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Abstract. In this paper, we give a condition under which a bounded linear operator on a
complex Banach space has Single Valued Extension Property (SVEP) but does not have decompo-
sition property (δ). We also discuss the analytic core, decomposability and SVEP of composition
operators Cφ on lp (1 ≤ p < ∞) spaces. In particular, we prove that if φ is onto but not one-one
then Cφ is not decomposable but has SVEP. Further, it is shown that if φ is one-one but not onto
then Cφ does not have SVEP.

1. Preliminaries

The single valued extension property plays a central role in the local spectral
theory. This property was first introduced by N. Dunford [3,4] and subsequently,
became an essential tool in determining the decomposability of a bounded linear
operator on a Banach space.

Let X be a complex Banach space and B(X) denote the Banach algebra of
bounded linear operators on X. An operator T ∈ B(X) is said to have the Single
Valued Extension Property (abbreviated as SVEP) if for every open set G ⊆ C, the
only analytic solution f : G → X, of the equation (λ − T )f(λ) = 0, for all λ ∈ G,
is the zero function on G. It is clear from the definition that an operator, whose
point spectrum has empty interior, has SVEP. However, the converse is not true
in general [8, p. 15]. A result by J. K. Finch [6] gives a class of examples of those
operators which do not have SVEP.

For x ∈ X, the local resolvent of T at x, denoted by ρT (x), is defined as the
union of all open subsets G of C for which there is an analytic function f : G → X
satisfying (λ − T )f(λ) = x for all λ ∈ G. The complement of ρT (x) is called
the local spectrum of T at x and is denoted by σT (x). If T has the SVEP then
σT (x) = ∅ if and only if x = 0 (for proof see [8, Proposition 1.2.16]). For a
subset F ⊆ C, the local spectral subspace of T , denoted by XT (F ), is defined as
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XT (F ) = {x ∈ X : σT (x) ⊆ F}. An operator T is said to have Dunford’s property
(C) if XT (F ) is closed for every closed subset F of C. T is said to have Bishop’s
property (β) if for every open subset G of C and every sequence of analytic functions
fn : G → X with the property that (λ− T )fn(λ) → 0 as n →∞, locally uniformly
on G, then fn(λ) → 0 as n → ∞, locally uniformly on G. It is well known that
(β) ⇒ (C) ⇒ SVEP.

T is said to be decomposable if for every open cover {U, V } of C there exist
T -invariant closed subspaces Y and Z of X such that σ(T |Y ) ⊆ U , σ(T |Z) ⊆ V and
X = Y +Z. T is said to have the decomposition property (δ) if for every open cover
{U, V } of C, X = XT (U) + XT (V ), where XT (U) is defined as the set of all x ∈ X
such that there is an analytic function f : C \ U → X satisfying (λ − T )f(λ) = x.
Note that XT (U) is a subspace of X and if T has the SVEP then XT (U) = XT (U).
For further reading of local spectral theory we refer to [2, 5, 8].

Let φ be a self-map on the set of natural numbers N. Then φ induces a linear
transformation Cφ on the complex vector space V of complex sequences, defined
by

Cφ(
∞∑

n=1
xnχn) =

∞∑
n=1

xnχφ−1(n),

where χn denotes the characteristic function of {n}. If V is lp and Cφ happens
to be bounded, then Cφ is called a composition operator on lp. A necessary and
sufficient condition on φ to induce a composition operator on lp(1 ≤ p < ∞) is that
the set {|φ−1(n)| : n ∈ N} must be bounded, where | · | denotes the cardinality of
the set [10, Theorem 2.1.1]. For further details of the composition operators, we
refer to [10]. Throughout the paper φn denotes the n-th iterate of φ.

2. Main results

We begin by proving the following lemma.

Lemma 2.1. Let X be a complex Banach space and T ∈ B(X). Suppose that
σ(T ) is not a singleton and

⋂
x∈X, x 6=0 σT (x) 6= ∅. Then T has SVEP but T does

not have decomposition property (δ) and hence, T is not decomposable.

Proof. Suppose that T does not have SVEP. Then there is a non-zero x ∈ X
such that σT (x) = ∅ [8, Proposition 1.2.16], which implies that

⋂
x∈X, x 6=0 σT (x) =

∅. Thus ⋂

x∈X, x 6=0

σT (x) 6= ∅ =⇒ T has SVEP.

Let
⋂

x∈X, x 6=0 σT (x) = K ⊆ σ(T ). Now we have the following two cases.

Case I: K = σ(T ).
In this case σT (x) = σ(T ) for all non-zero x in X. Let U be an open set

such that U and C \ U both intersect σ(T ). Let B be a closed ball inside U with
Bo ∩ σ(T ) 6= ∅, then {U,C \ B} is an open covering of C. It is easy to see that
XT (U) = XT (C \B) = {0}. Since XT (F ) = XT (F ) for all closed subsets F of C
as T has SVEP, we see that T does not have decomposition property (δ).
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Case II: K is a proper subset of σ(T ).

Again, let U be an open set such that U contains K and σ(T ) ∩ (C \ U) 6= ∅.
Let B be a closed ball inside U with Bo ∩ K 6= ∅. Then {U,C \ B} is an open
covering of C. Now XT (C \B) = {0} since σT (x) ⊇ K for all non-zero x in X and
as T has SVEP so XT (U) 6= X. Thus T does not have decomposition property (δ).

Hence from [8, Theorem 1.2.29], T is not decomposable.

The converse of the above lemma is not true. For example, let T1 =
diag(α1, . . . , αn) be a diagonal matrix with |αi| > 1, 1 ≤ i ≤ n. Then
T1 : Cn → Cn is decomposable [8, Proposition 1.4.5]. Let T2 be the right shift
on l2. Then T = T1 ⊕ T2 ∈ B(Cn ⊕ l2) has SVEP [2, Proposition 1.3]. Since
σap(T ) = σap(T1) ∪ σap(T2) [7, 98], it follows that σap(T ) = {α1, . . . , αn} ∪ T 6=
{α1, . . . , αn} ∪D = σ(T ), where T = {λ : |λ| = 1} and D = {λ : |λ| ≤ 1}. Hence
from [8, Proposition 1.3.2], it follows that T ∗ does not have SVEP. Consequently,
T does not have decomposition property (δ). Next, let x and y be any non-zero
vectors in Cn and in l2 respectively. Then from [2, Proposition 1.3], we have

σT (x⊕ 0) = σT1(x) ∪ σT2(0) ⊆ {α1, . . . , αn}
and

σT (0⊕ y) = σT1(0) ∪ σT2(y) ⊆ D.

Since D ∩ {α1, . . . , αn} = ∅ therefore,
⋂

x∈Cn⊕l2, x 6=0 σT (x) = ∅.
Let T be a bounded linear operator on a complex Banach space X. Then

κ(T ) = inf{‖Tx‖ : x ∈ X with ‖x‖ = 1}
denotes the lower bound of T . Now define

i(T ) = lim
n→∞

κ(Tn)1/n.

It is clear that i(T ) ≤ r(T ) = limn→∞ ‖Tn‖1/n. Also, define the hyperrange of T
as T∞(X) =

⋂∞
n=1 Tn(X).

Remark 2.1. Combining [8, Theorem 1.6.3] and the above lemma, it can be
easily shown that if the hyperrange of T is {0} and σ(T ) is not a singleton, then T
does not have decomposition property (δ).

Definition 2.1. Let X be a complex Banach space and T ∈ B(X). The
analytic core of T is the set K(T ) of all x ∈ X such that there exists a sequence
(yn) ⊂ X and δ > 0 for which:

(1) x = y0, and Tyn+1 = yn for every n ∈ N.

(2) ‖yn‖ ≤ δn‖x‖ for every n ∈ N.

It is easy to see that K(T ) is a subspace of X which is not necessarily closed.
Also, K(T ) ⊆ T∞(X). In Proposition 2.1 below we prove that, in the case of a
composition operator Cφ on lp(1 ≤ p < ∞), the analytic core of Cφ is always closed
and coincides with the hyperrange of Cφ.
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Proposition 2.1. Let φ : N→ N induce a composition operator Cφ on lp(1 ≤
p < ∞). Then K(Cφ) = C∞φ (lp).

Proof. It is clear that K(Cφ) ⊆ C∞φ (lp). Since from [9, Theorem 2.1.3],

Ck
φ(lp) = {x ∈ lp : x|φ−1

k (n) is constant for each n ≥ 1}
therefore,

C∞φ (lp) =
∞⋂

k=1

Ck
φ(lp)

= {x ∈ lp : x|φ−1
k (n) is constant for each n ≥ 1 and for each k ≥ 1}.

Let x ∈ C∞φ (lp). Then for each n ∈ N, define

yn(m) = x|φ−1
n (m) for all m ≥ 1.

Since x|φ−1
k (n) is constant for each n ≥ 1 and for each k ≥ 1, therefore each yn(m)

is well-defined and yn ∈ lp for each n ≥ 1. Also

(Cφyn+1)(m) = yn+1(φ(m)) = x|φ−1
n+1(φ(m)).

Since φ−1
n (m) ⊆ φ−1

n+1(φ(m)), therefore x|φ−1
n+1(φ(m)) = x|φ−1

n (m). Hence

(Cφyn+1)(m) = x|φ−1
n (m) = yn(m) ∀m ≥ 1.

That is, Cφyn+1 = yn ∀n ≥ 0, where y0 = x.
Further, for any n ≥ 0,

‖yn‖p =
∞∑

k=1

|yn(k)|p =
∞∑

k=1

|x|φ−1
n (k)|p ≤ ‖x‖p.

Thus, letting δ = 1, we get the required sequence (yn)∞n=1 in lp which satisfies all
the conditions of K(Cφ). Hence C∞φ (lp) ⊆ K(Cφ). Therefore K(Cφ) = C∞φ (lp).

Corollary 2.1. The analytic core of a composition operator on lp (1 ≤ p <
∞) is closed.

Proof. The proof follows from the above lemma and the fact that the range of
a composition operator on lp (1 ≤ p < ∞) is closed [9, Theorem 2.1.4].

We now prove the following proposition which is not true in general but is true
for composition operators on lp (1 ≤ p < ∞) spaces.

Proposition 2.2. Suppose that φ : N→ N induces a composition operator Cφ

on lp (1 ≤ p < ∞). If hyperrange of Cφ is {0}, then Cφ does not have decomposition
property (δ).

Proof. If φ is injective then Cφ is surjective and hence hyperrange of Cφ is lp.
Since φ not injective implies Cφ not onto implies 0 ∈ σ(Cφ) and since there are no
quasinilpotent composition operators Cφ on lp, r(Cφ) > 0 and from Lemma 2.1,
C∞φ (lp) = {0} imply Cφ does not satisfy decomposition property (δ).
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The following examples show the various possibilities for hyperrange and i(Cφ)
of Cφ.

Example 2.1. Let φ : N→ N be defined as

φ(1) = φ(2) = φ(3) = 2 and φ(n) = n− 1 ∀n ≥ 4.

Then for each n ≥ 1, Cn
φχ1 = 0. Therefore, κ(Cn

φ ) = 0, ∀n ≥ 1 and hence,
i(Cφ) = 0. Further, as limk→∞ φ−1

k (2) = N, it follows that C∞φ (lp) = {0} and
hence by Proposition 2.1 Cφ does not have decomposition property (δ).

Example 2.2. Let φ : N→ N be defined as

φ(1) = 1 and φ(n) = n− 1 ∀n ≥ 2.

Since limk→∞ φ−1
k (1) = N therefore, C∞φ (lp) = {0}. Thus Cφ does not have de-

composition property (δ).
Example 2.3. Let φ : N→ N be defined as

φ(1) = 1, φ(2) = 2, φ(2n + 1) = n + 1 ∀n ≥ 1 and φ(2n) = n + 1 ∀n ≥ 2.

Then limk→∞ |φ−1
k (n)| = ∞ ∀n ∈ N \ {1} and therefore, K(Cφ) = C∞φ (lp) = [χ1],

a one-dimensional subspace.
Example 2.4. Let φ : N→ N be defined as

φ(1) = φ(3) = 1, φ(4) = 2, φ(2n + 1) = 2n− 1 ∀n ≥ 2,

φ(n) = n + 4, ∀n ∈ {2, 6, 10, 14, . . . } and φ(n) = n− 4, ∀n ∈ {8, 12, 16, . . . }.
Then limk→∞ φ−1

k (1) = N \ {2n : n ∈ N} and therefore, K(Cφ) = C∞φ (lp) = {x ∈
lp : x|(N \ {2n : n ∈ N}) = 0}, an infinite-dimensional subspace.

In Examples 2.2, 2.3 and 2.4 above, since φ is surjective, therefore i(Cφ) ≥ 1.
Further, the following theorem implies that the composition operators in Examples
2.3 and 2.4 do not have decomposition property (δ).

Theorem 2.1. If φ : N → N is onto but not one-one then Cφ : lp → lp (1 ≤
p < ∞) has SVEP but does not have decomposition property (δ). Hence Cφ is not
decomposable.

Proof. Let f(λ) = (x1(λ), x2(λ), . . . ) be an analytic function defined on an
open subset U of C into lp, satisfying

(λ− Cφ)f(λ) = 0 for each λ ∈ U. (2.1)

Suppose that f(λ) is non-zero. Without loss of generality, we may assume that f
is never zero on U . Choose λ0 ∈ U \ (T ∪ {0}), where T = {λ : |λ| = 1}. Since
f(λ0) 6= 0 therefore there is a natural number n0 such that xn0(λ0) 6= 0. For each
k ≥ 0, put nk = φk(n0), where φk denotes the k-th iterate of φ.

Claim: All nk’s are distinct.
On contrary, suppose that ni = nj for some i, j with i < j. Then j = i + k,

for some k > 0. Hence equation (2.1) gives

λ0xni(λ0) = xni+1(λ0)
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λ0xni+1(λ0) = xni+2(λ0)
. . .

λ0xni+k−1(λ0) = xni+k
(λ0)

= xnj (λ0)

= xni
(λ0).

Thus (λ0)kxni(λ0) = xni(λ0). This implies that xni(λ0) = 0.
Further, equation (2.1) implies

λ0xn0(λ0) = xn1(λ0)
. . .

λ0xni−1(λ0) = xni
(λ0).

Therefore, (λ0)ixn0(λ0) = xni
(λ0) = 0, which implies that xn0(λ0) = 0, a contra-

diction. This proves our claim.
For k ≥ 1, let n−k be any element chosen from the set φ−1

k (n0) = {n : φk(n) =
n0}. Using the same arguments as above one can easily show that n−k’s are all
distinct and {nk : k ≥ 0} ∩ {n−k : k ≥ 1} = ∅.

Hence from equation 2.1 we get

xnk
(λ0) = (λ0)kxn0(λ0) ∀k ∈ Z.

Thus

‖f(λ0)‖p ≥
∞∑

k=−∞
|xnk

(λ0)|p

= |xn0(λ0)|p(1 + |λ0|p + |λ0|2p + · · · ) + |xn0(λ0)|p( 1
|λ0|p +

1
|λ0|2p

+ · · · )
= ∞.

This is a contradiction. Hence f(λ) = 0 ∀λ ∈ U . Therefore, Cφ has SVEP.
Next, since φ is onto implies Cφ is injective, Cφ has SVEP (at 0). Again, since

Cφ has closed range, C∗φ is onto. C∗φ cannot, however, have SVEP. For if it does,
then it is injective [6], and we already know that Cφ is not onto.

Theorem 2.2. If φ : N → N is one-one but not onto then Cφ : lp → lp (1 ≤
p < ∞) does not have SVEP.

Proof. Let n0 ∈ N be such that n0 /∈ range(φ). For each k ≥ 0 put nk = φk(n0),
where φk denotes the k-th iterate of φ. Since φ is one-one, we see that all nk’s are
distinct. Now set xnk

(λ) = λk, k ≥ 0, |λ| < 1 and xj(λ) = 0, if j /∈ {n0, n1, . . . }.
Then f(λ) = (x1(λ), x2(λ), . . . ) is a non-zero analytic map from open unit disk D
into lp satisfying (λ− Cφ)f(λ) = 0 ∀λ ∈ D. Thus Cφ does not have SVEP.

Theorem 2.3. If φ : N → N is a bijection then Cφ : lp → lp (1 ≤ p < ∞) is
decomposable.
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Proof. If φ : N → N is a bijective map then Cφ is an invertible isometry [10,
p. 20], and hence, decomposable [8, Proposition 1.6.7].

The following two examples show that if φ : N→ N is neither one-one nor onto
then Cφ may or may not be decomposable.

Example 2.5. Let φ : N→ N be defined as

φ(n) =
{

n + 1, n is odd,

n, n is even.

Then φ is neither one-one nor onto. Since φ2 = φ therefore, Cφ is a projection and
hence, is decomposable.

Example 2.6. Let φ : N→ N be defined as

φ(2n− 1) = φ(2n) = 2n + 1, ∀n ≥ 1.

Then φ is neither one-one nor onto. Now define a map f from the open unit disk
D into lp as

f(λ) = (1, 1, λ, λ, λ2, λ2, λ3, λ3, . . . ) ∀λ ∈ D.

Then f is a non-zero analytic map satisfying (λ − Cφ)f(λ) = 0 for each λ ∈ D.
Thus Cφ does not have SVEP and hence, is not decomposable.
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