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SOME RESULTS ON LOCAL SPECTRAL THEORY OF
COMPOSITION OPERATORS ON [P SPACES

Shailesh Trivedi and Harish Chandra

Abstract. In this paper, we give a condition under which a bounded linear operator on a
complex Banach space has Single Valued Extension Property (SVEP) but does not have decompo-
sition property (&). We also discuss the analytic core, decomposability and SVEP of composition
operators Cy on IP (1 < p < 0o) spaces. In particular, we prove that if ¢ is onto but not one-one
then Cy is not decomposable but has SVEP. Further, it is shown that if ¢ is one-one but not onto
then Cy does not have SVEP.

1. Preliminaries

The single valued extension property plays a central role in the local spectral
theory. This property was first introduced by N. Dunford [3,4] and subsequently,
became an essential tool in determining the decomposability of a bounded linear
operator on a Banach space.

Let X be a complex Banach space and B(X) denote the Banach algebra of
bounded linear operators on X. An operator 7' € B(X) is said to have the Single
Valued Extension Property (abbreviated as SVEP) if for every open set G C C, the
only analytic solution f: G — X, of the equation (A —T)f(A\) =0, for all A € G,
is the zero function on G. It is clear from the definition that an operator, whose
point spectrum has empty interior, has SVEP. However, the converse is not true
in general [8, p. 15]. A result by J. K. Finch [6] gives a class of examples of those
operators which do not have SVEP.

For z € X, the local resolvent of T' at x, denoted by pr(x), is defined as the
union of all open subsets G of C for which there is an analytic function f: G — X
satisfying (A — T)f(\) = z for all A € G. The complement of pr(x) is called
the local spectrum of T at = and is denoted by op(z). If T has the SVEP then
or(z) = 0 if and only if z = 0 (for proof see [8, Proposition 1.2.16]). For a
subset F' C C, the local spectral subspace of T', denoted by Xr(F'), is defined as
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Xr(F)={z € X :op(x) C F}. An operator T is said to have Dunford’s property
(C) if X7 (F) is closed for every closed subset F' of C. T is said to have Bishop’s
property (/) if for every open subset G of C and every sequence of analytic functions
fn: G — X with the property that (A —T)f,(\) — 0 as n — oo, locally uniformly
on G, then f,(A\) — 0 as n — oo, locally uniformly on G. It is well known that
(8) = (C) = SVEP.

T is said to be decomposable if for every open cover {U,V} of C there exist
T-invariant closed subspaces Y and Z of X such that o(T|Y) C U, o(T|Z) C V and
X =Y +Z. T is said to have the decomposition property (9) if for every open cover

{U,V}of C, X = Xp(U) + Xp(V), where X7(U) is defined as the set of all z € X
such that there is an analytic function f: C\ U — X satisfying (A — T) f(\) = .

Note that X7(U) is a subspace of X and if T has the SVEP then X7 (U) = X (U).
For further reading of local spectral theory we refer to [2, 5, §].
Let ¢ be a self-map on the set of natural numbers N. Then ¢ induces a linear

transformation Cy on the complex vector space V' of complex sequences, defined
by

C¢( 21 (Ean) = 21 InXep—1(n)>

where X, denotes the characteristic function of {n}. If V is I? and C, happens
to be bounded, then Cy is called a composition operator on [P. A necessary and
sufficient condition on ¢ to induce a composition operator on [P(1 < p < o) is that
the set {|¢p~1(n)| : n € N} must be bounded, where | - | denotes the cardinality of
the set [10, Theorem 2.1.1]. For further details of the composition operators, we
refer to [10]. Throughout the paper ¢,, denotes the n-th iterate of ¢.

2. Main results
We begin by proving the following lemma.

LEMMA 2.1. Let X be a complex Banach space and T € B(X). Suppose that
o(T) is not a singleton and (\,cx, 40 07r(x) # 0. Then T has SVEP but T' does
not have decomposition property (§) and hence, T is not decomposable.

Proof. Suppose that T does not have SVEP. Then there is a non-zero z € X
such that or(z) = () [8, Proposition 1.2.16], which implies that (¢ x ,o07(7) =
(). Thus

(] or(x) #0 =T has SVEP.
zeX, z#0
Let N, ex, zz0 o7(2) = K C o(T). Now we have the following two cases.

Casg It K =o(T).

In this case op(x) = o(T) for all non-zero  in X. Let U be an open set
such that U and C \ U both intersect o(T). Let B be a closed ball inside U with
B°No(T) # 0, then {U,C\ B} is an open covering of C. It is easy to see that
X7(U) = Xr(C\ B) = {0}. Since Xr(F) = Xr(F) for all closed subsets F' of C
as T has SVEP, we see that T' does not have decomposition property (9).
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Cask II: K is a proper subset of o (7).

Again, let U be an open set such that U contains K and o(T) N (C\ U) # 0.
Let B be a closed ball inside U with B° N K # (). Then {U,C\ B} is an open
covering of C. Now X7 (C\ B) = {0} since op(z) 2 K for all non-zero z in X and
as T has SVEP so X7 (U) # X. Thus T does not have decomposition property ().

Hence from [8, Theorem 1.2.29], T' is not decomposable. m

The converse of the above lemma is not true. For example, let T} =
diag(a,...,ay) be a diagonal matrix with ;| > 1, 1 < ¢ < n. Then
Ty: C* — C™ is decomposable [8, Proposition 1.4.5]. Let Ty be the right shift
on /2. Then T =Ty & T» € B(C™ & [?) has SVEP [2, Proposition 1.3]. Since
Oap(T) = 0ap(Th) U 04p(T2) [7, 98], it follows that 04,(T) = {a1,...,a,} UT #
{a1,...,a,} UD = o(T), where T = {\: |A\| = 1} and D = {\ : |A\| < 1}. Hence
from [8, Proposition 1.3.2], it follows that 7™ does not have SVEP. Consequently,
T does not have decomposition property (4). Next, let z and y be any non-zero
vectors in C™ and in [? respectively. Then from [2, Proposition 1.3], we have

o7(2 ©0) = 07, (2) Uy (0) € faur .. 0}
and o
or(0®y) =o0r (0)Uor,(y) € D.

Since D N {ai,..., a5} = 0 therefore, (N, cengyz, 4y or(7) = 0.

Let T be a bounded linear operator on a complex Banach space X. Then
K(T) =inf{||Tz| : x € X with ||z| =1}
denotes the lower bound of T. Now define

i(T) = lim w(T™)Y".
It is clear that i(T) < 7(T) = lim, o ||T™||*/". Also, define the hyperrange of T
as T(X) = (2, T"(X).
REMARK 2.1. Combining [8, Theorem 1.6.3] and the above lemma, it can be
easily shown that if the hyperrange of T is {0} and o(T') is not a singleton, then T
does not have decomposition property (¢).

DEFINITION 2.1. Let X be a complex Banach space and T' € B(X). The
analytic core of T' is the set K(T') of all z € X such that there exists a sequence
(yn) C X and 6 > 0 for which:

(1)  =yo, and Typ41 = Yy for every n € N.
(2) |lynll < 8™||z|| for every n € N.

It is easy to see that K(T) is a subspace of X which is not necessarily closed.
Also, K(T) C T*(X). In Proposition 2.1 below we prove that, in the case of a
composition operator Cy on [P(1 < p < 00), the analytic core of Cy is always closed
and coincides with the hyperrange of Cy.
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PROPOSITION 2.1. Let ¢: N — N induce a composition operator Cy on IP(1 <
p < 00). Then K(Cy) = C3°(IP).

Proof. Tt is clear that K(Cy) C C3°(IP). Since from [9, Theorem 2.1.3],

C’éf(lp) = {x € I” : x|¢; ' (n) is constant for each n > 1}

therefore,
crary = () ckur
k=1
= {z €1? : x|¢; *(n) is constant for each n > 1 and for each k > 1}.
Let z € C3°(IP). Then for each n € N, define

Yn(m) = x|¢, *(m) for all m > 1.

Since z|¢,, ' (n) is constant for each n > 1 and for each k > 1, therefore each y,(m)
is well-defined and y,, € [P for each n > 1. Also

(Coyns1)(m) = Y1 (G(m)) = x|¢y 11 ($(m))-
Since ¢, 1(m) C ¢,,1,(¢(m)), therefore z|¢;, 1 (¢(m)) = z|¢;; (m). Hence
(Coyn+1)(m) = z[dy* (m) = yn(m) Ym = 1.
That is, Cyynt1 = yn Yn > 0, where yo = z.
Further, for any n > 0,

lynll” = k; lyn(R)[P = k; x|y (B)IP < [l

Thus, letting 6 = 1, we get the required sequence (y,,)52; in [P which satisfies all
the conditions of K(Cy). Hence C3°(IP) C K (Cy). Therefore K(Cy) = C3°(IF). m

COROLLARY 2.1. The analytic core of a composition operator on 1P (1 <p <
00) is closed.

Proof. The proof follows from the above lemma and the fact that the range of
a composition operator on [P (1 < p < 00) is closed [9, Theorem 2.1.4]. m

We now prove the following proposition which is not true in general but is true
for composition operators on [P (1 < p < 00) spaces.

PROPOSITION 2.2. Suppose that ¢: N — N induces a composition operator Cy
onl? (1 <p < o0). If hyperrange of Cy is {0}, then Cy does not have decomposition
property (9).

Proof. If ¢ is injective then Cy is surjective and hence hyperrange of Cy is (P.
Since ¢ not injective implies Cy not onto implies 0 € 0(Cy) and since there are no
quasinilpotent composition operators Cy on P, 7(Cy) > 0 and from Lemma 2.1,
C(IP) = {0} imply Cy does not satisfy decomposition property (5). m



298 Sh. Trivedi, H. Chandra

The following examples show the various possibilities for hyperrange and i(Cy)
of C¢.

ExamMpLE 2.1. Let ¢: N — N be defined as

d(1)=¢(2)=¢(3) =2 and ¢(n)=n—1Vn>4.

Then for each n > 1, Cfx1 = 0. Therefore, /@(C’g) = 0, Vn > 1 and hence,
i(Cy) = 0. Further, as limg_ ¢;, ' (2) = N, it follows that Ce(?) = {0} and
hence by Proposition 2.1 C4 does not have decomposition property ().

EXAMPLE 2.2. Let ¢: N — N be defined as

¢(1)=1and ¢(n) =n—1VYn > 2.

Since limy—oo ¢, (1) = N therefore, C(IP) = {0}. Thus Cy does not have de-
composition property ().

ExXAMPLE 2.3. Let ¢: N — N be defined as

p(1)=1, ¢(2)=2, ¢2n+1)=n+1¥n>1 and ¢(2n)=n+1VYn>2.

Then limy_ o0 |}, ' ()| = 00 ¥n € N\ {1} and therefore, K (Cy) = Ce(lP) = [xal,
a one-dimensional subspace.

ExaMpPLE 2.4. Let ¢: N — N be defined as

(1) = 6(3) = L 6(4) =2, ¢(2n+1) =20 1¥n>2,
o(n)=n+4, ¥n €{2,6,10,14,...} and ¢(n)=n—4, Vn € {8,12,16,...}.
Then limy oo ¢ ' (1) = N\ {2n : n € N} and therefore, K(Cy) = C3°(IP) = {xz €

?:z|(N\ {2n : n € N}) = 0}, an infinite-dimensional subspace.

In Examples 2.2, 2.3 and 2.4 above, since ¢ is surjective, therefore i(Cy) > 1.
Further, the following theorem implies that the composition operators in Examples
2.3 and 2.4 do not have decomposition property (9).

THEOREM 2.1. If ¢: N — N is onto but not one-one then Cy: [P — P (1 <
p < 00) has SVEP but does not have decomposition property (0). Hence Cy is not
decomposable.

Proof. Let f(A) = (z1(A),22(A\),...) be an analytic function defined on an
open subset U of C into [P, satisfying

(A=Cy)f(A\) =0 foreach A eU. (2.1)

Suppose that f(\) is non-zero. Without loss of generality, we may assume that f
is never zero on U. Choose A\g € U \ (T U{0}), where T = {A : |A\] = 1}. Since
f(Xo) # 0 therefore there is a natural number ng such that z,,(Ag) # 0. For each
k > 0, put ng = ¢r(ng), where ¢ denotes the k-th iterate of ¢.

CrAIM: All ng’s are distinct.

On contrary, suppose that n; = n; for some 4, j with ¢ < j. Then j =7 + &,
for some k > 0. Hence equation (2.1) gives

>\033n1- ()‘0) = Tn;qq (AO)
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)\Oxni+1 ()\0) = xni+2 ()\O)

ATy g1 (A0) = Znyyy (No)
= Tn; ()‘0)
= T, (No)-
Thus (Ao)¥z,, (Ao) = Zn, (Ao). This implies that z,,, (Ag) = 0.
Further, equation (2.1) implies

AoTng(A0) = Tn, (Ao)

A0m7u71 (AO) = xni (AO)

Therefore, (Ao)'@n,(Ao) = Zn,(Ao) = 0, which implies that z,,(\g) = 0, a contra-
diction. This proves our claim.

For k > 1, let n_ be any element chosen from the set ¢, ' (ng) = {n : ¢y (n) =
np}. Using the same arguments as above one can easily show that n_’s are all
distinct and {ng : k >0} N{n_p: k> 1} =0.

Hence from equation 2.1 we get
T (Mo) = (No)*xn, (o) VE € Z.
Thus

1007 2 5 frn (o)l

1

= |Zno (M) [P(L 4 [ Ao [P + [Ao|*P + ) + [Ty (A0)P( o

[ Aol?
= 0.
This is a contradiction. Hence f(A) =0 VA € U. Therefore, Cy has SVEP.
Next, since ¢ is onto implies Cy is injective, Cy has SVEP (at 0). Again, since
Cy has closed range, C’j{, is onto. CF cannot, however, have SVEP. For if it does,
then it is injective [6], and we already know that Cy is not onto. m

THEOREM 2.2. If ¢: N — N is one-one but not onto then Cy: P — P (1 <
p < 00) does not have SVEP.

Proof. Let ng € N be such that ng ¢ range(¢). For each k > 0 put ng = ¢x(no),
where ¢ denotes the k-th iterate of ¢. Since ¢ is one-one, we see that all ny’s are
distinct. Now set z,,, (A\) = A¥, k >0, |\| < 1 and a;(\) = 0, if j & {ng,n1,...}.
Then f(A) = (z1(A), 22(A),...) is a non-zero analytic map from open unit disk D
into [? satisfying (A — Cy) f(A) =0 VA € D. Thus Cy4 does not have SVEP. m

THEOREM 2.3. If ¢: N — N is a bijection then Cy: 1P — 1P (1 < p < 00) is
decomposable.
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Proof. If ¢: N — N is a bijective map then Cy is an invertible isometry [10,
p. 20], and hence, decomposable [8, Proposition 1.6.7]. m

The following two examples show that if ¢: N — N is neither one-one nor onto
then Cy may or may not be decomposable.

ExaMpLE 2.5. Let ¢: N — N be defined as

n+1, nisodd,
o) = {

n n is even.

)

Then ¢ is neither one-one nor onto. Since ¢ = ¢ therefore, Cy is a projection and
hence, is decomposable.

EXAMPLE 2.6. Let ¢: N — N be defined as
p(2n—1)=¢(2n)=2n+1, ¥n > 1.

Then ¢ is neither one-one nor onto. Now define a map f from the open unit disk
D into [P as
FOO) = (1L, 1,0 20203 03 ) VA e D.

Then f is a non-zero analytic map satisfying (A — Cy)f(A) = 0 for each A € D.
Thus Cy does not have SVEP and hence, is not decomposable.
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