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ON CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS
DEFINED BY CONVOLUTION

R. M. El-Ashwah, M. K. Aouf and H. M. Zayed

Abstract. In this paper we use the principle of subordination between analytic functions
and the convolution to introduce the class S̃(f, g; A, B; α, β). We obtain coefficient inequalities,
distortion theorems, extreme points, radii of close to convexity, starlikeness and convexity for this
class and modified Hadamard product of several functions belonging to it. Also, we investigate
several distortion inequalities involving fractional calculus. Finally, we obtain integral means for
functions belonging to this class.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

k=2

akzk, (1.1)

which are analytic and univalent in the unit disc U = {z : z ∈ C and |z| < 1}. Let
g(z) ∈ A be given by

g(z) = z +
∞∑

k=2

bkzk; (1.2)

then the Hadamard product (or convolution) of f(z) and g(z) is given by

(f ∗ g)(z) = z +
∞∑

k=2

akbkzk = (g ∗ f)(z).

For two functions f and g, analytic in U , we say that the function f(z) is subordi-
nate to g(z) in U , and write f(z) ≺ g(z), if there exists a Schwarz function w(z),
analytic in U with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)) (z ∈ U).
Futhermore, if the function g is univalent in U , then we have the following equiva-
lence (see [11]):

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).
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For 0 ≤ α < 1, β ≥ 0, −1 ≤ B < A ≤ 1, −1 ≤ B < 0 and g(z) given by (1.2)
with bk > 0 (k ≥ 2), we denote by S(f, g; A,B; α, β) the subclass of A consisting
of functions of the form (1.1) and satisfying the analytic criterion

z(f ∗ g)′(z)
(f ∗ g)(z)

− β

∣∣∣∣
z(f ∗ g)′(z)
(f ∗ g)(z)

− 1
∣∣∣∣ ≺ (1− α)

1 + Az

1 + Bz
+ α.

In other words, f(z) ∈ S(f, g; A,B;α, β) if and only if there exists a function w(z)
satisfying w(0) = 0 and |w(z)| < 1 (z ∈ U) such that

∣∣∣∣∣∣∣∣

z(f ∗ g)′(z)
(f ∗ g)(z)

− β

∣∣∣∣
z(f ∗ g)′(z)
(f ∗ g)(z)

− 1
∣∣∣∣− 1

B

[
z(f ∗ g)′(z)
(f ∗ g)(z)

− β

∣∣∣∣
z(f ∗ g)′(z)
(f ∗ g)(z)

− 1
∣∣∣∣
]
− [B + (A−B)(1− α)]

∣∣∣∣∣∣∣∣
< 1.

Let T denote the subclass of A consisting of all functions f(z) of the form

f(z) = z −
∞∑

k=2

akzk (ak ≥ 0). (1.3)

Further, we define the class S̃(f, g; A,B;α, β) as follows:

S̃(f, g; A,B; α, β) = S(f, g; A,B;α, β) ∩ T .

We note that for suitable choices of g(z), A, B, α and β, we obtain the following
subclasses:
(1) S̃(f, z

1−z ; 1,−1;α, 0) = T ∗(α) and S̃(f, z
(1−z)2 ; 1,−1; α, 0) = K(α) (0 ≤ α < 1)

(see Silverman [15]);

(2) S̃(f, z
1−z ; A,B; α, 0) = T ∗(A,B, α) and S̃(f, z

(1−z)2 ; A,B; α, 0) = C(A,B, α)
(−1 ≤ A < B ≤ 1, 0 < B ≤ 1, 0 ≤ α < 1) (see Aouf [1, with p = 1]);

(3) S̃(f, g;A, B; α, β) = Ẽm,n(Φ, Ψ;A,B, α, β) (0 ≤ α < 1, β ≥ 0, −1 ≤ B < A ≤
1, −1 ≤ B < 0) (see Srivastava et al. [21] with Φ = Ψ = g, m = 1 and n = 0);

(4) S̃(f, z
1−z ; γ,−γ; α, 0) = S∗(α, γ) and S̃(f, z

(1−z)2 ; γ,−γ; α, 0) = C∗(α, γ)
(0 ≤ α < 1 and 0 < γ ≤ 1) (see Gupta and Jain [8]);

(5) S̃(f, z
1−z ; A,B; 0, β) = Ũ(β, A,B) (see Li and Tang [9] with m = 1 and n = 0).

Also, we note that:

(1) S̃(f, z+
∞∑

k=2

[
` + 1 + λ(k − 1)

` + 1

]m

zk; A,B;α, β) =
{

f ∈ T :
z(Im(λ, `)f(z))′

Im(λ, `)f(z)
−

β

∣∣∣∣
z(Im(λ, `)f(z))′

Im(λ, `)f(z)
− 1

∣∣∣∣ ≺ (1− α)
1 + Az

1 + Bz
+ α

}
(0 ≤ α < 1; β ≥ 0; −1 ≤ B <

A ≤ 1; −1 ≤ B < 0; m ∈ Z; λ ≥ 0; ` ≥ 0 and z ∈ U), where the operator

Im(λ, `)(z) = z +
∞∑

k=2

[
` + 1 + λ(k − 1)

` + 1

]m

zk,
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was introduced and studied by Prajapat [13] (see also El-Ashwah and Aouf [7] and
Catas [4]);

(2) S̃(f, z +
∞∑

k=2

Γk(α1)zk; A,B; α, β) =
{

f ∈ T :
z(Hq,s(α1)f(z))′

Hq,s(α1)f(z)
−

β

∣∣∣∣
z(Hq,s(α1)f(z))′

Hq,s(α1)f(z)
− 1

∣∣∣∣ ≺ (1− α)
1 + Az

1 + Bz
+ α

}
, (0 ≤ α < 1; β ≥ 0; −1 ≤ B <

A ≤ 1; −1 ≤ B < 0; q, s ∈ N0 = N∪ {0}; q ≤ s + 1 and z ∈ U), where the operator

Hq,s(α1)(z) = z +
∞∑

k=2

Γk(α1)zk,

Γk(α1) =
(α1)k−1 . . . (αq)k−1

(β1)k−1 . . . (βs)k−1

1
(k − 1)!

,

for real parameters α1, . . . , αq and β1, . . . , βs, βj /∈ Z−0 = {0,−1,−2, . . . }, j =
1, 2, . . . , s, was introduced and studied by Dziok and Srivastava [6].

In our present paper, we shall make use of the familiar integral operator
(Jcf)(z) defined by (see [3])

(Jcf)(z) =
c + 1
zc

∫ z

0

tc−1f(t) dt (f ∈ A; c > −1).

2. Coefficient estimates

Unless otherwise mentioned, we assume throughout this paper that

0 ≤ α < 1, β ≥ 0, −1 ≤ B < A ≤ 1, −1 ≤ B < 0

and the function g(z) is given by (1.2) with bk ≥ b2 > 0 (k ≥ 2).

Theorem 1. Let the function f(z) defined by (1.1) be in the class S(f, g;A,B;
α, β). Then

∞∑
k=2

[(1−B)(1 + β)(k − 1) + (A−B)(1− α)] bk |ak| ≤ (A−B)(1− α). (2.1)

Proof. Let the condition (2.1) hold true. Then we have
∣∣z(f ∗ g)′(z)− βeiθ |z(f ∗ g)′(z)− (f ∗ g)(z)| − (f ∗ g)(z)

∣∣− |(A−B)(1− α)×
×(f ∗ g)(z)−B[z(f ∗ g)′(z)− βeiθ |z(f ∗ g)′(z)− (f ∗ g)(z)| − (f ∗ g)(z)]

∣∣

=
∣∣∣∣
∞∑

k=2

(k − 1)akbkzk − βeiθ

∣∣∣∣
∞∑

k=2

(k − 1)akbkzk

∣∣∣∣
∣∣∣∣− |(A−B)(1− α)z + (A−B)×

×(1− α)
∞∑

k=2

akbkzk −B

[ ∞∑
k=2

(k − 1)akbkzk − βeiθ

∣∣∣∣
∞∑

k=2

(k − 1)akbkzk

∣∣∣∣
]∣∣∣∣

≤ (1 + β)
∞∑

k=2

(k − 1)bk |ak| |z|k − (A−B)(1− α) |z|+ (A−B)(1− α)×
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×
∞∑

k=2

bk |ak| |z|k + |B| (1 + β)
∞∑

k=2

(k − 1)bk |ak| |z|k

≤ (1−B)(1 + β)
∞∑

k=2

(k − 1)bk |ak|+ (A−B)(1− α)
∞∑

k=2

bk |ak| − (A−B)(1− α)

≤ 0.

On simplification we easily arrive at the inequality (2.1). This completes the proof
of Theorem 1.

Theorem 2. The function f(z) defined by (1.3) is in the class S̃(f, g; A,B; α, β)
if and only if

∞∑
k=2

[(1−B)(1 + β)(k − 1) + (A−B)(1− α)] akbk ≤ (A−B)(1− α). (2.2)

Proof. We only need to prove the “only if” part of Theorem 2. For functions
f(z) ∈ T , we can write

∣∣∣∣∣∣∣∣

z(f ∗ g)′(z)
(f ∗ g)(z)

− β

∣∣∣∣
z(f ∗ g)′(z)
(f ∗ g)(z)

− 1
∣∣∣∣− 1

B

[
z(f ∗ g)′(z)
(f ∗ g)(z)

− β

∣∣∣∣
z(f ∗ g)′(z)
(f ∗ g)(z)

− 1
∣∣∣∣
]
− [B + (A−B)(1− α)]

∣∣∣∣∣∣∣∣

=
∣∣∣∣

z(f∗g)′(z)−βeiθ|z(f∗g)′(z)−(f∗g)(z)|−(f∗g)(z)

B[z(f∗g)′(z)−βeiθ|z(f∗g)′(z)−(f∗g)(z)|]−[B+(A−B)(1−α)](f∗g)(z)

∣∣∣∣

≤

∣∣∣∣∣∣∣∣

(1+βeiθ)

∞∑
k=2

(k − 1)akbkzk−1

(A−B)(1−α)−(A−B)(1−α)

∞∑
k=2

akbkzk−1 + (1 + βeiθ)B
∞∑

k=2

(k − 1)akbkzk−1

∣∣∣∣∣∣∣∣
.

Since Re{z} ≤ |z| (z ∈ U), we thus find that

Re





(1+βeiθ)

∞∑
k=2

(k − 1)akbkzk−1

(A−B)(1−α)−(A−B)(1−α)

∞∑
k=2

akbkzk−1 + (1 + βeiθ)B
∞∑

k=2

(k − 1)akbkzk−1





< 1.

If we now choose z to be real and let z → 1−, we get
∞∑

k=2

[(1−B)(1 + β)(k − 1) + (A−B)(1− α)] akbk ≤ (A−B)(1− α),

which is equivalent to (2.2).

Corollary 1. Let the function f(z) defined by (1.3) be in the class S̃(f, g;A,
B; α, β). Then

ak ≤ (A−B)(1− α)
[(1−B)(1 + β)(k − 1) + (A−B)(1− α)] bk

.
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The result is sharp for the function

f(z) = z − (A−B)(1− α)
[(1−B)(1 + β)(k − 1) + (A−B)(1− α)] bk

zk. (2.3)

3. Distortion theorems

Theorem 3. Let the function f(z) defined by (1.3) be in the class S̃(f, g;A,B;
α, β); then for z ∈ U , we have

|z| − (A−B)(1− α)
[(1−B)(1 + β) + (A−B)(1− α)] b2

|z|2 ≤ |f(z)|

≤ |z|+ (A−B)(1− α)
[(1−B)(1 + β) + (A−B)(1− α)] b2

|z|2 . (3.1)

Furthermore,

1− 2(A−B)(1− α)
[(1−B)(1 + β) + (A−B)(1− α)] b2

|z| ≤ |f ′(z)|

≤ 1 +
2(A−B)(1− α)

[(1−B)(1 + β) + (A−B)(1− α)] b2
|z| . (3.2)

The result is sharp for the function f(z) given by

f(z) = z − (A−B)(1− α)
[(1−B)(1 + β) + (A−B)(1− α)] b2

z2. (3.3)

Proof. It is easy to see from Theorem 2 that

[(1−B)(1 + β) + (A−B)(1− α)]b2

∞∑
k=2

ak

≤
∞∑

k=2

[(1−B)(1 + β)(k − 1) + (A−B)(1− α)] akbk

≤ (A−B)(1− α).

Then
∞∑

k=2

ak ≤ (A−B)(1− α)
[(1−B)(1 + β) + (A−B)(1− α)] b2

. (3.4)

Making use of (3.4), we have

|f(z)| ≥ |z| − |z|2
∞∑

k=2

ak

≥ |z| − (A−B)(1− α)
[(1−B)(1 + β) + (A−B)(1− α)] b2

|z|2 ,
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and

|f(z)| ≤ |z|+ |z|2
∞∑

k=2

ak

≤ |z|+ (A−B)(1− α)
[(1−B)(1 + β) + (A−B)(1− α)] b2

|z|2 ,

which proves the assertion (3.1).
From (3.4) and Theorem 2, it follows also that

∞∑
k=2

kak ≤ 2(A−B)(1− α)
[(1−B)(1 + β) + (A−B)(1− α)] b2

.

Consequently, we have

|f ′(z)| ≥ 1− |z|
∞∑

k=2

kak

≥ 1− 2(A−B)(1− α)
[(1−B)(1 + β) + (A−B)(1− α)] b2

|z| ,

and

|f ′(z)| ≤ 1 + |z|
∞∑

k=2

kak

≤ 1 +
2(A−B)(1− α)

[(1−B)(1 + β) + (A−B)(1− α)] b2
|z| ,

which proves the assertion (3.2). Since each of equalities in (3.1) and (3.2) is satis-
fied by the function f(z) given by (3.3), our proof of Theorem 3 is thus completed.

4. Closure theorems

We will consider the functions fj(z) defined, for j = 1, 2, . . . , m, by

fj(z) = z −
∞∑

k=2

ak,jz
k (ak,j ≥ 0). (4.1)

Theorem 4. Let the functions fj(z) be in the class S̃(f, g; A,B; α, β). Then
the function h(z) defined by

h(z) = z −
∞∑

k=2

( 1
m

m∑
j=1

ak,j

)
zk,

also belongs to the class S̃(f, g;A,B; α, β).

Proof. Since fj(z) (j = 1, 2, . . . , m) are in the class S̃(f, g; A,B; α, β), it follows
from Theorem 2 that

∞∑
k=2

[(1−B)(1 + β)(k − 1) + (A−B)(1− α)] ak,jbk ≤ (A−B)(1− α),
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for every j = 1, 2, . . . , m. Hence
∞∑

k=2

[(1−B)(1 + β)(k − 1) + (A−B)(1− α)] bk

( 1
m

m∑
j=1

ak,j

)

=
1
m

m∑
j=1

( ∞∑
k=2

[(1−B)(1 + β)(k − 1) + (A−B)(1− α)] ak,jbk

)

≤ (A−B)(1− α).

From Theorem 2, it follows that h(z) ∈ S̃(f, g; A,B; α, β). This completes the proof
of Theorem 4.

Corollary 2. The class S̃(f, g; A,B; α, β) is closed under convex linear com-
binations.

Proof. Let the functions fj(z) (j = 1, 2) defined by (4.1) be in the class
S̃(f, g; A,B; α, β). Then it is sufficient to show that the function

h(z) = λf1(z) + (1− λ)f2(z) (0 ≤ λ ≤ 1),

is in the class S̃(f, g; A,B; α, β). Since for 0 ≤ λ ≤ 1,

h(z) = z −
∞∑

k=2

[λak,1 + (1− λ)ak,2]zk,

with the aid of Theorem 2, we have
∞∑

k=2

[(1−B)(1 + β)(k − 1) + (A−B)(1− α)] [λak,1 + (1− λ)ak,2]bk

≤ λ(A−B)(1− α) + (1− λ)(A−B)(1− α)

= (A−B)(1− α),

which implies that h(z) ∈ S̃(f, g;A,B; α, β).

Theorem 5. Let f1(z) = z and

fk(z) = z − (A−B)(1− α)
[(1−B)(1 + β)(k − 1) + (A−B)(1− α)] bk

zk.

Then f(z) is in the class S̃(f, g; A,B; α, β) if and only if it can be expressed in the
form

f(z) =
∞∑

k=1

µkfk(z), (4.2)

where µk ≥ 0 and
∑∞

k=1 µk = 1.

Proof. Assume that

f(z) =
∞∑

k=1

µkfk(z)

= z −
∞∑

k=2

(A−B)(1− α)
[(1−B)(1 + β)(k − 1) + (A−B)(1− α)] bk

µkzk.
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Then it follows that
∞∑

k=2

[(1−B)(1+β)(k−1)+(A−B)(1−α)]bk

(A−B)(1−α) · (A−B)(1−α)
[(1−B)(1+β)(k−1)+(A−B)(1−α)]bk

µk

=
∞∑

k=2

µk = 1− µ1 ≤ 1.

which implies that f(z) ∈ S̃(f, g;A,B; α, β).
Conversely, assume that the function f(z) defined by (1.3) be in the class

S̃(f, g; A,B; α, β). Then

ak ≤ (A−B)(1− α)
[(1−B)(1 + β)(k − 1) + (A−B)(1− α)] bk

.

Setting

µk =
[(1−B)(1 + β)(k − 1) + (A−B)(1− α)] bk

(A−B)(1− α)
ak,

where µ1 = 1−∑∞
k=2 µk, we can see that f(z) can be expressed in the form (4.2).

This completes the proof of Theorem 5.

Corollary 3. The extreme points of the class S̃(f, g; A,B;α, β) are the func-
tions f1(z) = z and

fk(z) = z − (A−B)(1− α)
[(1−B)(1 + β)(k − 1) + (A−B)(1− α)] bk

zk.

5. Radii of close-to-convexity, starlikeness and convexity

Theorem 6. Let the function f(z) defined by (1.3) be in the class S̃(f, g;A,B;
α, β). Then f(z) is close-to-convex of order δ (0 ≤ δ < 1) in |z| ≤ r1, where

r1 = inf
k≥2

{
(1− δ) [(1−B)(1 + β)(k − 1) + (A−B)(1− α)] bk

k(A−B)(1− α)

} 1
k−1

. (5.1)

The result is sharp, the extremal function given by (2.3).

Proof. We must show that

|f ′(z)− 1| ≤ 1− δ for |z| ≤ r1,

where r1 is given by (5.1). Indeed we find from (1.3) that

|f ′(z)− 1| ≤
∞∑

k=2

kak |z|k−1
.

Thus |f ′(z)− 1| ≤ 1− δ if
∞∑

k=2

k

(1− δ)
ak |z|k−1 ≤ 1. (5.2)
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But by using Theorem 2, (5.2) will be true if

k

(1− δ)
|z|k−1 ≤ [(1−B)(1 + β)(k − 1) + (A−B)(1− α)] bk

(A−B)(1− α)
.

Then

|z| ≤
{

(1− δ) [(1−B)(1 + β)(k − 1) + (A−B)(1− α)] bk

k(A−B)(1− α)

} 1
k−1

. (5.3)

The result follows easily from (5.3). This completes the proof of Theorem 6.

Theorem 7. Let the function f(z) defined by (1.3) be in the class S̃(f, g;A,B;
α, β). Then f(z) is starlike of order δ (0 ≤ δ < 1) in |z| ≤ r2, where

r2 = inf
k≥2

{
(1− δ) [(1−B)(1 + β)(k − 1) + (A−B)(1− α)] bk

(k − δ)(A−B)(1− α)

} 1
k−1

. (5.4)

The result is sharp, the extremal function given by (2.3).

Proof. We must show that
∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ ≤ 1− δ for |z| ≤ r2,

where r2 is given by (5.4). Indeed we find from (1.3) that

∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ ≤

∞∑
k=2

(k − 1)ak |z|k−1

1−
∞∑

k=2

ak |z|k−1
.

Thus
∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ ≤ 1− δ, if

∞∑
k=2

(
k − δ

1− δ

)
ak |z|k−1 ≤ 1. (5.5)

But by using Theorem 2, (5.5) will be true if
(

k − δ

1− δ

)
|z|k−1 ≤ [(1−B)(1 + β)(k − 1) + (A−B)(1− α)] bk

(A−B)(1− α)
.

Then

|z| ≤
{

(1− δ) [(1−B)(1 + β)(k − 1) + (A−B)(1− α)] bk

(k − δ)(A−B)(1− α)

} 1
k−1

. (5.6)

The result follows easily from (5.6). This completes the proof of Theorem 7.
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Corollary 4. Let the function f(z) defined by (1.3) be in the class S̃(f, g;A,
B; α, β). Then f(z) is convex of order δ (0 ≤ δ < 1) in |z| ≤ r3, where

r3 = inf
k≥2

{
(1− δ) [(1−B)(1 + β)(k − 1) + (A−B)(1− α)] bk

k(k − δ)(A−B)(1− α)

} 1
k−1

.

The result is sharp, with the extremal function given by (2.3).

Remark 1. Putting g(z) = z
1−z and α = 0 in our results, we obtain the results

obtained by Li and Tang [9, with m = 1 and n = 0].

6. Definitions and applications of fractional calculus

Many essentially equivalent definitions of fractional calculus (that is, fractional
derivatives and fractional integrals) have been given in the literature (cf., e.g. [2],
[18] and [20]. We find it to be convenient to recall here the following definitions
which were used recently by Owa [12] and by Srivastava and Owa [19]).

Definition 1. The fractional integral of order µ is defined, for a function
f(z), by

D−µ
z f(z) =

1
Γ(µ)

∫ z

0

f(t)
(z − t)1−µ

dt (µ > 0),

where f(z) is an analytic function in a simply-connected region of the complex z-
plane containing the origin and the multiplicity of (z−t)µ−1 is removed by requiring
log(z − t) to be real when z − t > 0.

Definition 2. The fractional derivative of order µ is defined, for a function
f(z), by

Dµ
z f(z) =

1
Γ(1− µ)

d

dz

∫ z

0

f(t)
(z − t)µ

dt (0 ≤ µ < 1),

where f(z) is an analytic function in a simply-connected region of the complex z-
plane containing the origin and the multiplicity of (z−t)−µ is removed by requiring
log(z − t) to be real when z − t > 0.

Definition 3. Under the hypotheses of Definition 2, the fractional derivative
of order n + µ is defined by

Dn+µ
z f(z) =

dn

dzn
Dµ

z f(z) (0 ≤ µ < 1; n ∈ N0).

In order to derive our results, we need the following lemma given by Chen et
al. [5].

Lemma 1 (see Chen et al. [5 with p = 1]). Let the function f(z) be defined by
(1.3). Then

Dµ
z {(Jcf)(z)} =

1
Γ(2− µ)

z1−µ −
∞∑

k=2

(c + 1)Γ(k + 1)
(c + k)Γ(k − µ + 1)

akzk−µ (µ ∈ R; c > −1),

(6.1)
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and

Jc(Dµ
z {f(z)}) =

(c + 1)
(c− µ + 1)Γ(2− µ)

z1−µ −
∞∑

k=2

(c + 1)Γ(k + 1)
(k − µ + c)Γ(k − µ + 1)

akzk−µ

(6.2)
(µ ∈ R; c > −1), provided that no zeros appear in the denominators in (6.1) and
(6.2).

Theorem 8. Let the function f(z) defined by (1.3) be in the class S̃(f, g;A,B;
α, β). Then we have

∣∣D−µ
z {(Jcf)(z)}∣∣ ≥ 1

Γ(2+µ) |z|µ
{
|z| − 2(A−B)(1−α)(c+1)

(2+µ)(c+2)[(1−B)(1+β)+(A−B)(1−α)]b2
|z|2

}
,

and
∣∣D−µ

z {(Jcf)(z)}
∣∣ ≤ 1

Γ(2+µ) |z|µ
{
|z|+ 2(A−B)(1−α)(c+1)

(2+µ)(c+2)[(1−B)(1+β)+(A−B)(1−α)]b2
|z|2

}
,

for µ > 0 and z ∈ U . The result is sharp.

Proof. Let

F (z) = Γ(2 + µ)z−µD−µ
z {(Jcf)(z)} = z −

∞∑
k=2

Γ(k + 1)Γ(2 + µ)(c + 1)
Γ(k + µ + 1)(k + c)

akzk.

Then
F (z) = z −

∞∑
k=2

Φ(k)akzk, (6.3)

where Φ(k) =
Γ(k + 1)Γ(2 + µ)(c + 1)

Γ(k + µ + 1)(k + c)
(µ > 0). Since Φ(k) is a decreasing function

of k (k ≥ 2), then

0 < Φ(k) ≤ Φ(2) =
2(c + 1)

(2 + µ)(c + 2)
. (6.4)

From (6.3) and (6.4), we have

|F (z)| ≥ |z| − Φ(2) |z|2
∞∑

k=2

ak. (6.5)

In view of (3.4) and (6.5), we have

|F (z)| =
∣∣Γ(2 + µ)z−µD−µ

z {(Jcf)(z)}
∣∣

≥ |z| − 2(A−B)(1− α)(c + 1)
(2 + µ)(c + 2) [(1−B)(1 + β) + (A−B)(1− α)] b2

|z|2 ,

and

|F (z)| =
∣∣Γ(2 + µ)z−µD−µ

z {(Jcf)(z)}
∣∣

≤ |z|+ 2(A−B)(1− α)(c + 1)
(2 + µ)(c + 2) [(1−B)(1 + β) + (A−B)(1− α)] b2

|z|2 .
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which proves the inequalities of Theorem 8. Further, equalities are attained for the
function

D−µ
z {(Jcf)(z)} = 1

Γ(2+µ)z
µ

{
z − 2(A−B)(1−α)(c+1)

(2+µ)(c+2)[(1−B)(1+β)+(A−B)(1−α)]b2
z2

}
,

or by f(z) given by (3.3).
Using similar arguments to those in the proof of Theorem 8, we obtain the

following theorem.

Theorem 9. Let the function f(z)defined by (1.3) be in the class S̃(f, g;A,B;
α, β). Then we have

|Dµ
z {(Jcf)(z)}| ≥ 1

Γ(2−µ) |z|−µ
{
|z| − 2(A−B)(1−α)(c+1)

(2−µ)(c+2)[(1−B)(1+β)+(A−B)(1−α)]b2
|z|2

}
,

and

|Dµ
z {(Jcf)(z)}| ≤ 1

Γ(2−µ) |z|−µ
{
|z|+ 2(A−B)(1−α)(c+1)

(2−µ)(c+2)[(1−B)(1+β)+(A−B)(1−α)]b2
|z|2

}
,

for 0 ≤ µ < 1 and z ∈ U . The result is sharp for the function f(z) given by (3.3).

7. Modified Hadamard products

Let the functions fj(z) (j = 1, 2) be defined by (4.1). The modified Hadamard
product of f1(z) andf2(z) is defined by

(f1 ∗ f2)(z) = z −
∞∑

k=2

ak,1ak,2z
k = (f2 ∗ f1)(z).

Theorem 10. Let the functions fj(z) (j = 1, 2) be in the class S̃(f, g;A,B;
α, β). Then (f1 ∗ f2)(z) ∈ S̃(f, g; A,B; η, β), where

η = 1− (A−B)(1− α)2(1−B)(1 + β)
[(1−B)(1 + β) + (A−B)(1− α)]2b2 − (A−B)2(1− α)2

.

The result is sharp for the functions fj(z) (j = 1, 2) given by

fj(z) = z − (A−B)(1− α)
[(1−B)(1 + β) + (A−B)(1− α)]b2

z2 (j = 1, 2). (7.1)

Proof. Employing the technique used earlier by Schild and Silverman [14], we
need to find the largest η such that

∞∑
k=2

[(1−B)(1 + β)(k − 1) + (A−B)(1− η)]bk

(A−B)(1− η)
ak,1ak,2 ≤ 1.

Since fj(z) ∈ S̃(f, g; A,B; α, β) (j = 1, 2), we readily see that

∞∑
k=2

[(1−B)(1 + β)(k − 1) + (A−B)(1− α)]bk

(A−B)(1− α)
ak,1 ≤ 1,



260 R.M. EL-Ashwah, M.K. Aouf, H.M. Zayed

and ∞∑
k=2

[(1−B)(1 + β)(k − 1) + (A−B)(1− α)]bk

(A−B)(1− α)
ak,2 ≤ 1.

By the Cauchy-Schwarz inequality we have
∞∑

k=2

[(1−B)(1 + β)(k − 1) + (A−B)(1− α)]bk

(A−B)(1− α)
√

ak,1ak,2 ≤ 1. (7.2)

Thus it is sufficient to show that
[(1−B)(1 + β)(k − 1) + (A−B)(1− η)]bk

(A−B)(1− η)
ak,1ak,2

≤ [(1−B)(1 + β)(k − 1) + (A−B)(1− α)]bk

(A−B)(1− α)
√

ak,1ak,2,

or, equilvalently, that

√
ak,1ak,2 ≤ [(1−B)(1 + β)(k − 1) + (A−B)(1− α)](1− η)

[(1−B)(1 + β)(k − 1) + (A−B)(1− η)](1− α)
.

Hence, in the light of inequality (7.2), it is sufficient to prove that

(A−B)(1− α)
[(1−B)(1 + β)(k − 1) + (A−B)(1− α)]bk

≤ [(1−B)(1 + β)(k − 1) + (A−B)(1− α)](1− η)
[(1−B)(1 + β)(k − 1) + (A−B)(1− η)](1− α)

. (7.3)

It follows from (7.3) that

η ≤ 1− (A−B)(1− α)2(1−B)(1 + β)(k − 1)
[(1−B)(1 + β)(k − 1) + (A−B)(1− α)]2bk − (A−B)2(1− α)2

.

Now defining the function D(k) by

D(k) = 1− (A−B)(1− α)2(1−B)(1 + β)(k − 1)
[(1−B)(1 + β)(k − 1) + (A−B)(1− α)]2bk − (A−B)2(1− α)2

,

we see that D(k) is an increasing function of k (k ≥ 2). Therefore, we conclude
that

η ≤ D(2) = 1− (A−B)(1− α)2(1−B)(1 + β)
[(1−B)(1 + β) + (A−B)(1− α)]2b2 − (A−B)2(1− α)2

,

which evidently completes the proof of Theorem 10.
Using similar arguments to those in the proof of Theorem 10, we obtain the

following theorem.

Theorem 11. Let the function f1(z) defined by (4.1) be in the class S̃(f, g;A,
B; α, β). Suppose also that the function f2(z) defined by (4.1) be in the class
S̃(f, g; A,B; φ, β). Then (f1 ∗ f2)(z) ∈ S̃(f, g; A,B; ζ, β), where

ζ = 1− (A−B)(1−α)(1−φ)(1−B)(1+β)
[(1−B)(1+β)+(A−B)(1−α)][(1−B)(1+β)+(A−B)(1−φ)]b2−(A−B)2(1−α)(1−φ) ,
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The result is sharp for the functions fj(z) (j = 1, 2) given by

f1(z) = z − (A−B)(1− α)
[(1−B)(1 + β) + (A−B)(1− α)]b2

z2,

f2(z) = z − (A−B)(1− φ)
[(1−B)(1 + β) + (A−B)(1− φ)]b2

z2.

Theorem 12. Let the functions fj(z) (j = 1, 2) defined by (4.1) be in the class
S̃(f, g; A,B; α, β). Then the function

h(z) = z −
∞∑

k=2

(a2
k,1 + a2

k,2)z
k

belongs to the class S̃(f, g; A,B; ϕ, β), where

ϕ = 1− 2(A−B)(1− α)2(1−B)(1 + β)
[(1−B)(1 + β) + (A−B)(1− α)]2b2 − 2(A−B)2(1− α)2

.

The result is sharp for the functions fj(z) (j = 1, 2) defined by (7.1).

Proof. By using Theorem 2, we obtain

∞∑
k=2

{
[(1−B)(1 + β)(k − 1) + (A−B)(1− α)]bk

(A−B)(1− α)

}2

a2
k,1

≤
{ ∞∑

k=2

[(1−B)(1 + β)(k − 1) + (A−B)(1− α)]bk

(A−B)(1− α)
ak,1

}2

≤ 1, (7.4)

and

∞∑
k=2

{
[(1−B)(1 + β)(k − 1) + (A−B)(1− α)]bk

(A−B)(1− α)

}2

a2
k,2

≤
{ ∞∑

k=2

[(1−B)(1 + β)(k − 1) + (A−B)(1− α)]bk

(A−B)(1− α)
ak,2

}2

≤ 1. (7.5)

It follows from (7.4) and (7.5) that

∞∑
k=2

1
2

{
[(1−B)(1 + β)(k − 1) + (A−B)(1− α)]bk

(A−B)(1− α)

}2

(a2
k,1 + a2

k,2) ≤ 1.

Therefore, we need to find the largest ϕ such that

[(1−B)(1 + β)(k − 1) + (A−B)(1− ϕ)]bk

(A−B)(1− ϕ)

≤ 1
2

{
[(1−B)(1 + β)(k − 1) + (A−B)(1− α)]bk

(A−B)(1− α)

}2

,
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that is

ϕ ≤ 1− 2(A−B)(1− α)2(1−B)(1 + β)(k − 1)
[(1−B)(1 + β)(k − 1) + (A−B)(1− α)]2bk − 2(A−B)2(1− α)2

.

Since

G(k) = 1− 2(A−B)(1− α)2(1−B)(1 + β)(k − 1)
[(1−B)(1 + β)(k − 1) + (A−B)(1− α)]2bk − 2(A−B)2(1− α)2

,

is an increasing function of k (k ≥ 2), we obtain

ϕ ≤ G(2) = 1− 2(A−B)(1− α)2(1−B)(1 + β)
[(1−B)(1 + β) + (A−B)(1− α)]2b2 − 2(A−B)2(1− α)2

,

and hence the proof of Theorem 12 is completed.

8. Integral means

In this section integral means for functions belonging to the class S̃(f, g;A,B;
α, β) are obtained. In [15], Silverman found that the function f2(z) = z − z2

2 is
often extremal over the family T . He applied this function to resolve his integral
means inequality, conjectured in [16] and settled in [17], that

∫ 2π

0

∣∣f(reiθ)
∣∣η dθ ≤

∫ 2π

0

∣∣f2(reiθ)
∣∣η dθ,

for all f ∈ T , η > 0 and 0 < r < 1.
In 1925, Littlewood [10] proved the following lemma.

Lemma 2. If the functions f and g are analytic in U with g ≺ f , then for
η > 0 and 0 < r < 1, ∫ 2π

0

∣∣g(reiθ)
∣∣η dθ ≤

∫ 2π

0

∣∣f(reiθ)
∣∣η dθ.

Applying Lemma 2, Theorem 2, and Corollary 3, we prove the following theo-
rem.

Theorem 13. Suppose f(z) ∈ S̃(f, g; A,B; α, β), η > 0, 0 < r < 1 and f2(z)
is defined by

f2(z) = z − (A−B)(1− α)
[(1−B)(1 + β) + (A−B)(1− α)] b2

z2.

Then for z = reiθ, 0 < r < 1, we have∫ 2π

0

|f(z)|η dθ ≤
∫ 2π

0

|f2(z)|η dθ. (8.1)

Proof. Forf(z) = z −∑∞
k=2 akzk (ak ≥ 0), (8.1) is equivalent to

∫ 2π

0

∣∣∣∣1−
∞∑

k=2

akzk−1

∣∣∣∣
η

dθ ≤
∫ 2π

0

∣∣∣∣1−
(A−B)(1− α)

[(1−B)(1 + β) + (A−B)(1− α)] b2
z

∣∣∣∣
η

dθ.
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Using Lemma 2, it suffices to show that

1−
∞∑

k=2

akzk−1 ≺ 1− (A−B)(1− α)
[(1−B)(1 + β) + (A−B)(1− α)] b2

z.

Setting

1−
∞∑

k=2

akzk−1 = 1− (A−B)(1− α)
[(1−B)(1 + β) + (A−B)(1− α)] b2

w(z),

and using Theorem 2, we obtain

|w(z)| =
∣∣∣∣
∞∑

k=2

[(1−B)(1 + β) + (A−B)(1− α)] b2

(A−B)(1− α)
akzk−1

∣∣∣∣

≤ |z|
∞∑

k=2

[(1−B)(1 + β) + (A−B)(1− α)] b2

(A−B)(1− α)
ak

≤ |z|
∞∑

k=2

[(1−B)(1 + β)(k − 1) + (A−B)(1− α)] bk

(A−B)(1− α)
ak

≤ |z| .
This completes the proof of Theorem 13.

Remark 2.
(1) Putting g(z) = z

1−z and β = 0 in our results, we obtain some analogous
results for Aouf [1, with p = 1];

(2) Putting g(z) = z
(1−z)2 and β = 0 in our results, we obtain some analogous

results for Aouf [1, with p = 1];
(3) Putting Φ = Ψ = g in our results, we obtain some analogous results for

Srivastava et al. [21, with m = 1 and n = 0];
(4) Putting g(z) = z

1−z , A = γ, B = −γ and β = 0 in our results, we obtain
some analogous results for Gupta and Jain [8];

(5) Putting g(z) = z
(1−z)2 , A = γ, B = −γ and β = 0 in our results, we obtain

some analogous results for Gupta and Jain [8].
Applications.

We can derive new results for the class S̃(f, g;A,B; α, β) by taking g(z) as
follows:

(1) g(z) = z +
∑∞

k=2 Γk(α1)zk (see [6]), where Γk(α1) is given by (1.9);

(2) g(z) = z +
∑∞

k=2

[
`+1+λ(k−1)

`+1

]m

zk (see [4], [7], [13]), where λ ≥ 0, ` ≥ 0,
m ∈ Z.
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