x) \\
& =\frac{(b-a)^{r+1}}{2^{r+1}} u\left(\frac{a+b}{2}\right)-(b-a)^{r+1} u(a)+(r+1) \int_{a}^{\frac{a+b}{2}}(b-x)^{r} u(x) d x
\end{aligned}
$$

Adding the above equalities, we get

$$
\begin{aligned}
& \int_{a}^{\frac{a+b}{2}}\left[(x-a)^{r+1}+(b-x)^{r+1}\right] d u(x) \\
& \quad=(b-a)^{r+1}\left[\frac{1}{2^{r}} u\left(\frac{a+b}{2}\right)-u(a)\right]+(r+1) \int_{a}^{\frac{a+b}{2}}\left[(b-x)^{r}-(x-a)^{r}\right] u(x) d x
\end{aligned}
$$

Now, by the monotonicity property of u we have

$$
\int_{a}^{\frac{a+b}{2}}(x-a)^{r} u(x) d x \geq u(a) \int_{a}^{\frac{a+b}{2}}(x-a)^{r} d x=\frac{(b-a)^{r+1}}{2^{r+1}(r+1)} u(a)
$$

and

$$
\begin{aligned}
\int_{a}^{\frac{a+b}{2}}(b-x)^{r} u(x) d x & \leq u\left(\frac{a+b}{2}\right) \int_{a}^{\frac{a+b}{2}}(b-x)^{r} d x \\
& =\frac{\left(2^{r+1}-1\right)}{2^{r+1}(r+1)}(b-a)^{r+1} u\left(\frac{a+b}{2}\right)
\end{aligned}
$$

which gives that

$$
\begin{align*}
& \int_{a}^{\frac{a+b}{2}}\left[(b-x)^{r}-(x-a)^{r}\right] u(x) d x \\
&=\frac{(b-a)^{r+1}}{2^{r+1}(r+1)}\left[\left(2^{r+1}-1\right) u\left(\frac{a+b}{2}\right)-u(a)\right] \tag{4.3}
\end{align*}
$$

Therefore, by (4.2) and (4.3), we have

$$
\begin{align*}
& \int_{a}^{\frac{a+b}{2}}\left[(x-a)^{r+1}+(b-x)^{r+1}\right] d u(x) \\
& =(b-a)^{r+1}\left[\frac{1}{2^{r}} u\left(\frac{a+b}{2}\right)-u(a)\right]+\frac{(b-a)^{r+1}}{2^{r+1}}\left[\left(2^{r+1}-1\right) u\left(\frac{a+b}{2}\right)-u(a)\right] \\
& =\left(1+\frac{1}{2^{r+1}}\right)(b-a)^{r+1}\left[u\left(\frac{a+b}{2}\right)-u(a)\right] \tag{4.4}
\end{align*}
$$

Combining (4.1) and (4.4), we get

$$
\begin{aligned}
\left\lvert\, \int_{a}^{\frac{a+b}{2}} \frac{f(x)+f(a+b-x)}{2} d u(x)\right. & \left.-\frac{u\left(\frac{a+b}{2}\right)-u(a)}{b-a} \int_{a}^{b} f(t) d t \right\rvert\, \\
& \leq \frac{H}{r+1}\left(1+\frac{1}{2^{r+1}}\right)(b-a)^{r}\left[u\left(\frac{a+b}{2}\right)-u(a)\right]
\end{aligned}
$$

which is required.

Corollary 6. Let $f:[a, b] \rightarrow \mathbb{R}$ be a K-Lipschitzian mapping on $[a, b]$, and $u:[a, b] \rightarrow \mathbb{R}$ be a monotonic mapping on $[a, b]$, where $L>0$ is given. Then the following inequality holds

$$
|\mathcal{G S}(f ; u)| \leq \frac{5 K}{8}(b-a)\left[u\left(\frac{a+b}{2}\right)-u(a)\right]
$$

5. A numerical quadrature formula for the Riemann-Stieltjes integral

In this section, we use Theorems 4-6 to approximate the Riemann-Stieltjes integral $\int_{a}^{\frac{a+b}{2}}\left[\frac{f(x)+f(a+b-x)}{2}\right] d u(x)$, in terms of the Riemann integral $\int_{a}^{b} f(t) d t$.

Theorem 7. Let f, u be as in Theorem 4 and let

$$
I_{h}:=\left\{a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b\right\}
$$

be a partition of $[a, b]$. Denote $h_{i}=x_{i+1}-x_{i}, i=1,2, \ldots, n-1$. Then we have

$$
\int_{a}^{\frac{a+b}{2}} \frac{f(x)+f(a+b-x)}{2} d u(x)=A_{n}\left(f, u, I_{h}\right)+R_{n}\left(f, u, I_{h}\right)
$$

where

$$
\begin{equation*}
A_{n}\left(f, u, I_{h}\right)=\sum_{i=0}^{n-1} \frac{u\left(\frac{x_{i+1}+x_{i}}{2}\right)-u\left(x_{i}\right)}{h_{i}} \times \int_{x_{i}}^{\frac{x_{i+1}+x_{i}}{2}} f(t) d t \tag{5.1}
\end{equation*}
$$

and the remainder $R_{n}\left(f, u, I_{h}\right)$ satisfies the estimation

$$
\left|R_{n}\left(f, u, I_{h}\right)\right| \leq \frac{H}{r+1} \cdot[\nu(h)]^{r} \cdot \bigvee_{a}^{\frac{a+b}{2}}(u)
$$

where $\nu(h)=\max _{i=\overline{0, n-1}}\left\{h_{i}\right\}$.
Proof. Applying Theorem 4 on the intervals $\left[x_{i}, x_{i+1}\right], i=1,2, \ldots, n-1$, we get

$$
\begin{array}{r}
\left|\int_{x_{i}}^{\frac{x_{i+1}+x_{i}}{2}} \frac{f(x)+f(a+b-x)}{2} d u(x)-\frac{u\left(\frac{x_{i+1}+x_{i}}{2}\right)-u\left(x_{i}\right)}{h_{i}} \int_{x_{i}}^{\frac{x_{i+1}+x_{i}}{2}} f(t) d t\right| \\
\leq \frac{H}{r+1} \cdot h_{i}^{r} \cdot \bigvee_{x_{i}}^{\frac{x_{i+1}+x_{i}}{2}}(u) .
\end{array}
$$

Summing the above inequality over i from 0 to $n-1$ and using the generalized triangle inequality, we deduce that

$$
\begin{aligned}
& \left|\int_{a}^{\frac{a+b}{2}} \frac{f(x)+f(a+b-x)}{2} d u(x)-A_{n}\left(f, u, I_{h}\right)\right| \\
& \leq \frac{H}{r+1} \sum_{i=0}^{n-1} h_{i}^{r} \cdot \bigvee_{x_{i}}^{\frac{x_{i+1}+x_{i}}{2}}(u) \leq \frac{H}{r+1} \max \left\{h_{i}^{r}\right\} \cdot \sum_{i=0, n-1}^{n-1} \bigvee_{x_{i}}^{\frac{x_{i+1}+x_{i}}{2}}(u) \\
& =\frac{H}{r+1}\left[\max _{i=0, n-1}^{\left\{h_{i}\right\}}\right. \\
&]^{r} \cdot \bigvee_{a}^{\frac{a+b}{2}}(u)=\frac{H}{r+1}[\nu(h)]^{r} \cdot \bigvee_{a}^{\frac{a+b}{2}}(u),
\end{aligned}
$$

and the theorem is proved.

Theorem 8. Let f, u be as in Theorem 5. Let I_{h} be as above. Then we have

$$
\int_{a}^{\frac{a+b}{2}} \frac{f(x)+f(a+b-x)}{2} d u(x)=A_{n}\left(f, u, I_{h}\right)+R_{n}\left(f, u, I_{h}\right)
$$

where $A_{n}\left(f, u, I_{h}\right)$ is defined in (5.1) and the remainder $R_{n}\left(f, u, I_{h}\right)$ satisfies the estimation

$$
\left|R_{n}\left(f, u, I_{h}\right)\right| \leq \frac{L H}{(r+1)(r+2)} \cdot[\nu(h)]^{r} \cdot(b-a)
$$

where $\nu(h)=\max _{i=\overline{0, n-1}}\left\{h_{i}\right\}$.
Proof. Applying Theorem 5 on the intervals $\left[x_{i}, x_{i+1}\right], i=1,2, \ldots, n-1$, we get

$$
\begin{array}{r}
\left|\int_{x_{i}}^{\frac{x_{i+1}+x_{i}}{2}} \frac{f(x)+f(a+b-x)}{2} d u(x)-\frac{u\left(\frac{x_{i+1}+x_{i}}{2}\right)-u\left(x_{i}\right)}{h_{i}} \int_{x_{i}}^{\frac{x_{i+1}+x_{i}}{2}} f(t) d t\right| \\
\leq \frac{L H}{(r+1)(r+2)} \cdot h_{i}^{r+1}
\end{array}
$$

Summing the above inequality over i from 0 to $n-1$ and using the generalized triangle inequality, we deduce that

$$
\begin{aligned}
& \left|\int_{a}^{\frac{a+b}{2}} \frac{f(x)+f(a+b-x)}{2} d u(x)-A_{n}\left(f, u, I_{h}\right)\right| \leq \frac{L H}{(r+1)(r+2)} \sum_{i=0}^{n-1} h_{i}^{r+1} \\
& \quad \leq \frac{L H}{(r+1)(r+2)}\left[\max _{i=\overline{0, n-1}}\left\{h_{i}\right\}\right]^{r} \cdot \sum_{i=0}^{n-1} h_{i} \leq \frac{L H}{(r+1)(r+2)}[\nu(h)]^{r} \cdot(b-a)
\end{aligned}
$$

and the theorem is proved.
Theorem 9. Let f, u be as in Theorem 6 and let I_{h} be as above. Then we have

$$
\int_{a}^{\frac{a+b}{2}} \frac{f(x)+f(a+b-x)}{2} d u(x)=A_{n}\left(f, u, I_{h}\right)+R_{n}\left(f, u, I_{h}\right)
$$

where $A_{n}\left(f, u, I_{h}\right)$ is defined in (5.1) and the remainder $R_{n}\left(f, u, I_{h}\right)$ satisfies the estimation

$$
\left|R_{n}\left(f, u, I_{h}\right)\right| \leq \frac{H}{r+1}\left(1+\frac{1}{2^{r+1}}\right)[\nu(h)]^{r}\left[u\left(\frac{a+b}{2}\right)-u(a)\right]
$$

where $\nu(h)=\max _{i=\overline{0, n-1}}\left\{h_{i}\right\}$.
Proof. Applying Theorem 6 on the intervals $\left[x_{i}, x_{i+1}\right], i=1,2, \ldots, n-1$, we get

$$
\begin{aligned}
\left\lvert\, \int_{x_{i}}^{\frac{x_{i+1}+x_{i}}{2}} \frac{f(x)+f(a+b-x)}{2}\right. & \left.d u(x)-\frac{u\left(\frac{x_{i+1}+x_{i}}{2}\right)-u\left(x_{i}\right)}{h_{i}} \int_{x_{i}}^{\frac{x_{i+1}+x_{i}}{2}} f(t) d t \right\rvert\, \\
\leq & \frac{H}{r+1}\left(1+\frac{1}{2^{r+1}}\right) \cdot h_{i}^{r}\left[u\left(\frac{x_{i}+x_{i+1}}{2}\right)-u\left(x_{i}\right)\right] .
\end{aligned}
$$

Summing the above inequality over i from 0 to $n-1$ and using the generalized triangle inequality, we deduce that

$$
\begin{aligned}
& \left|\int_{a}^{\frac{a+b}{2}} \frac{f(x)+f(a+b-x)}{2} d u(x)-A_{n}\left(f, u, I_{h}\right)\right| \\
& \leq \frac{H}{r+1}\left(1+\frac{1}{2^{r+1}}\right) \sum_{i=0}^{n-1} h_{i}^{r}\left[u\left(\frac{x_{i}+x_{i+1}}{2}\right)-u\left(x_{i}\right)\right] \\
& \leq \frac{H}{r+1}\left(1+\frac{1}{2^{r+1}}\right)\left[\max _{i=0, n-1}\left\{h_{i}\right\}\right]^{r} \cdot \sum_{i=0}^{n-1}\left[u\left(\frac{x_{i}+x_{i+1}}{2}\right)-u\left(x_{i}\right)\right] \\
& \leq \frac{H}{r+1}\left(1+\frac{1}{2^{r+1}}\right)[\nu(h)]^{r}\left[u\left(\frac{a+b}{2}\right)-u(a)\right]
\end{aligned}
$$

and the theorem is proved.

REFERENCES

[1] N.S. Barnett, S.S. Dragomir and I. Gomma, A companion for the Ostrowski and the generalised trapezoid inequalities, Math. Comput. Modelling, 50 (2009), 179-187.
[2] N.S. Barnett, W.-S. Cheung, S.S. Dragomir, A. Sofo, Ostrowski and trapezoid type inequalities for the Stieltjes integral with Lipschitzian integrands or integrators, Comp. Math. Appl., 57 (2009), 195-201.
[3] P. Cerone, W.S. Cheung, S.S. Dragomir, On Ostrowski type inequalities for Stieltjes integrals with absolutely continuous integrands and integrators of bounded variation, Comp. Math. Appl., 54 (2007), 183-191.
[4] P. Cerone, S.S. Dragomir, New bounds for the three-point rule involving the Riemann-Stieltjes integrals, in: C. Gulati, et al. (Eds.), Advances in Statistics Combinatorics and Related Areas, World Science Publishing, 2002, pp. 53-62.
[5] P. Cerone, S.S. Dragomir, Approximating the Riemann-Stieltjes integral via some moments of the integrand, Math. Comput. Modelling, 49 (2009), 242-248.
[6] S.S. Dragomir and Th.GS. Rassias (Ed.), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, Dordrecht, 2002.
[7] S.S. Dragomir, Inequalities of Grüss type for the Stieltjes integral and applications, Kragujevac J. Math., 26 (2004) 89-112.
[8] S.S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ where f is of Hölder type and u is of bounded variation and applications, J. KSIAM, 5 (2001), 3545.
[9] S.S. Dragomir, On the Ostrowski's inequality for Riemann-Stieltes integral and applications, Korean J. Comput. \& Appl. Math., 7 (2000), 611-627.
[10] S.S. Dragomir, A companion of Ostrowski's inequality for functions of bounded variation and applications, RGMIA Preprint, Vol. 5 Supp. (2002) article No. 28. [http://ajmaa.org/ RGGSIA/papers/v5e/COIFBVApp.pdf]
[11] S.S. Dragomir, Some inequalities of midpoint and trapezoid type for the Riemann-Stieltjes integral, Nonlinear Anal. 47 (4) (2001) 2333-2340.
[12] S.S. Dragomir, Approximating the RiemannStieltjes integral in terms of generalised trapezoidal rules, Nonlinear Anal. TMA 71 (2009) e62-e72.
[13] S.S. Dragomir, Approximating the Riemann-Stieltjes integral by a trapezoidal quadrature rule with applications, Math. Comput. Modelling 54 (2011) 243-260.
[14] S.S. Dragomir, C. Buşe, M.V. Boldea, L. Braescu, A generalisation of the trapezoid rule for the Riemann-Stieltjes integral and applications, Nonlinear Anal. Forum 6 (2) (2001) 33-351.
[15] S.S. Dragomir, I. Fedotov, A Grüss type inequality for mappings of bounded variation and applications to numerical analysis, Nonlinear Funct. Anal. Appl., 6 (3) (2001) 425-433.
[16] S.S. Dragomir, I. Fedotov, An inequality of Grüss type for RiemannStieltjes integral and applications for special means, Tamkang J. Math., 29 (4) (1998) 287-292.
[17] A. Guessab and G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Th., 115 (2002), 260-288.
[18] Z. Liu, Refinement of an inequality of Grüss type for Riemann-Stieltjes integral, Soochow J. Math., 30 (4) (2004) 483-489.
(received 24.09.2012; available online 01.08.2013)
Department of Mathematics, Faculty of Science, Jerash University, 26150 Jerash, Jordan
E-mail: mwomath@gmail.com

[^0]: 2010 Mathematics Subject Classification: 26D15, 26D20, 41A55
 Keywords and phrases: Ostrowski's inequality; bounded variation; Riemann-Stieltjes integral.

