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A NEW FASTER ITERATION PROCESS APPLIED TO
CONSTRAINED MINIMIZATION AND FEASIBILITY PROBLEMS

Mujahid Abbas and Talat Nazir

Abstract. We introduce a new iteration process and prove that it is faster than all of
Picard, Mann and Agarwal et al. processes. We support analytic proof by a numerical example.
Our process is independent of all three processes just mentioned. We also prove some weak and
strong convergence theorems for two nonexpansive mappings. Moreover, we apply our results to
find solutions of constrained minimization problems and feasibility problems.

1. Introduction and preliminaries

Most of the physical problems of applied sciences and engineering are usually
formulated as functional equations. Such equations can be written in the form of
fixed point equations in an easy manner. It is always desired to develop an iterative
process which approximate the solution of these equations in fewer number of steps.
The study of variational inequality and complementarity problems of mappings
satisfying certain constraints has been at the center of rigorous research activity.
Given the fact, complementarity and variational inequality problems which are
extremely useful in optimization theory that can be found by solving an equation
with some special form of nonlinear function f , it is very important to develop
some faster iterative process to find the approximate solution. We introduce a new
iteration process and prove that it is faster than all of Picard, Mann and Agarwal
et al. [3] processes. We support analytic proof by numerical examples. Our process
is independent of all three processes just mentioned. We also prove some weak and
strong convergence theorems for the nonexpansive mappings. Moreover, we apply
our results to find solutions of constrained minimization problems and feasibility
problems.

Throughout this paper, N denotes the set of all positive integers. Let E be a
real Banach space and C a nonempty subset of E. Let T : C → C be a mapping.
Then we denote the set of all fixed points of T by F (T ). T is called L-Lipschitzian
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if there exists a constant L > 0 such that ‖Tx − Ty‖ ≤ L‖x − y‖ for all x, y ∈ C.
An L-Lipschitzian is called contraction if L ∈ (0, 1), and nonexpansive if L = 1.

We know that the Picard, Mann and Ishikawa iteration processes are defined
respectively as: {

x1 = x ∈ C,

xn+1 = Txn, n ∈ N,
(1)

{
x1 = x ∈ C,

xn+1 = (1− αn)xn + αnTxn, n ∈ N (2)

and 



x1 = x ∈ C,

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn, n ∈ N,

(3)

where {αn} and {βn} are in (0, 1).
The following definitions about the rate of convergence are due to Berinde [4].

See also [10].

Definition 1. Let {an} and {bn} be two sequences of positive numbers that
converge to a, respectively b. Assume that there exists

lim
n→∞

|an − a|
|bn − b| = 0,

then it is said that the sequence {an} converges to a faster than {bn} to b.

Definition 2. Suppose that for two fixed point iteration processes {un} and
{vn} both converging to the same fixed point p, the following error estimates

‖un − p‖ ≤ an for all n ∈ N,

‖vn − p‖ ≤ bn for all n ∈ N,

are available where {an} and {bn} are two sequences of positive numbers (converg-
ing to zero). If {an} converges faster than {bn}, then {un} converges faster than
{vn} to p.

In the sequel, whenever we talk about the rate of convergence, we refer to given
by the above definitions.

Recently, Agarwal et al. [1] posed the following question:
Question 1. Is it possible to develop an iteration process whose rate of

convergence is faster than the Picard iteration?
As an answer, they introduced the following iteration process:





x1 = x ∈ C,

xn+1 = (1− αn)Txn + αnTyn,

yn = (1− βn)xn + βnTxn, n ∈ N,

(4)
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where {αn} and {βn} are in (0, 1). They showed that this process converges at a rate
same as that of Picard iteration and faster than Mann iteration for contractions.
Continuing with the same question, Sahu [10] recently proved that this process
converges at a rate faster than both Picard and Mann iterations for contractions,
by giving a numerical example in support of his claim.

Having this in mind, we pose the following question:
Question 2. Is it possible to develop an iteration process whose rate of

convergence is even faster than the iteration (4)?
As an answer we introduce the following iteration process.





x1 = x ∈ C,

xn+1 = (1− αn)Tyn + αnTzn,

yn = (1− βn)Txn + βnTzn,

zn = (1− γn)xn + γnTxn, n ∈ N,

(5)

where {αn}, {βn} and {γn} are in (0, 1).
In this paper, we prove some weak and strong convergence theorems for non-

expansive mappings using (5). We prove that our process converges faster than (4).
We also give a numerical example in support of our claim.

We recall the following. Let S = {x ∈ E : ‖x‖ = 1} and let E∗ be the dual of
E, that is, the space of all continuous linear functional f on E. The space E has:
(i) Gâteaux differentiable norm if

lim
t→0

‖x + ty‖ − ‖x‖
t

,

exists for each x and y in S;
(ii) Fréchet differentiable norm (see e.g. [2, 13] if for each x in S, the above limit

exists and is attained uniformly for y in S and in this case, it is also well-known
that

〈h, J(x)〉+
1
2
‖x‖2 ≤ 1

2
‖x + h‖2 ≤ 〈h, J(x)〉+

1
2
‖x‖2 + b(‖h‖) (6)

for all x, h in E, where J is the Fréchet derivative of the functional 1
2 ‖.‖2 at

x ∈ X, 〈·, ·〉 is the pairing between E and E∗, and b is an increasing function
defined on [0,∞) such that limt↓0

b(t)
t = 0;

(iii) Opial condition [8] if for any sequence {xn} in E, xn ⇀ x implies that
lim supn→∞ ‖xn − x‖ < lim supn→∞ ‖xn − y‖ for all y ∈ E with y 6= x. Ex-
amples of Banach spaces satisfying Opial condition are Hilbert spaces and all
spaces lp(1 < p < ∞). On the other hand, Lp[0, 2π] with 1 < p 6= 2 fail to
satisfy Opial condition.
A mapping T : C → E is demiclosed at y ∈ E if for each sequence {xn} in C

and each x ∈ E, xn ⇀ x and Txn → y imply that x ∈ C and Tx = y.
First we state the following lemmas to be used later on.
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Lemma 1. [11] Suppose that E is a uniformly convex Banach space and 0 <
p ≤ tn ≤ q < 1 for all n ∈ N. Let {xn} and {yn} be two sequences of E such that
lim supn→∞ ‖xn‖ ≤ r, lim supn→∞ ‖yn‖ ≤ r and limn→∞ ‖tnxn + (1− tn)yn‖ = r
hold for some r ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

Lemma 1. [5] Let E be a uniformly convex Banach space and let C be a
nonempty closed convex subset of E. Let T be a nonexpansive mapping of C into
itself. Then I − T is demiclosed with respect to zero.

2. Rate of convergence

In this section, we show that our process (5) converges faster than (4). Analytic
proof is given on the lines similar to those of Sahu [10]. A numerical example in
support of our claim is given afterwards.

Theorem 3. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E. Let T be a contraction with a contraction factor k ∈ (0, 1) and
fixed point q. Let {un} be defined by the iteration process





u1 = x ∈ C,

un+1 = (1− αn)Tun + αnTvn,

vn = (1− βn)un + βnTun, n ∈ N
and {xn} by 




x1 = x ∈ C,

xn+1 = (1− αn)Tyn + αnTzn,

yn = (1− βn)Txn + βnTzn,

zn = (1− γn)xn + γnTxn, n ∈ N,

where {αn}, {βn} and {γn} are in [ε, 1− ε] for all n ∈ N and for some ε in (0, 1).
Then {xn} converges faster than {un}. That is, our process (5) converges faster
than (4).

Proof. As proved in Theorem 3.6 of Sahu [10], ‖un+1 − q‖ ≤ kn[1 − (1 −
k)αβ]n ‖u1 − q‖ for all n ∈ N. Let

an = kn[1− (1− k)αβ]n ‖u1 − q‖ .

Now

‖zn − q‖ = ‖(1− γn)xn + γnTxn − q‖ ≤ (1− γn) ‖xn − q‖+ kγn ‖xn − q‖
= (1− (1− k) γn) ‖xn − q‖ ,

so that

‖yn − q‖ = ‖(1− βn)Txn + βnTzn − q‖ ≤ k (1− βn) ‖xn − q‖+ βnk ‖zn − q‖
≤ k [(1− βn) + βn (1− (1− k) γn)] ‖xn − q‖
= k [1− (1− k)βnγn] ‖xn − q‖ .
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Thus

‖xn+1 − q‖ = ‖(1− αn)Tyn + αnTzn − q‖
≤ [

(1− αn)k2(1− (1− k)βnγn) + αnk (1− (1− k) γn)
] ‖xn − q‖

< k [1− αn − (1− k) (1− αn)βnγn + αn − (1− k) αnγn] ‖xn − q‖
≤ k [1− (1− k) αnβnγn + (1− k)αnβnγn − (1− k)αnβnγn] ‖xn − q‖
= k [1− (1− k) αnβnγn] ‖xn − q‖ .

Let
bn = kn [1− (1− k)αβγ]n ‖x1 − q‖ .

Then
bn

an
=

kn [1− (1− k)αβγ]n ‖x1 − q‖
kn[1− (1− k)αβ]n ‖u1 − q‖ =

[
1− (1− k)αβγ

1− (1− k)αβ

]n ‖x1 − q‖
‖u1 − q‖

→ 0 as n →∞.

Consequently {xn} converges faster than {un}.
Now, we present an example which shows that our iteration process (5) con-

verges at a rate faster than both Agarwal et al. iteration process (4) and Picard
iteration process (1). Note that Sahu [10] has already given an example that Agar-
wal et al. process (4) converges at a rate faster than both Picard (1) and Mann
iteration processes (2).

Example 1. Let X = R and C = [1, 50]. Let T : C → C be an operator
defined by T (x) =

√
x2 − 8x + 40 for all x ∈ C. Choose αn = βn = γn = 1

2 , with
the initial value x1 = 30. The corresponding our iteration process, Agarwal et al.
iteration process (4) and Picard iteration process (1) are respectively given below.

No. of iterations Our Scheme Agarwal et al. Picard
1 30 30 30
2 24.7190745016294 25.5882938061377 26.4575131106459
3 19.6259918011617 21.2975671390087 22.9856454143631
4 14.8333116816574 17.1825447168428 19.6075172268171
5 10.5657980903686 13.3383202216318 16.3583188007017
6 7.27549523377657 9.93830773498313 13.2939100184926
7 5.53883084294713 7.28483266161142 10.5060346197715
8 5.07812107001585 5.7202701653486 8.14423025667036
9 5.00964607610839 5.15153820231574 6.4167471837608
10 5.00116164194966 5.02585594531354 5.46266116011379
11 5.00013945663076 5.00418380568606 5.11266835119445
12 5.00001673565453 5.00067063562347 5.02374669542064
13 5.00000200829091 5.00010733321846 5.00480342235184
14 5.00000024099509 5.0000171741223 5.00096289903954
15 5.00000002891941 5.00000274788024 5.00019266881324

All sequences converges to x∗ = 5. Comparison shows that our iteration
process (5) converges fastest than Agarwal et al. iteration process (4) and Picard
iteration process (1).
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3. Convergence theorems

In this section, we give some convergence theorems using our iteration process
(5). We start with proving a key theorem for later use.

Theorem 4. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E. Let T be a nonexpansive self mappings of C. Let {xn} be defined
by the iteration process (5) where {αn}, {βn} and {γn} are in [ε, 1 − ε] for all
n ∈ N and for some ε in (0, 1). If F (T ) 6= ∅, then limn→∞ ‖xn − Txn‖ = 0.

Proof. Let q ∈ F (T ). Then

‖xn+1 − q‖ = ‖(1− αn)Tyn + αnTzn − q‖
≤ (1− αn) ‖yn − q‖+ αn ‖zn − q‖
≤ (1− αn)(1− βn) ‖xn − q‖+ (1− αn)βn ‖zn − q‖+ αn ‖zn − q‖
≤ (1− αn)(1− βn) ‖xn − q‖

+ [(1− αn)βn + αn] [(1− γn) ‖Txn − q‖+ γn ‖xn − q‖]
≤ [(1− αn)(1− βn) + (1− αn)βn + αn] ‖xn − q‖
= ‖xn − q‖ .

Thus limn→∞ ‖xn − q‖ exists. Call it c.
Now ‖zn − q‖ ≤ (1− γn) ‖xn − q‖+ γn ‖xn − q‖ = ‖xn − q‖, implies that

lim sup
n→∞

‖zn − q‖ ≤ c. (7)

Similarly,

‖yn − q‖ ≤ (1− βn) ‖xn − q‖+ βn ‖zn − q‖
≤ (1− βn) ‖xn − q‖+ βn ‖xn − q‖ = ‖xn − q‖ ,

implies that
lim sup

n→∞
‖yn − q‖ ≤ c. (8)

Next, ‖Tyn − q‖ ≤ ‖yn − q‖, gives by (8) that

lim sup
n→∞

‖Tyn − q‖ ≤ c. (9)

Similarly,
lim sup

n→∞
‖Tzn − q‖ ≤ c.

Moreover, c = limn→∞ ‖xn+1− q‖ = limn→∞ ‖ (1− αn) (Tyn − q)+αn (Tzn − q) ‖
gives by Lemma 1, limn→∞ ‖Tyn − Tzn‖ = 0. Now

‖xn+1 − q‖ = ‖(Tyn − q) + αn (Tyn − Tzn)‖ ≤ ‖Tyn − q‖+ αn ‖Tyn − Tzn‖ ,

yields that c ≤ lim infn→∞ ‖Tyn − q‖, so that (9) gives limn→∞ ‖Tyn − q‖ = c.
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In turn, ‖Tyn − q‖ ≤ ‖Tyn − Tzn‖ + ‖Tzn − q‖ ≤ ‖Tyn − Tzn‖ + ‖zn − q‖
implies

c ≤ lim inf
n→∞

‖zn − q‖. (10)

By (7) and (10), we obtain
lim

n→∞
‖zn − q‖ = c.

Thus c = limn→∞ ‖zn − q‖ = limn→∞ ‖ (1− γn) (xn − q) + γn (Txn − q) ‖ gives by
Lemma 1 that limn→∞ ‖Txn − xn‖ = 0.

Lemma 5. Assume that the conditions of Theorem 4 are satisfied. Then, for
any p1, p2 ∈ F (T ), limn→∞ 〈xn, J(p1 − p2)〉 exists; in particular, 〈p− q, J(p1 − p2)〉
= 0 for all p, q ∈ ωw(xn).

Proof. Take x = p1 − p2 with p1 6= p2 and h = t(xn − p1) in the inequality (6)
to get

1
2
‖p1 − p2‖2 + t 〈xn − p1, J(p1 − p2)〉

≤ 1
2
‖txn + (1− t)p1 − p2‖2

≤ 1
2
‖p1 − p2‖2 + t 〈xn − p1, J(p1 − p2)〉+ b(t ‖xn − p1‖).

As supn≥1 ‖xn − p1‖ ≤ M ′ for some M ′ > 0, it follows that

1
2
‖p1 − p2‖2 + t lim sup

n→∞
〈xn − p1, J(p1 − p2)〉

≤ 1
2

lim
n→∞

‖txn + (1− t)p1 − p2‖2

≤ 1
2
‖p1 − p2‖2 + b(tM ′) + t lim inf

n→∞
〈xn − p1, J(p1 − p2)〉 .

That is,

lim sup
n→∞

〈xn − p1, J(p1 − p2)〉 ≤ lim inf
n→∞

〈xn − p1, J(p1 − p2)〉+
b(tM ′)
tM ′ M ′.

If t → 0, then limn→∞ 〈xn − p1, J(p1 − p2)〉 exists for all p1, p2 ∈ F (T ); in partic-
ular, we have 〈p− q, J(p1 − p2)〉 = 0 for all p, q ∈ ωw(xn).

We now give our weak convergence theorem.

Theorem 6. Let E be a uniformly convex Banach space and let C, T and {xn}
be taken as in Theorem 4. Assume that (a) E satisfies Opial’s condition or (b) E
has a Fréchet differentiable norm. If F (T ) 6= φ, then {xn} converges weakly to a
fixed point of T .

Proof. Let p ∈ F (T ). Then limn→∞ ‖xn − p‖ exists as proved in Theorem 4.
We prove that {xn} has a unique weak subsequential limit in F (T ). For, let u and
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v be weak limits of the subsequences {xni
} and {xnj

} of {xn}, respectively. By
Theorem 4, limn→∞ ‖xn − Txn‖ = 0 and I − T is demiclosed with respect to zero
by Lemma 2, therefore we obtain Tu = u. Again in the same manner, we can prove
that v ∈ F (T ). Next, we prove the uniqueness. To this end, first assume (a) is
true. If u and v are distinct, then by Opial condition,

lim
n→∞

‖xn − u‖ = lim
ni→∞

‖xni
− u‖ < lim

ni→∞
‖xni

− v‖ = lim
n→∞

‖xn − v‖
= lim

nj→∞
‖xnj − v‖ < lim

nj→∞
‖xnj − u‖ = lim

n→∞
‖xn − u‖.

This is a contradiction, so u = v. Next assume (b). By Lemma 5, 〈p− q, J(p1 − p2)〉
= 0 for all p, q ∈ ωw(xn). Therefore ‖u−v‖2 = 〈u− v, J(u− v)〉 = 0 implies u = v.
Consequently, {xn} converges weakly to a point of F (T ) and this completes the
proof.

A mapping T : C → C, where C is a subset of a normed space E, is said
to satisfy Condition (A) [12] if there exists a nondecreasing function f : [0,∞) →
[0,∞) with f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such that ‖x− Tx‖ ≥ f(d(x, F (T ))
for all x ∈ C where d(x, F (T )) = inf{‖x− p‖ : p ∈ F (T )}. It is to be noted that
Condition (A) is weaker than compactness of the domain C.

Theorem 7. Let E be a real Banach space and let C, T, F (T ), {xn} be tak-
en as in Theorem 4. Then {xn} converges to a point of F (T ) if and only if
lim infn→∞ d(xn, F (T )) = 0 where d(x, F (T )) = inf{‖x− p‖ : p ∈ F (T )}.

Proof. Necessity is obvious. Suppose that lim infn→∞ d(xn, F (T )) = 0.
As proved in Theorem 4, limn→∞ ‖xn − w‖ exists for all w ∈ F (T ), therefore
limn→∞ d(xn, F (T )) exists. But by hypothesis, lim infn→∞ d(xn, F (T )) = 0, there-
fore we have limn→∞ d(xn, F (T )) = 0. We will show that {xn} is a Cauchy sequence
in C. Since limn→∞ d(xn, F (T )) = 0, for given ε > 0, there exists n0 in N such
that for all n ≥ n0,

d(xn, F (T )) <
ε

2
.

Particularly, inf{‖xn0 − p‖ : p ∈ F (T )} < ε
2 . Hence, there exist p∗ ∈ F (T ) such

that ‖xn0 − p∗‖ < ε
2 . Now, for m, n ≥ n0,

‖xn+m − xn‖ ≤ ‖xn+m − p∗‖+ ‖xn − p∗‖ ≤ 2 ‖xn0 − p∗‖ < ε.

Hence {xn} is a Cauchy sequence in C. Since C is closed in the Banach
space E, so that there exists a point q in C such that limn→∞ xn = q. Now
limn→∞ d(xn, F (T )) = 0 gives that d(q, F (T )) = 0. Since F is closed, q ∈ F (T ).

Applying Theorem 7, we obtain a strong convergence of the process (5) under
Condition (A) as follows.

Theorem 8. Let E be a real uniformly convex Banach space and let C, T, F (T )
and {xn} be taken as in Theorem 4. Let T satisfy Condition (A), then {xn} con-
verges strongly to a fixed point of T .
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Proof. We proved in Theorem 4 that

lim
n→∞

‖xn − Txn‖ = 0. (11)

From Condition (A) and (11), we get

lim
n→∞

f(d(xn, F (T )) ≤ lim
n→∞

‖xn − Txn‖ = 0,

i.e., limn→∞ f(d(xn, F (T )) = 0. Since f : [0,∞) → [0,∞) is a nondecreasing
function satisfying f(0) = 0, f(r) > 0 for all r ∈ (0,∞), therefore we have

lim
n→∞

d(xn, F (T )) = 0.

Now all the conditions of Theorem 7 are satisfied, therefore by its conclusion {xn}
converges strongly to a point of F (T ).

4. Application to constrained optimization problems
and split feasibility problems

This section is devoted to some applications. Let H be a real Hilbert space
with inner product 〈·, ·〉 and norm ‖·‖, respectively. Let C be a nonempty closed
convex subset of H and T : C → H a nonlinear operator. T is said to be:
(1) monotone if 〈Tx− Ty, x− y〉 ≥ 0 for all x, y ∈ C,
(2) λ-strongly monotone if there exists a constant λ > 0 such that 〈Tx − Ty,

x− y〉 ≥ λ ‖x− y‖2 for all x, y ∈ C,
(3) v-inverse strongly monotone (v-ism) if there exists a constant v > 0 such that

〈Tx− Ty, x− y〉 ≥ v ‖Tx− Ty‖2 for all x, y ∈ C.
The variational inequality problem defined by C and T will be denoted by

V I(C, T ). These were initially studied by Kinderlehrer and Stampachhia [7]. The
variational inequality problem V I(C, T ) is the problem of finding a vector z in C
such that 〈Tz, z − k〉 ≥ 0 for all k ∈ C. The set of all such vectors which solve
variational inequality V I(C, T ) problem is denoted by Ω(C, T ). The variational
inequality problem is connected with various kinds of problems such as the convex
minimization problem, the complementarity problem, the problem of finding a point
u ∈ H satisfying 0 = Tu and so on. The existence and approximation of solutions
are important aspects in the study of variational inequalities. The variational
inequality problem V I(C, T ) is equivalent to the fixed point problem, that is

to find x∗ ∈ C such that x∗ = Fµx∗ = PC(I − µT )x∗,

where µ > 0 is a constant and PC is the metric projection from H onto C and
Fµ := PC(I − µT ). If T is L-Lipschitzian and λ-strongly monotone, then the
operator Fµ is a contraction on C provided that 0 < µ < 2λ/L2. In this case, an
application of Banach contraction principle implies that Ω(C, T ) = {x∗} and the
sequence of the Picard iteration process, given by

xn+1 = Fµxn, n ∈ N
converges strongly to x∗.
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Construction of fixed points of nonexpansive operators is an important subject
in the theory of nonexpansive operators and has applications in a number of applied
areas such as image recovery and signal processing (see, [6, 9, 14]. For instance,
split feasibility problem of C and T (denoted by SFP (C, T )) is

to find a point x in C such that Tx ∈ Q, (12)

where C is a closed convex subset of a Hilbert space H1, Q is a closed convex
subset of another Hilbert space H2 and T : H1 → H2 is a bounded linear operator.
The SFP (C, T ) is said to be consistent if (12) has a solution. It is easy to see
that SFP (C, T ) is consistent if and only if the following fixed point problem has a
solution:

find x ∈ C such that x = PC(I − γT ∗(I − PQ)T )x, (13)
where PC and PQ are the orthogonal projections onto C and Q, respectively; γ > 0,
and T ∗ is the adjoint of T . Note that for sufficient small γ > 0, the operator
PC(I − γT ∗(I − PQ)T ) in (13) is nonexpansive.

In the view of Theorem 4, we have the following sharper results which contain
iterative process (5) faster than the one defined by (4). These results deal with
variational inequality problems.

Theorem 9. Let C be a nonempty closed convex subset of a Hilbert space
H and T : C → H a L-Lipschitzian and λ-strongly monotone operator. Suppose
{αn}, {βn} and {γn} are in [ε, 1− ε] for all n ∈ N and for some ε in (0, 1). Then
for µ ∈ (0, 2λ/L2), the iterative sequence {xn} generated from x1 ∈ C, and defined
by

xn+1 = (1− αn)PC(I − µT )yn + αnPC(I − µT )zn,

yn = (1− βn)PC(I − µT )xn + βnPC(I − µT )zn,

zn = (1− γn)xn + γnPC(I − µT )xn, n ∈ N
converges weakly to x∗ ∈ Ω(C, T ).

Corollary 10. Let C be a nonempty closed convex subset of a Hilbert space
H and T : C → H an L-Lipschitzian and λ-strongly monotone operator. Suppose
{αn} and {βn} are in [ε, 1 − ε] for all n ∈ N and for some ε in (0, 1). Then for
µ ∈ (0, 2λ/L2), the iterative sequence {xn} generated from x1 ∈ C, and defined by

xn+1 = (1− αn)PC(I − µT )xn + αnPC(I − µT )yn,

yn = (1− βn)xn + βnPC(I − µT )xn, n ∈ N,

converges weakly to x∗ ∈ Ω(C, T ).

Corollary 11. Let C be a nonempty closed convex subset of a Hilbert space
H and T : C → H an L-Lipschitzian and λ-strongly monotone operator. Suppose
{αn} is in [ε, 1− ε] for all n ∈ N and for some ε in (0, 1) Then for µ ∈ (0, 2λ/L2),
the iterative sequence {xn} generated from x1 ∈ C, and defined by

xn+1 = PC(I − µT )[(1− αn)xn + αnPC(I − µT )xn], n ∈ N,

converges weakly to x∗ ∈ Ω(C, T ).
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Application to constrained optimization problems. Let C be a closed
convex subset of a Hilbert space H, PC the metric projection of H onto C and
T : C → H a v-ism where v > 0 is a constant . It is well known that PC(I − µT )
is nonexpansive operator provided that µ ∈ (0, 2v).

The algorithms for signal and image processing are often iterative constrained
optimization processes designed to minimize a convex differentiable function T over
a closed convex set C in H. It is well known that every L-Lipschitzian operator is
2/L-ism. Therefore, we have the following result which generates the sequence of
vectors in the constrained or feasible set C which converges weakly to the optimal
solution which minimizes T .

Theorem 12. Let C be a closed convex subset of a Hilbert space H and T a
convex and differentiable function on an open set D containing the set C. Assume
that 5T is an L-Lipschitz operator on D, µ ∈ (0, 2/L) and minimizers of T relative
to the set C exist. For a given x1 ∈ C, let {xn} be a sequence in C generated by

xn+1 = (1− αn)PC(I − µ5 T )yn + αnPC(I − µ5 T )zn,

yn = (1− βn)PC(I − µ5 T )xn + βnPC(I − µ5 T )zn,

zn = (1− γn)xn + γnPC(I − µ5 T )xn, n ∈ N,

where {αn}, {βn} and {γn} are sequences in [ε, 1− ε] for all n ∈ N and for some
ε in (0, 1). Then {xn} converges weakly to a minimizer of T .

Application to split feasibility problems. Recall that a mapping T in a
Hilbert space H is said to be averaged if T can be written as (1−α)I + αS, where
α ∈ (0, 1) and S is a nonexpansive map on H. Set q(x) := 1

2 ‖(T − PQT )x‖, x ∈ C.
Consider the minimization problem

find min
x∈C

q(x).

By [3], the gradient of q is 5q = T ∗(I − PQ)T , where T ∗ is the adjoint of T .
Since I − PQ is nonexpansive, it follows that 5q is L-Lipschitzian with L = ‖T‖2.
Therefore, 5q is 1/Lism and for any 0 < µ < 2/L, I−µ5q is averaged. Therefore,
the composition PC(I −µ5 q) is also averaged. Set T := PC(I −µ5 q). Note that
the solution set of SFP (C, T ) is F (T ).

We now present an iterative process that can be used to find solutions of
SFP (C, T ).

Theorem 13. Assume that SFP (C, T ) is consistent. Suppose {αn}, {βn}
and {γn} are sequences in [ε, 1 − ε] for all n ∈ N and for some ε in (0, 1). Let
{xn} be a sequence in C generated by

xn+1 = (1− αn)PC(I − µ5 q)yn + αnPC(I − µ5 q)zn,

yn = (1− βn)PC(I − µ5 q)xn + βnPC(I − µ5 q)zn,

zn = (1− γn)xn + γnPC(I − µ5 q)xn, n ∈ N,

where 0 < µ < 2/ ‖T‖2. Then {xn} converges weakly to a solution of SFP (C, T ).
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Proof. Since T := PC(I − λ 5 q) is nonexpansive, the result follows from
Theorem 6.
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