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B-FREDHOLM SPECTRA AND RIESZ PERTURBATIONS

M. Berkani and H. Zariouh

Abstract. Let T be a bounded linear Banach space operator and let Q be a quasinilpotent
one commuting with T . The main purpose of the paper is to show that we do not have σ∗(T +Q) =
σ∗(T ) where σ∗ ∈ {σD, σLD}, contrary to what has been announced in the proof of Lemma 3.5
from M. Amouch, Polaroid operators with SVEP and perturbations of property (gw), Mediterr.
J. Math. 6 (2009), 461–470, where σD(T ) is the Drazin spectrum of T and σLD(T ) its left Drazin
spectrum. However, under the additional hypothesis isoσub(T ) = ∅, the mentioned equality holds.
Moreover, we study the preservation of various spectra originating from B-Fredholm theory under
perturbations by Riesz operators.

1. Introduction

Recently, we have defined and studied several properties (generalized or not)
in connection with Weyl-Browder type theorems, see [9,11] and when we have been
interested in the study of their perturbations, see [10,13], it was necessary to con-
sider some crucial open questions related to the ideas developed in the papers cited
above; these questions are based essentially on the stability of spectra originating
from B-Fredholm theory under perturbations by commuting nilpotent operators,
see [12,13], and very recently they have been answered affirmatively in [21]. More
precisely, it has been proved that these spectra are stable under commuting power
finite rank perturbations.

Our essential aim in this paper is to show that, generally, various spectra origi-
nating from B-Fredholm theory are not preserved under commuting quasinilpotent
perturbations, contrary to what has been announced in [2, Lemma 3.5], in [19, The-
orem 3.15] and in the proof of [19, Theorem 3.16]. Furthermore, we study the stabil-
ity of these spectra under commuting Riesz perturbations, and we show in particular
that if T is a bounded Banach space operator satisfying iso σSF−+

(T ) = ∅ and if R is
a Riesz one commuting with T then σ∗(T +R) = σ∗(T ); where σ∗ ∈ {σBW , σSBF−+

}.
Preliminarily, we give some definitions that will be needed later. Let L(X)

denote the Banach algebra of all bounded linear operators acting on a complex
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Banach space X. For T ∈ L(X), let T ∗, N (T ), n(T ), R(T ), d(T ), σ(T ) and σa(T )
denote respectively the dual, the null space, the nullity, the range, the defect, the
spectrum and the approximate point spectrum of T . B-Fredholm operators were
introduced in [4] as a natural generalization of Fredholm operators, and have been
extensively studied in [4,5,8]. For a bounded linear operator T and a nonnegative
integer n define T[n] to be the restriction of T to R(Tn) viewed as a map from
R(Tn) into R(Tn) (in particular T[0] = T ). If for some integer n the range space
R(Tn) is closed and T[n] is an upper (resp. a lower) semi-Fredholm operator, then T
is called an upper (resp. a lower) semi-B-Fredholm operator. In this case the index
ind(T ) of T is defined as the index of the semi-Fredholm operator T[n], see [4,8].
Moreover, if T[n] is a Fredholm operator, then T is called a B-Fredholm operator,
see [4]. Recall that an operator T ∈ L(X) is called upper semi-Fredholm if R(T )
is closed and n(T ) < ∞ and called lower semi-Fredholm if d(T ) < ∞. If both
n(T ) and d(T ) are finite, then T is called a Fredholm operator. T is called a Weyl
operator if it is Fredholm of index 0. The Weyl spectrum σW (T ) of T is defined
by σW (T ) = {λ ∈ C : T − λI is not a Weyl operator}, and the essential spectrum
σe(T ) of T is defined by σe(T ) = {λ ∈ C : T − λI is not a Fredholm operator}.
Similarly the B-Weyl spectrum σBW (T ) and B-Fredholm spectrum σBF (T ) of T are
defined.

Let SF+(X) be the class of all upper semi-Fredholm operators and SF−+ (X) =
{T ∈ SF+(X) : ind(T ) ≤ 0}. The upper semi-Weyl spectrum σSF−+

(T ) of T is

defined by σSF−+
(T ) = {λ ∈ C : T − λI /∈ SF−+ (X)}. Similarly the upper semi-B-

Weyl spectrum σSBF−+
(T ) of T is defined.

Recall that the ascent a(T ), of an operator T , is defined by a(T ) = inf{n ∈ N :
N (Tn) = N (Tn+1)} and the descent δ(T ) of T , is defined by δ(T ) = inf{n ∈ N :
R(Tn) = R(Tn+1)}, with inf ∅ = ∞. An operator T ∈ L(X) is called Browder if it
is Fredholm of finite ascent and descent, and is called upper semi-Browder if it is up-
per semi-Fredholm of finite ascent. The upper semi-Browder spectrum σub(T ) of T
is defined by σub(T ) = {λ ∈ C : T −λI is not upper semi-Browder}, and the Brow-
der spectrum σb(T ) of T is defined by σb(T ) = {λ ∈ C : T − λI is not Browder}.

According to [16], a complex number λ ∈ σ(T ) is a pole of the resolvent of
T if T − λI has a finite ascent and finite descent, and in this case they are equal.
Let Π(T ) denote the set of all poles of T ; the Drazin spectrum of T is defined as
σD(T ) = σ(T ) \ Π(T ). Following [7], a complex number λ ∈ σa(T ) is a left pole of
T if a(T − λI) < ∞ and R(T a(T−λI)+1) is closed. Let Πa(T ) denote the set of all
left poles of T ; the left Drazin spectrum of T is defined as σLD(T ) = σa(T )\Πa(T ).

An operator T ∈ L(X) is said to have the single valued extension property at
µ0 ∈ C (abbreviated SVEP at µ0), if for every open neighborhood U of µ0, the only
analytic function f : U → X which satisfies the equation (T − µI)f(µ) = 0 for all
µ ∈ U is the function f ≡ 0. An operator T ∈ L(X) is said to have SVEP if T
has SVEP at every µ ∈ C (see [17] for more details about this concept). Hereafter
iso A denotes isolated points of a given subset A of C.
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2. Stability under Riesz perturbations

We recall from [14] that an operator R ∈ L(X) is said to be Riesz if R − µI
is Fredholm for every non-zero complex µ, that is, π(R) is quasinilpotent in the
Calkin algebra C(X) = L(X)/K(X) where K(X) is the ideal of compact operators
in L(X) and π is the canonical mapping of L(X) into C(X). Of course compact and
quasinilpotent are particular cases of Riesz operators. Now, we start the present
section by some remarks about [2, Lemma 3.5] where it was established that if
T ∈ L(X) has SVEP and if Q ∈ ÃL(X) is a quasinilpotent operator commuting with
T , then:

(i) σBW (T + Q) = σBW (T ) = σD(T + Q) = σD(T ),

(ii) σSBF−+
(T + Q) = σSBF−+

(T ) = σLD(T + Q) = σLD(T ),

(iii) σBW ((T + Q)∗) = σBW (T ∗) = σD((T + Q)∗) = σD(T ∗),

(iv) σSBF−+
((T + Q)∗) = σSBF−+

(T ∗) = σLD((T + Q)∗) = σLD(T ∗).

However, its proof is incorrect, since it is based on the fact that σD(T + Q) =
σD(T ) and σLD(T + Q) = σLD(T ). But this is not always true as we can see
in Example 2.1 below. Note that the first equality of upper semi-B-Weyl spectra
of statement (ii) above was also proved in [19, Theorem 3.15] for every operator
T ∈ L(X) commuting with Q. But this is also not true in general as we can see in
the same exmple.

Example 2.1. Let X = `2(N), and let B = {ei | ei = (δj
i )j∈N, i ∈ N} be

the canonical basis of `2(N). Let E be the subspace of `2(N) generated by the
set {ei | 1 ≤ i ≤ n}. Let P be the orthogonal projection on E. Let S be the
quasinilpotent operator defined on `2(N), by S(x1, x2, x3, . . . ) = (x2/2, x3/3, . . . )
for all x = (x1, x2, x3, . . . ) ∈ `2(N).

Consider the operator T defined on X ⊕X, by T = 0⊕P . Then T has SVEP
and σBW (T ) = σBF (T ) = σD(T ) = σSBF−+

(T ) = σLD(T ) = ∅. Let Q ∈ L(X ⊕X)
the operator defined by Q = S ⊕ 0. Then Q is a quasinilpotent operator of infinite
ascent, since S is of infinite ascent, satisfying QT = TQ = 0. But σBW (T + Q) =
σBF (T + Q) = σD(T + Q) = σSBF−+

(T + Q) = σLD(T + Q) = {0}.
For the statements (iii) and (iv), the adjoint S∗ of the operator S defined

above is given by S∗(x1, x2, x3, . . . ) = (0, x1/2, x2/3, x3/4, . . . ), and S∗ is of infinite
descent. Since T ∗ = T , we have: σBW (T ∗) = σBF (T ∗) = σD(T ∗) = σSBF−+

(T ∗) =
σLD(T ∗) = ∅. But σBW ((T +Q)∗) = σBF ((T +Q)∗) = σD((T +Q)∗) = σSBF−+

((T +
Q)∗) = σLD((T + Q)∗) = {0}.

Before giving the correct versions (see Corollary 2.8 and Proposition 2.4 below)
of [2, Lemma 3.5] and [19, Theorem 3.15], we need the following comments on B-
Fredholm spectra and some auxiliary lemmas. Obviously, for every T ∈ L(X)
we know that σBW (T ) ⊂ σW (T ), σSBF−+

(T ) ⊂ σSF−+
(T ) and σBF (T ) ⊂ σe(T ),

but generally these inclusions are proper. Indeed, let T = 0 ⊕ R be defined on
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the Banach space `2(N) ⊕ `2(N), where R is the right shift operator on `2(N).
Then σSBF−+

(T ) = C(0, 1)  σSF−+
(T ) = C(0, 1) ∪ {0}, where C(0, 1) is the unit

circle of C. On the other hand, if we consider the operator V on `2(N) defined
by V (x1, x2, . . . ) = (0, x1/2, 0, 0, . . . ), then σBF (V ) = σBW (V ) = ∅  σe(V ) =
σW (V ) = {0}.

So it is naturally to ask the following question: what are the defect sets σW (T )\
σBW (T ), σSF−+

(T ) \ σSBF−+
(T ) and σe(T ) \ σBF (T )? The next lemma answers this

question.

Lemma 2.2. Let T ∈ L(X). The following statements hold.

(i) σSF−+
(T ) = σSBF−+

(T )∪iso σSF−+
(T ). In particular, if iso σSF−+

(T ) ⊂ σSBF−+
(T )

then σSBF−+
(T ) = σSF−+

(T ) and σBW (T ) = σW (T ).

(ii) σW (T ) = σBW (T ) ∪ isoσW (T ) and σe(T ) = σBF (T ) ∪ isoσe(T ).

Proof. In order to prove the first statement and let λ ∈ σSF−+
(T ) \ σSBF−+

(T ).
Then T − λI is a semi-B-Fredholm operator. From the punctured neighborhood
theorem for semi-B-Fredholm operators [8, Corollary 3.2], there exists ε > 0 such
that if 0 < |µ| < ε. Then T − λI − µI is an upper semi-Fredholm operator
and ind(T − λI − µI) = ind(T − λI). Thus for every scalar z such that 0 <
|z − λ| < ε, we have that T − λI − (z − λ)I = T − zI is an upper semi-Fredholm
operator with ind(T − zI) ≤ 0. This implies that D(λ, ε) \ {λ} ∩ σSF−+

(T ) = ∅,
and as λ ∈ σSF−+

(T ), and then λ ∈ iso σSF−+
(T ). Hence σSF−+

(T ) ⊂ σSBF−+
(T ) ∪

iso σSF−+
(T ) and since the opposite inclusion is always true, it then follows that

σSF−+
(T ) = σSBF−+

(T ) ∪ isoσSF−+
(T ). In particular, if iso σSF−+

(T ) ⊂ σSBF−+
(T ),

then σSBF−+
(T ) = σSF−+

(T ).

In order to show the second equality, let µ /∈ σBW (T ) be arbitrary. Then
µ /∈ σSBF−+

(T ) = σSF−+
(T ). Thus µ /∈ σW (T ). Hence σBW (T ) ⊃ σW (T ) and so

σBW (T ) = σW (T ).

The second statement is obtained by the same arguments used in the proof of
the first.

Remark 2.3. We know from [6, Lemma 2.4] that if T ∈ L(X) with n(T ) <
∞, then T is semi-B-Fredholm (resp. B-Fredholm) ⇐⇒ T is semi-Fredholm (resp.
Fredholm). Using this fact, we have immediately σSF−+

(T ) = σSBF−+
(T ) ∪ Ω(T ),

σW (T ) = σBW (T ) ∪ Ω(T ) and σe(T ) = σBF (T ) ∪ Ω(T ), where Ω(T ) = {λ ∈ C :
n(T − λI) = ∞}.

The next proposition gives the correct version of [19, Theorem 3.15] and the
correct version to what has been announced in the proof of [19, Theorem 3.16]
where it was affirmed that the B-Weyl spectrum is preserved under commuting
quasinilpotent perturbations. Observe that the operator T defined in Example 2.1
satisfies iso σSF−+

(T ) = {0}, iso σW (T ) = {0} and iso σe(T ) = {0}.
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Proposition 2.4. Let T ∈ L(X) and let R ∈ L(X) be a Riesz operator which
commutes with T . The following statements hold.
(i) If iso σW (T ) = ∅ then σBW (T + R) = σBW (T ). Moreover, if isoσSF−+

(T ) = ∅
then σSBF−+

(T + R) = σSBF−+
(T ) and σBW (T + R) = σBW (T ).

(ii) If isoσe(T ) = ∅ then σBF (T + R) = σBF (T ).

Proof. Case 1. R is of power finite rank. From [21, Corollary 2.3] and [21,
Theorem 2.8], we have σ∗(T + R) = σ∗(T ) for every operator T which commutes
with R; where σ∗ ∈ {σBW , σBF , σSBF−+

}.
Case 2. R is not of power finite rank.
(i) As R is Riesz and commutes with T then from [20, Proposition 5] we

know that σW (T + R) = σW (T ). Since iso σW (T ) = ∅ then from Lemma 2.2,
σBW (T + R) = σW (T + R) = σW (T ) = σBW (T ). Moreover, if iso σSF−+

(T ) = ∅, as
R is Riesz and commutes with T then from [20, Proposition 5], we have σSF−+

(T +
R) = σSF−+

(T ). Again Lemma 2.2 implies that σSBF−+
(T + R) = σSF−+

(T + R) =
σSF−+

(T ) = σSBF−+
(T ).

Let us show the second equality. For this, let λ /∈ σBW (T + R), then λ /∈
σSBF−+

(T + R). As σSBF−+
(T + R) = σSF−+

(T + R) then λ /∈ σSF−+
(T + R). Thus

λ /∈ σW (T + R) = σW (T ). Since iso σSF−+
(T ) = ∅ then σW (T ) = σBW (T ) (see

Lemma 2.2) and therefore λ /∈ σBW (T ). Hence σBW (T ) ⊂ σBW (T + R). By
symmetry, we show that σBW (T ) ⊃ σBW (T + R). Thus σBW (T + R) = σBW (T ).

(ii) Since R is Riesz and commutes with T , we know that σe(T+R) = σe(T ). As
iso σe(T ) = ∅ then from Lemma 2.2, σBF (T +R) = σe(T +R) = σe(T ) = σBF (T ).

Lemma 2.5. For every operator T ∈ L(X), we have: iso σb(T ) ⊂ iso σub(T )
and iso σD(T ) ⊂ isoσLD(T ).

Proof. Let λ ∈ isoσb(T ) be arbitrary; without loss of generality we can assume
that λ = 0. Then there exists ε > 0 such that D(0, ε) \ {0} ∩ σb(T ) = ∅. To prove
that 0 ∈ isoσub(T ), it suffices to prove that 0 ∈ σub(T ). Assuming otherwise, then
T is upper semi-Browder, so that a(T ) and n(T ) are finite. On the other hand, for
every µ such that 0 < |µ| < ε, we have T −µI is a Fredholm operator, in particular
it is an operator of topological uniform descent, see [15], and δ(T − µI) is finite.
From [15, Corollary 4.8] we deduce that δ(T ) is also finite. Thus a(T ) = δ(T ) < ∞
and consequently n(T ) = d(T ) < ∞. Therefore 0 /∈ σb(T ), a contradiction. Hence
iso σb(T ) ⊂ isoσub(T ). The proof of second assertion goes similarly.

Evidently, σLD(T ) ⊂ σub(T ) and σD(T ) ⊂ σb(T ) for every T ∈ L(X), but these
inclusions are proper in general. For instance, on `2(N) we consider the operator
T defined by T (x1, x2, x3, . . . ) = (0, 0, x2, x3, . . . ). Then σLD(T ) = C(0, 1)  
σub(T ) = C(0, 1) ∪ {0} and σD(T ) = σb(T ) = D(0, 1), where D(0, 1) is the closed
unit disc in C. This shows also that the first inclusion of Lemma 2.5 is proper. On
the other hand, let U ∈ L(`2(N)) be defined by U(x1, x2, x3, . . . ) = (0, x2, x3, . . . ),
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then σD(U) = ∅  σb(U) = {1}. Remark that the second inclusion of Lemma 2.5
is also proper. For this, we consider the operator R⊕ S, where R is the unilateral
right shift operator and S defined in Example 2.1. We then have isoσD(R⊕S) = ∅
and iso σLD(R⊕ S) = {0}.

Thus, it is natural to ask the following question: what are exactly the defect
sets σub(T )\σLD(T ) and σb(T )\σD(T )? The main objective of the following lemma
is to give an answer to this question.

Lemma 2.6. Let T ∈ L(X). We have: σub(T ) = σLD(T ) ∪ isoσub(T ) and
σb(T ) = σD(T ) ∪ isoσb(T ). In particular, if iso σub(T ) ⊂ σLD(T ) then σLD(T ) =
σub(T ) and σD(T ) = σb(T ).

Proof. Let λ ∈ σub(T )\σLD(T ) be arbitrary; then a(T −λI) < ∞, T −λI is an
upper semi-B-Fredholm operator, and in particular it is an operator of topological
uniform descent, see [8]. From [8, Corollary 3.2], there exists ε > 0 such that T −
λI − µI is an upper semi-Fredholm operator for every µ such that 0 < |µ| < ε. Let
z ∈ D(λ, ε)\{λ}; then T−zI = T−λI−(z−λ)I is an upper semi-Fredholm operator.
On the other hand, since a(T − λI) < ∞, then by [15, Corollary 4.8], we deduce
that a(T − zI) < ∞. Thus z /∈ σub(T ) and therefore D(λ, ε) \ {λ}∩σub(T ) = ∅. As
λ ∈ σub(T ), then λ ∈ iso σub(T ). Hence σub(T ) ⊂ σLD(T ) ∪ iso σub(T ), and since
the opposite inclusion holds for every operator, then σub(T ) = σLD(T )∪ isoσub(T ).
Analogously, we obtain the second equality. In particular, if iso σub(T ) ⊂ σLD(T ),
then σLD(T ) = σub(T ) and this implies that σD(T ) = σb(T ). Observe that in this
case iso σb(T ) ⊂ σD(T ).

In the next proposition we give the correct version to what has been announced
in the proof of [2, Lemma 3.5] where it was affirmed that if T ∈ L(X) and if
Q ∈ L(X) is a quasinilpotent commuting with T , then σD(T + Q) = σD(T ) and
σLD(T + Q) = σLD(T ). Observe that the operator T defined in Example 2.1
satisfies iso σub(T ) = {0} and iso σb(T ) = {0}.

Proposition 2.7. Let T ∈ L(X) and let R ∈ L(X) be a Riesz operator which
commutes with T . The following statements hold.
(i) If isoσb(T ) = ∅ then σD(T + R) = σD(T ).
(ii) If isoσub(T ) = ∅ then σLD(T + R) = σLD(T ), and in particular σD(T + R) =

σD(T ).

Proof. Case 1. R is of power finite rank. From [21, Theorem 2.11], σ∗(T +R) =
σ∗(T ) for every operator T commuting with R, where σ∗ ∈ {σLD, σD}.

Case 2. R is not power finite rank.
(i) Since R is Riesz and commutes with T , we know from [18, Corollary 8] that

σb(T + R) = σb(T ). As iso σb(T ) = ∅ then by Lemma 2.6, we obtain σD(T + R) =
σb(T + R) = σb(T ) = σD(T ).

(ii) Since R is Riesz operator and commutes with T , we know from [18,
Theorem 7] that σub(T + R) = σub(T ). As iso σub(T ) = ∅ then by Lemma
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2.6 we deduce that σLD(T + R) = σub(T + R) = σub(T ) = σLD(T ). Since
the hypothesis iso σub(T ) = ∅ implies from Lemma 2.5 that iso σb(T ) = ∅, then
σD(T + R) = σD(T ).

The next corollary gives the correct version of [2, Lemma 3.5].

Corollary 2.8. Let T ∈ L(X) be an operator having SVEP and let Q ∈ L(X)
be a quasinilpotent operator which commutes with T . We have:

If isoσb(T ) = ∅ then σBW (T + Q) = σBW (T ) = σD(T + Q) = σD(T ).

Moreover, if iso σub(T ) = ∅ then σSBF−+
(T +Q) = σSBF−+

(T ) = σLD(T +Q) =
σLD(T ), and in particular σBW (T + Q) = σBW (T ) = σD(T + Q) = σD(T ).

Proof. It well known in the literature on operator theory that if T has SVEP,
then σSBF−+

(T ) = σLD(T ) and σBW (T ) = σD(T ). On the other hand, we know
from [1, Corollary 2.12] that if Q is a quasinilpotent and commutes with T , then
T+Q has the SVEP. So σSBF−+

(T+Q) = σLD(T+Q) and σBW (T+Q) = σD(T+Q).

Case 1. Q is nilpotent. From [6, Theorem 3.2], we have σD(T + Q) = σD(T )
for every operator T which commutes with Q. Hence σBW (T +Q) = σD(T +Q) =
σD(T ) = σBW (T ). (1)

Case 2. Q is not nilpotent. Since iso σb(T ) = ∅, then from Proposition 2.7 we
have σD(T + Q) = σD(T ). This proves the equality (1) mentioned above.

Moreover, if iso σub(T ) = ∅, then Proposition 2.7 entails that σLD(T + Q) =
σLD(T ). Hence σSBF−+

(T + Q) = σLD(T + Q) = σLD(T ) = σSBF−+
(T ). Since

iso σub(T ) = ∅ implies that iso σb(T ) = ∅, we retrieve again the equality (1).

Recall that an operator T ∈ L(X) is said to be polaroid if iso σ(T ) = Π(T ). It
was shown in [2, Lemma 3.7] that Π(T +Q) = Π(T ) whenever T ∈ L(X) has SVEP
and Q is a quasinilpotent operator such that TQ = QT . However, the operators T
and Q defined in Example 2.1 show that this result is false. Indeed, T has SVEP
and TQ = QT = 0 and Π(T ) = {0, 1}. But Π(T + Q) = {1}. Note also that it was
proved in [2, Theorem 3.12] that if T ∈ L(X) has SVEP, then T is polaroid if and
only if T + Q is polaroid. But its proof is incorrect, since it is based on [2, Lemma
3.7] which is not true. The following example shows that in general the property
“being polaroid” is not preserved under commuting quasinilpotent perturbations.

Example 2.9. Let V denote the Volterra operator on the Banach space C[0, 1]
defined by V (f)(x) =

∫ x

0
f(t) dt for all f ∈ C[0, 1]. V is injective and quasinilpotent.

Let T = 0 ∈ L(C[0, 1]), then T has SVEP and TV = V T = 0. Moreover, T is
polaroid, since iso σ(T ) = Π(T ) = {0}. But T +V is not. To see this, iso σ(T +V ) =
iso σ(V ) = {0} and since R(V n) is not closed for every n ∈ N, then σD(T + V ) =
{0}. Hence iso σ(T + V ) 6= Π(T + V ) = ∅. So T + V = V is not polaroid.

The first statement of the next corollary gives the correct version of [2, Lemma
3.7 (ii)]. Its second statement gives the correct version of [2, Theorem 3.12] and [2,
Corollary 3.13].
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Corollary 2.10. Let T ∈ L(X) and let Q ∈ L(X) be a quasinilpotent
operator which commutes with T . If iso σb(T ) = ∅ then the following statements
hold.
(i) Π(T + Q) = Π(T ).
(ii) T is polaroid ⇐⇒ T + Q is polaroid. In particular T ∈ PS(X) ⇐⇒ T + Q ∈

PS(X), where PS(X) stands for the class of polaroid operators having SVEP.

Proof. Case 1. If Q is not nilpotent. Since Q is quasinilpotent and commutes
with T , we know that σ(T + Q) = σ(T ). As iso σb(T ) = ∅, then from Proposition
2.7 we have Π(T + Q) = σ(T + Q) \ σD(T + Q) = σ(T ) \ σD(T ) = Π(T ). Hence
T is polaroid ⇐⇒ T + Q is polaroid. As it was already mentioned, we have T has
SVEP if and only if T + Q has SVEP. Thus T ∈ PS(X) ⇐⇒ T + Q ∈ PS(X).

Case 2. If Q is nilpotent. Then Π(T + Q) = Π(T ) for every operator T
commuting with Q. Thus in this case the two statements of this corollary hold
without the condition isoσb(T ) = ∅.

Recall that an operator T ∈ L(X) is called a-polaroid if iso σa(T ) = Πa(T ).
Generally, this property “being a-polaroid” is not preserved under commuting
quasinilpotent perturbations. To see this, if we consider T and Q defined in Ex-
ample 2.1, then isoσa(T ) = Πa(T ) = {0, 1}, i.e., T is a-polaroid. But T + Q is
not, since iso σa(T + Q) = {0, 1} 6= Πa(T + Q) = {1}. Nonetheless, we give in
the following corollary a sufficient condition which ensure the stability of “being
a-polaroid” property under commuting quasinilpotent perturbations.

Corollary 2.11. Let T ∈ L(X) and let Q ∈ L(X) be a quasinilpotent
operator which commutes with T . If iso σub(T ) = ∅ then the following statements
hold.
(i) Πa(T + Q) = Πa(T ).
(ii) T is a-polaroid ⇐⇒ T +Q a-polaroid. In particular, T ∈ aPS(X) ⇐⇒ T +Q ∈

aPS(X), where aPS(X) stands for the class of a-polaroid operators having
SVEP.

Proof. Case 1. Q is not nilpotent. Since Q is quasinilpotent and commutes
with T , we know that σa(T + Q) = σa(T ). The assumption iso σub(T ) = ∅ entails
by Proposition 2.7 that Πa(T +Q) = σa(T +Q) \σLD(T +Q) = σa(T ) \σLD(T ) =
Πa(T ). This implies that T is a-polaroid⇐⇒ T +Q a-polaroid. Hence T ∈ aPS(X)
⇐⇒ T + Q ∈ aPS(X).

Case 2. Q is nilpotent. In this case it is well known from [21, Theorem 2.11]
that Πa(T +Q) = Πa(T ) for any operator T commuting with Q. Hence in this case
the two statements of this corollary hold without hypothesis iso σub(T ) = ∅.

We finish this paper by two remarks including crucial comments about some
results announced in [2].

Remark 2.12. For T ∈ L(X), let E(T ) = iso σ(T ) ∩ σp(T ) and let Ea(T ) =
iso σa(T ) ∩ σp(T ), where σp(T ) is the point spectrum of T . Generally, the set
E(T ) is not stable under commuting quasinilpotent perturbations even if T has
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SVEP, contrary to what has been announced in [2, Lemma 3.7 (i)]. Indeed, if
we consider the operators T and V defined in Example 2.9, then T has SVEP,
TV = V T = 0. But Ea(T ) = E(T ) = {0} and Ea(T + V ) = E(T + V ) = ∅.
Moreover, if we denote by E0(T ) = {λ ∈ E(T ) : n(T−λI) < ∞} and E0

a(T ) = {λ ∈
Ea(T ) : n(T −λI) < ∞}, then we cannot in general say that E0(T ) and E0

a(T ) are
preserved under commuting perturbations by quasinilpotent operators. To see this,
consider T = 0 and Q defined on `2(N) by Q(x1, x2, x3, . . . ) = (x2/2, x3/3, . . . ),
then E0(T ) = E0

a(T ) = ∅. But E0(T + Q) = E0
a(T + Q) = {0}.

But there are situations which ensure the preservation of these various sets of
isolated eigenvalues under commuting quasinilpotent perturbations. Let T ∈ L(X)
and let Q ∈ L(X) be a quasinilpotent operator commuting with T . For example,
if iso σa(T ) = ∅, then iso σ(T ) = ∅ and hence E(T ) = E0(T ) = Ea(T ) = E0

a(T ) =
E(T +Q) = E0(T +Q) = Ea(T +Q) = E0

a(T +Q) = ∅. As another situation, if we
restrict to a finite dimensional Banach space X, then σp(T +Q) = σp(T ) = σ(T ) =
σa(T ). So we have obviously that E(T ) = E0(T ) = Ea(T ) = E0

a(T ) = E(T +Q) =
E0(T + Q) = Ea(T + Q) = E0

a(T + Q) = iso σ(T ).

Remark 2.13. 1) According to [3], an operator T ∈ L(X) is said to
satisfy property (gw) if σa(T ) \ σSBF−+

(T ) = E(T ) or equivalently σa(T ) =
σSBF−+

(T ) tE(T ) where the symbol t stands for the disjoint union. It was shown
in [2, Theorem 3.9] that if T ∈ PS(X) and if Q ∈ L(X) is a quasinilpotent op-
erator commuting with T , then (T + Q)∗ satisfies property (gw). However, this
result remains incorrect. Indeed, let T = 0 and let Q = S∗ be defined in Ex-
ample 2.1, then T ∈ PS(X), Q is quasinilpotent satisfying TQ = 0 = QT . But
(T + Q)∗ does not satisfy property (gw), since σa((T + Q)∗) = σa(T + S) = {0},
σSBF−+

((T + Q)∗) = σSBF−+
(T + S) = {0} and E((T + Q)∗) = E(T + S) = {0}.

The mistakes in the proof of [2, Theorem 3.9] originated in [2, Lemma 3.5] and in
[2, Lemma 3.7] where it is affirmed that if T ∈ L(X) has SVEP and if Q ∈ L(X)
is a quasinilpotent operator which commutes with T , then σSBF−+

((T + Q)∗) =
σSBF−+

(T ∗) and E(T ∗) = E((T + Q)∗). But it is easily seen that this is not true,
see for example, Example 2.1 and example given in the point (1) of this remark.

2) It was also found in [2, Corollary 3.14] that if T ∈ PS(X) and if Q ∈ L(X)
is a quasinilpotent operator commuting with T , then f((T +Q)∗) satisfies property
(gw) for every f ∈ H(σ(T )), where H(σ(T )) denotes the set of all analytic functions
on a neighborhood of σ(T ). But its proof is incorrect. Indeed, take T = 0 and
let Q = S∗ defined in Example 2.1; then T ∈ PS(X), Q is quasinilpotent and
commutes with T . Let f(z) = zp be the polynomial on C, then f((T + Q)∗) = Sp

does not satisfy property (gw), since σa(Sp) = σSBF−+
(Sp) = {0} and E(Sp) = {0}.

The mistake in the proof of [2, Corollary 3.14] originated in [2, Corollary 3.13]
where it is affirmed that T ∈ PS(X) if and only if T + Q ∈ PS(X) for every
quasinilpotent operator Q commuting with T . But this is not true as already
mentioned in Example 2.9.

3) Recall [7] that an operator T is said to satisfy generalized Weyl’s theorem
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if σ(T ) = σBW (T ) t E(T ) and is said to satisfy generalized a-Weyl’s theorem if
σa(T ) = σSBF−+

(T )tEa(T ). It is claimed in [2, Corollary 3.15] that if T ∈ PS(X)
and if Q ∈ L(X) is a quasinilpotent operator commuting with T , then f((T +Q)∗)
satisfies generalized Weyl’s theorem and generalized a-Weyl’s theorem for every
f ∈ H(σ(T )). But its proof is based on [2, Corollary 3.14] which is false. The
example defined in the point (2) shows that the result announced in [2, Corollary
3.15] does not hold in general. Indeed, T ∈ PS(X) and f((T +Q)∗) = Sp does not
satisfy either generalized Weyl’s theorem or generalized a-Weyl’s theorem, since
σa(Sp) = σ(Sp) = {0}, σBW (Sp) = σSBF−+

(Sp) = {0} and E(Sp) = Ea(Sp) = {0}.
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