SOME SPECTRAL PROPERTIES OF GENERALIZED DERIVATIONS

Mohamed Amouch and Farida Lombarkia

Abstract. Given Banach spaces \mathcal{X} and \mathcal{Y} and Banach space operators $A \in L(\mathcal{X})$ and $B \in L(\mathcal{Y})$, the generalized derivation $\delta_{A,B} \in L(L(\mathcal{Y},\mathcal{X}))$ is defined by $\delta_{A,B}(X) = (L_A - R_B)(X) = AX - XB$. This paper is concerned with the problem of transferring the left polaroid property, from operators A and B^* to the generalized derivation $\delta_{A,B}$. As a consequence, we give necessary and sufficient conditions for $\delta_{A,B}$ to satisfy generalized a-Browder's theorem and generalized a-Weyl's theorem. As an application, we extend some recent results concerning Weyl-type theorems.

1. Introduction

Given Banach spaces \mathcal{X} and \mathcal{Y} and Banach space operators $A \in L(\mathcal{X})$ and $B \in$ $L(\mathcal{Y})$, let $L_A \in L(L(\mathcal{X}))$ and $R_B \in L(L(\mathcal{Y}))$ be the left and the right multiplication operators, respectively, and denote by $\delta_{A,B} \in L(L(\mathcal{Y},\mathcal{X}))$ the generalized derivation $\delta_{A,B}(X) = (L_A - R_B)(X) = AX - XB$. The problem of transferring spectral properties from A and B to L_A , R_B , $L_A R_B$ and $\delta_{A,B}$ was studied by numerous mathematicians, see [6-8,10,11,15,19,22,23] and the references therein. The main objective of this paper is to study the problem of transferring the left polaroid property and its strong version, finitely left polaroid property, from A and B^* to $\delta_{A,B}$. After Section 2 where several basic definitions and facts will be recalled, we will prove that if A is a left polaroid and satisfies property (\mathcal{P}_l) and B is a right polaroid and satisfy property (\mathcal{P}_r) , then $\delta_{A,B}$ is a left polaroid. Also, we prove that if A is a finitely left polaroid and B is a finitely right polaroid, then $\delta_{A,B}$ is a finitely left polaroid. In Section 4, we give necessary and sufficient conditions for $\delta_{A,B}$ to satisfy generalized a-Weyl's theorem. In the last section we apply results obtained previously. If $\mathcal{X} = H$ and $\mathcal{Y} = K$ are Hilbert spaces, we prove that if $A \in L(H)$ and $B \in L(K)$ are completely totally hereditarily normaloid operators, then $f(\delta_{A,B})$ satisfies generalized a-Weyl's theorem, for every analytic function f defined on a neighborhood of $\sigma(\delta_{A,B})$ which is non constant on each of the components of its domain. This generalizes results obtained in [8,10,11,14,22,23].

²⁰¹⁰ Mathematics Subject Classification: 47A10, 47A53, 47B47

Keywords and phrases: Left polaroid; elementary operator; finitely left polaroid.

²⁷⁷

2. Notation and terminology

Unless otherwise stated, from now on \mathcal{X} (similarly, \mathcal{Y}) shall denote a complex Banach space and $L(\mathcal{X})$ (similarly, $L(\mathcal{Y})$) the algebra of all bounded linear maps defined on and with values in \mathcal{X} (resp. \mathcal{Y}). Given $T \in L(\mathcal{X})$, N(T) and R(T) will stand for the null space and the range of T, resp. Recall that $T \in L(\mathcal{X})$ is said to be bounded below, if $N(T) = \{0\}$ and R(T) is closed. Denote the approximate point spectrum of T by

$$\sigma_a(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not bounded below}\}\$$

Let

$$\sigma_s(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not surjective}\}\$$

denote the surjective spectrum of T. In addition, \mathcal{X}^* will denote the dual space of \mathcal{X} , and if $T \in \mathcal{X}$, then $T^* \in L(\mathcal{X}^*)$ will stand for the adjoint map of T. Clearly, $\sigma_a(T^*) = \sigma_s(T)$ and $\sigma_a(T) \cup \sigma_s(T) = \sigma(T)$, the spectrum of T. Recall that the ascent asc(T) of an operator T is defined by $asc(T) = \inf\{n \in \mathbb{N} : N(T^n) = N(T^{n+1})\}$ and the descent $dsc(T) = \inf\{n \in \mathbb{N} : R(T^n) = R(T^{n+1})\}$, with $\inf \emptyset = \infty$. It is well known that if asc(T) and dsc(T) are both finite, then they are equal.

A complex number $\lambda \in \sigma_a(T)$ (resp. $\lambda \in \sigma_s(T)$) is a left pole (resp. a right pole) of order d of $T \in L(\mathcal{X})$ if $asc(T - \lambda I) = d < \infty$ and $R((T - \lambda I)^{d+1})$ is closed (resp. $dsc(T-\lambda I) = d < \infty$ and $R((T-\lambda I)^d)$ is closed). We say that T is left polar (resp. right polar) of order d at a point $\lambda \in \sigma_a(T)$ (resp. $\lambda \in \sigma_s(T)$) if λ is a left pole of T (resp. right pole of T) of order d. Now, T is a left polaroid (resp. right polaroid) if T is left polar (resp. right polar) at every $\lambda \in iso\sigma_a(T)$ (resp. $\lambda \in iso\sigma_s(T)$), where $iso\mathcal{K}$ is the set of all isolated points of \mathcal{K} for $\mathcal{K} \subseteq \mathbb{C}$. According to [7], a left polar operator $T \in L(\mathcal{X})$ of order $d(\lambda)$ at $\lambda \in \sigma_a(T)$, satisfies property (\mathcal{P}_l) if the closed subspace $N((T-\lambda)^{d(\lambda)}) + R(T-\lambda)$ is complemented in \mathcal{X} for every $\lambda \in iso\sigma_a(T)$. Dually, a right polar operator $T \in L(\mathcal{X})$ of order $d(\lambda)$ at $\lambda \in \sigma_s(T)$, satisfies property (\mathcal{P}_r) if the closed subspace $N(T-\lambda) \cap R((T-\lambda)^{d(\lambda)})$ is complemented in \mathcal{X} for every $\lambda \in iso\sigma_s(T)$. If $\mathcal{X} = H$ is a Hilbert space, then every left polar (resp. right polar) operator $T \in L(H)$ of order $d(\lambda)$ at $\lambda \in iso\sigma_a(T)$ (resp. $\lambda \in iso\sigma_s(T)$) satisfies property (\mathcal{P}_l) (resp. (\mathcal{P}_r)). On the other hand, it is known that $T \in L(\mathcal{X})$ is a right polaroid if and only if T^* is a left polaroid and T is a polaroid if it is both left and right polaroid, whenever $iso\sigma(T) = iso\sigma_a(T) \cup iso\sigma_s(T)$.

Recall that $T \in L(\mathcal{X})$ is said to be a Fredholm operator, if both $\alpha(T) = dim N(T)$ and $\beta(T) = dim \mathcal{X}/R(T)$ are finite dimensional, in which case its index is given by $ind(T) = \alpha(T) - \beta(T)$. If R(T) is closed and $\alpha(T)$ is finite (resp. $\beta(T)$ is finite), then $T \in L(\mathcal{X})$ is said to be an upper semi-Fredholm (resp. a lower semi-Fredholm) while if $\alpha(T)$ and $\beta(T)$ are both finite and equal, so the index is zero and T is said to be a Weyl operator. These classes of operators generate the Fredholm spectrum, the upper semi-Fredholm spectrum, the lower semi-Fredholm spectrum and the Weyl spectrum of $T \in L(\mathcal{X})$ which will be denoted by $\sigma_e(T)$, $\sigma_{SF_+}(T), \sigma_{SF_-}(T)$ and $\sigma_W(T)$, respectively. The Weyl essential approximate point spectrum and the Browder essential approximate point spectrum of $T \in L(\mathcal{X})$ are the sets

$$\sigma_{aw}(T) = \{\lambda \in \sigma_a(T) : \lambda \in \sigma_{SF_+}(T) \text{ or } 0 < ind(T - \lambda I)\}$$

and

$$\sigma_{ab}(T) = \{\lambda \in \sigma_a(T) : \lambda \in \sigma_{aw}(T) \text{ or } asc(T - \lambda I) = \infty\}.$$

It is clear that

$$\sigma_{SF_+}(T) \subseteq \sigma_{aw}(T) \subseteq \sigma_{ab}(T) \subseteq \sigma_a(T).$$

For $T \in L(\mathcal{X})$ and a nonnegative integer n define T_n to be the restriction of Tto $R(T^n)$ viewed as a map from $R(T^n)$ into $R(T^n)$. If for some integer n the range space $R(T^n)$ is closed and the induced operator $T_n \in L(R(T^n))$ is Fredholm, then T will be said to be B-Fredholm. In a similar way, if T_n is an upper semi-Fredholm (resp. lower semi-Fredholm) operator, then T is called upper semi B-Fredholm (resp. lower semi B-Fredholm). In this case the index of T is defined as the index of semi-Fredholm operator T_n , see [9]. $T \in L(\mathcal{X})$ is called semi B-Fredholm if T is upper semi B-Fredholm or lower semi B-Fredholm. Let

$$\Phi_{SBF}(\mathcal{X}) = \{ T \in L(\mathcal{X}) : T \text{ is semi B-Fredholm } \},$$

$$\Phi_{SBF_{+}^{-}}(\mathcal{X}) = \{ T \in \Phi_{SBF}(\mathcal{X}) : T \text{ is upper semi B-Fredholm with } ind(T) \leq 0 \},$$

$$\Phi_{SBF_{-}^{+}}(\mathcal{X}) = \{ T \in \Phi_{SBF}(\mathcal{X}) : T \text{ is lower semi B-Fredholm with } ind(T) \geq 0 \}.$$

Then the upper semi B-Weyl and lower semi B-Weyl spectrum of T are the sets

$$\sigma_{UBW}(T) = \{\lambda \in \sigma_a(T) : T - \lambda I \notin \Phi_{SBF^-}(\mathcal{X})\}$$

and

$$\sigma_{LBW}(T) = \{\lambda \in \sigma_a(T) : T - \lambda I \notin \Phi_{SBF^+}(\mathcal{X})\},\$$

respectively. $T \in L(\mathcal{X})$ will be said to be B-Weyl, if T is both upper and lower semi B-Weyl (equivalently, T is B-Fredholm operator of index zero). The B-Weyl spectrum $\sigma_{BW}(T)$ of T is defined by

 $\sigma_{BW}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not B-Weyl operator} \}.$

Let $\Pi^{l}(T)$ denote the set of left pole of $T \in L(\mathcal{X})$.

$$\Pi^{l}(T) = \{\lambda \in \sigma_{a}(T) : asc(T - \lambda I) = d < \infty \text{ and } R((T - \lambda I)^{d+1}) \text{ is closed}\}$$

A strong version of the left polaroid property says that $T \in L(\mathcal{X})$ is a finitely left polaroid (resp. a finitely right polaroid) if and only if every $\lambda \in iso\sigma_a(T)$ (resp. $\lambda \in iso\sigma_s(T)$) is a left pole of T and $\alpha(T - \lambda I) < \infty$ (resp. a right pole of T and $\beta(T - \lambda I) < \infty$). Let $\Pi_0^l(T)$ (resp. $\Pi_0^r(T)$) denote the set of finite left poles (resp. the set of finite right poles) of T. Then $T \in L(\mathcal{X})$ is a finitely left polaroid (resp. a finitely right polaroid) if and only if $iso\sigma_a(T) = \Pi_0^l(T)$ (resp. $iso\sigma_a(T) = \Pi_0^r(T)$).

For $T \in L(\mathcal{X})$ define

$$\Delta(T) = \{ n \in \mathbb{N} : m \ge n, m \in \mathbb{N} \Rightarrow R(T^n) \cap N(T) \subseteq R(T^m) \cap N(T) \}.$$

279

The degree of stable iteration is defined as $dis(T) = \inf \Delta(T)$ if $\Delta(T) \neq \emptyset$, while $dis(T) = \infty$ if $\Delta(T) = \emptyset$. $T \in L(\mathcal{X})$ is said to be quasi-Fredholm of degree d, if there exists $d \in \mathbb{N}$ such that dis(T) = d, $R(T^n)$ is a closed subspace of \mathcal{X} for each $n \geq d$ and $R(T) + N(T^n)$ is a closed subspace of \mathcal{X} . An operator $T \in L(\mathcal{X})$ is said to be semi-regular, if R(T) is closed and $N(T^n) \subseteq R(T^m)$ for all $m, n \in \mathbb{N}$.

An important property in local spectral theory is the single valued extension property. An operator $T \in L(\mathcal{X})$ is said to have the single valued extension property at $\lambda_0 \in \mathbb{C}$ (abbreviated SVEP at λ_0), if for every open disc \mathbb{D} centered at λ_0 , the only analytic function $f : \mathbb{D} \to \mathcal{X}$ which satisfies the equation $(T - \lambda I)f(\lambda) = 0$ for all $\lambda \in \mathbb{D}$ is the function $f \equiv 0$. An operator $T \in L(\mathcal{X})$ is said to have SVEP if Thas SVEP at every $\lambda \in \mathbb{C}$.

Furthermore, for $T \in L(\mathcal{X})$ the quasi-nilpotent part of T is defined by

$$H_0(T) = \{ x \in \mathcal{X} : \lim_{n \to \infty} \|T^n(\mathcal{X})\|^{\frac{1}{n}} = 0 \}.$$

It can be easily seen that $N(T^n) \subset H_0(T)$ for every $n \in \mathbb{N}$. The analytic core of an operator $T \in L(\mathcal{X})$ is the subspace K(T) defined as the set of all $x \in \mathcal{X}$ such that there exists a constant c > 0 and a sequence of elements $x_n \in \mathcal{X}$ such that $x_0 = x$, $Tx_n = x_{n-1}$, and $||x_n|| \leq c^n ||x||$ for all $n \in \mathbb{N}$, the spaces K(T) are hyperinvariant under T and satisfy $K(T) \subset R(T^n)$, for every $n \in \mathbb{N}$ and T(K(T)) = K(T), see [1] for information on $H_0(T)$ and K(T).

3. Left polaroid generalized derivation

We begin this section by recalling some results concerning spectra of generalized derivations.

Let \mathcal{X} and \mathcal{Y} be two Banach spaces and consider $A \in L(\mathcal{X})$ and $B \in L(\mathcal{Y})$. Let $\delta_{A,B} \in L(L(\mathcal{Y}, \mathcal{X}))$ be the generalized derivation induced by A and B, i.e.,

$$\delta_{A,B}(X) = (L_A - R_B)(X) = AX - XB$$
 where $X \in L(\mathcal{Y}, \mathcal{X})$

According to [20, Theorem 3.5.1], we have that

$$\sigma_a(\delta_{A,B}) = \sigma_a(A) - \sigma_s(B).$$

and it is not difficult to conclude that

$$iso\sigma_a(\delta_{A,B}) = (iso\sigma_a(A) - iso\sigma_a(B^*)) \setminus acc\sigma_a(\delta_{A,B}).$$

The following results concerning upper semi Fredholm spectrum and Browder essential approximate point spectrum of generalized derivation were proved in [8,24]. They will be used in the sequel.

LEMMA 3.1. Let \mathcal{X} and \mathcal{Y} be two Banach spaces and consider $A \in L(\mathcal{X})$ and $B \in L(\mathcal{Y})$. Then the following statements hold.

i) $\sigma_{SF_+}(\delta_{A,B}) = (\sigma_{SF_+}(A) - \sigma_s(B)) \cup (\sigma_a(A) - \sigma_{SF_-}(B)).$ ii) $\sigma_{ab}(\delta_{A,B}) = (\sigma_{ab}(A) - \sigma_s(B)) \cup (\sigma_a(A) - \sigma_{ab}(B^*)).$ The following lemma concerning the Weyl essential approximate point spectrum of a generalized derivation will also be used in the sequel.

LEMMA 3.2. Let \mathcal{X} and \mathcal{Y} be two Banach spaces and consider $A \in L(\mathcal{X})$ and $B \in L(\mathcal{Y})$. Then

$$\sigma_{aw}(\delta_{A,B}) \subseteq (\sigma_{aw}(A) - \sigma_s(B)) \cup (\sigma_a(A) - \sigma_{aw}(B^*))$$

Proof. Let $\lambda \notin (\sigma_{aw}(A) - \sigma_s(B)) \cup (\sigma_a(A) - \sigma_{aw}(B^*))$. If $\mu_i \in \sigma_a(A)$ and $\nu_i \in \sigma_s(B)$ are such that $\lambda = \mu_i - \nu_i$. Then $\mu_i \notin \sigma_{SF_+}(A)$ and $\nu_i \notin \sigma_{SF_-}(B)$, hence from statement i) of Lemma 3.1 $\lambda \notin \sigma_{SF_+}(\delta_{A,B})$. Now, we will prove that

$$ind(\delta_{A,B} - \lambda I) \le 0$$

Suppose to the contrary that $ind(\delta_{A,B} - \lambda I) > 0$. Then $\lambda \notin \sigma_e(\delta_{A,B})$. It follows from [17, Corollary 3.4] that

$$\lambda = \mu_i - \nu_i \quad (1 \le i \le n)$$

where $\mu_i \in iso\sigma(A)$ for $1 \leq i \leq m$ and $\nu_i \in iso\sigma(B)$, for $m+1 \leq i \leq n$. We have that $ind(\delta_{A,B} - \lambda I)$ is equal to

$$\sum_{j=m+1}^{n} dim H_0(B - \nu_j) ind(A - \mu_j) - \sum_{k=1}^{m} dim H_0(A - \mu_k) ind(B - \nu_k).$$

Since $\mu_i \in iso\sigma(A)$, for $1 \leq i \leq m$ and $\nu_i \in iso\sigma(B)$, for $m+1 \leq i \leq n$, it follows that $dimH_0(A - \mu_j)$ is finite, for $1 \leq j \leq m$ and $dimH_0(B - \nu_k)$ is finite, for $m+1 \leq k \leq n$ and we have also $ind(A - \mu_i) \leq 0$ and $ind(B - \nu_j) \geq 0$. Thus $ind(\delta_{A,B} - \lambda I) \leq 0$. This a contradiction. Hence $\lambda \notin \sigma_{aw}(\delta_{A,B})$.

According to [7], a left polaroid operator (resp. a right polaroid operator) satisfies property (\mathcal{P}_l) , (resp. (\mathcal{P}_r)), if it is left polar at every $\lambda \in iso\sigma_a(T)$ (resp. right polar at every $\lambda \in iso\sigma_s(T)$ which satisfies property (\mathcal{P}_l) , (resp. property (\mathcal{P}_r)). The following lemma is the dual version of [7, Lemma 3.1].

LEMMA 3.3. Let \mathcal{X} be a Banach space. If $T \in L(\mathcal{X})$ is a right polaroid and satisfies property (\mathcal{P}_r) , then for every $\lambda \in iso\sigma_s(T)$ there exist T-invariant closed subspaces N_1 and N_2 such that $\mathcal{X} = N_1 \oplus N_2$, $(T - \lambda)|_{N_1}$ is nilpotent of order $d(\lambda)$ and $(T - \lambda I)|_{N_2}$ is surjective, where $d(\lambda)$ is the order of the right pole at λ . Moreover, $K(T - \lambda I) = R((T - \lambda I)^{d(\lambda)})$.

Proof. From the hypothesis, $T - \lambda$ is quasi-Fredholm of degree $d(\lambda)$ and closed subspace $N((T - \lambda I)^{d(\lambda)}) + R(T - \lambda)$ is complemented in \mathcal{X} . Since $T \in L(\mathcal{X})$ is right polaroid and satisfies property (\mathcal{P}_r) , then $N(T - \lambda) \cap R((T - \lambda)^{d(\lambda)})$ is complemented in \mathcal{X} . From [25, Theorem 5], there exist T-invariant closed subspaces N_1 and N_2 such that $\mathcal{X} = N_1 \oplus N_2$, $(T - \lambda)|_{N_1}$ is nilpotent of order $d(\lambda)$ and $(T - \lambda I)|_{N_2}$ is semi-regular. Since $dsc(T - \lambda I) = d(\lambda)$, the semi-regular operator $(T - \lambda I)|_{N_2}$ is surjective. Since $K(T - \lambda I) = K((T - \lambda I)|N_1) \oplus K((T - \lambda I)|N_2) = 0 \oplus N_2 = N_2$, we can conclude from [2, Theorem 2.7] that $K(T - \lambda I) = R((T - \lambda I)^{d(\lambda)}$. Next follows the main result of this section.

THEOREM 3.4. Let \mathcal{X} and \mathcal{Y} be two Banach spaces and let $A \in L(\mathcal{X})$ be a left polaroid and $B \in L(\mathcal{Y})$ be a right polaroid. If A satisfies property (\mathcal{P}_l) and B satisfies property (\mathcal{P}_r) , then $\delta_{A,B}$ is a left polaroid.

Proof. Let $\lambda \in iso\sigma_a(\delta_{A,B})$. Then there exist $\mu \in \sigma_a(A)$ and $\nu \in \sigma_s(B)$ such that $\lambda = \mu - \nu$, and it follows that $\mu \in iso\sigma_a(A)$ and $\nu \in iso\sigma_s(B) = iso\sigma_a(B^*)$. Since A is a left polaroid, then there exist A-invariant closed subspaces M_1 and M_2 such that $\mathcal{X} = M_1 \oplus M_2$, $(A - \mu I)|_{M_1} = A_1 - \mu I|_{M_1}$ is nilpotent of order d_1 where $d_1 = d(\mu)$ is the order of left pole of A at μ and that $(A - \mu I)|_{M_2} = A_2 - \mu I|_{M_2}$ is bounded below. Also, since B is a right polaroid, then there exists B-invariant closed subspaces N_1 and N_2 such that $\mathcal{Y} = N_1 \oplus N_2$, $(B - \nu)|_{N_1} = B_1 - \nu I|_{N_1}$ is nilpotent of order d_2 where $d_2 = d(\nu)$ is the order of right pole of B at ν and $(B - \nu I)|_{N_2} = B_2 - \nu I|_{N_2}$ is surjective. Let $d = d_1 + d_2$ and $X \in L(N_1 \oplus N_2, M_1 \oplus M_2)$ have the representation $X = [X_{kl}]_{k,l=1}^2$. We will prove that $asc(\delta_{A,B} - \lambda I)$ is finite.

Let $(\delta_{A,B} - \lambda I)^{d+1}(X) = 0$ imply that $X_{12} = X_{21} = X_{22} = 0$. Since $(\delta_{A_1,B_1} - \lambda I)$ is *d*-nilpotent it follows that $(\delta_{A,B} - \lambda I)^d(X) = 0$. Hence $asc(\delta_{A,B} - \lambda I) \leq d < \infty$.

Now, we prove that $(\delta_{A,B} - \lambda I)^{d+1}(L(\mathcal{Y}, \mathcal{X}))$ is closed. First, we will prove that $0 \notin \sigma_a(\delta_{A_2-\mu I|_{M_2},B_2-\nu I|_{N_2}})$. For this, it suffices to prove that $\sigma_a(A_2-\mu I|_{M_2}) \cap \sigma_s(B_2-\nu I|_{N_2}) = \emptyset$. Suppose that there exists a complex number α such that $\alpha \in \sigma_a(A_2-\mu I|_{M_2}) \cap \sigma_s(B_2-\nu I|_{N_2})$. Then $\alpha \in \sigma_a(A_2-\mu I|_{M_2})$ and $\alpha \in \sigma_s(B_2-\nu I|_{N_2})$, from [1, Theorem 2.48], $0 \in \sigma_a(A_2-(\mu+\alpha)I|_{M_2})$ and $0 \in \sigma_s(B_2-(\nu+\alpha)I|_{N_2})$. Since $(\mu+\alpha)$ is isolated in the approximate point spectrum of A and $(\nu+\alpha)$ is isolated in the surjective spectrum of B, then by the hypothesis A is a left polaroid which satisfies property (\mathcal{P}_l) and B is a right polaroid which satisfies property (\mathcal{P}_r) . We conclude that

$$(A - (\mu + \alpha)I)|_{M_2} = A_2 - (\mu + \alpha)I|_{M_2}$$

is bounded below and

$$(B - (\nu + \alpha)I)|_{N_2} = B_2 - (\nu + \alpha)I|_{N_2}$$

is surjective. That is

$$0 \notin \sigma_a(A_2 - (\mu + \alpha)I|_{M_2})$$
 and $0 \notin \sigma_s(B_2 - (\nu + \alpha)I|_{N_2})$

This is a contradiction, hence $0 \notin \sigma_a(\delta_{A_2-\mu I|_{M_2},B_2-\nu I|_{N_2}})$. Since $0 \notin \sigma_a(\delta_{A_2,B_2} - \lambda I)$, then from [3, Lemma 1.1] $(\delta_{A_2,B_2} - \lambda I)^{d+1}(L(N_2,M_2))$ is closed. We have that $\delta_{A_1,B_1} - \lambda I$ is nilpotent of order d, and then by [26, Theorem 2.7] it follows that

$$(\delta_{A_1,B_1} - \lambda I)^{d+1}(L(N_1,M_1))$$
 is closed

From the fact that $0 \notin \sigma_a(\delta_{A_i,B_i} - \lambda I)$ and [3, Lemma 1.1]AA, it follows that

$$(\delta_{A_i,B_j} - \lambda I)^{d+1}(L(N_j,M_i))$$
 is closed for $1 \le i,j \le 2$ and $i \ne j$.

Consequently, $(\delta_{A,B} - \lambda I)^{d+1}(L(\mathcal{X}, \mathcal{Y}))$ is closed. Hence λ is a left pole of $\delta_{A,B}$ which means that $\delta_{A,B}$ is a left polaroid.

In the case of Hilbert spaces, we have the following corollary.

COROLLARY 3.5. Let H and K be Hilbert spaces and let $A \in L(H)$ and $B \in L(K)$. If A and B^* are left polaroids, then $\delta_{A,B}$ is left polaroid.

REMARK. From [18, Theorem 3.8] we have that if $T \in L(\mathcal{X})$, such that $\alpha(T) < \infty$ and $asc(T) < \infty$, then $R(T^n)$ is closed for some integer n > 1, if and only if R(T) is closed. Hence T is a finitely left polaroid if and only if $\alpha(T-\lambda I) < \infty$, $asc(T - \lambda I) < \infty$ and $R(T - \lambda I)$ is closed for every $\lambda \in iso\sigma_a(T)$.

In the following theorem, we characterize finitely left polaroid generalized derivation.

THEOREM 3.6. Let \mathcal{X} and \mathcal{Y} be two Banach spaces and let $A \in L(\mathcal{X})$ and $B \in L(\mathcal{Y})$. If A and B^* are finitely left polaroid operators, then $\delta_{A,B}$ is a finitely left polaroid.

Proof. Let $\lambda \in iso\sigma_a(\delta_{A,B})$. Then there exist $\mu \in \sigma_a(A)$ and $\nu \in \sigma_s(B)$ such that $\lambda = \mu - \nu$, hence we have $\mu \in iso\sigma_a(A)$ and $\nu \in iso\sigma_s(B) = iso\sigma_a(B^*)$. Suppose that A and B^* are finitely left polaroids. Then from [27, Corollary 2.2] we have that $\mu \notin \sigma_{ab}(A)$ and $\nu \notin \sigma_{ab}(B^*)$. Applying statement ii) of Lemma 3.1, we get $\lambda \notin \sigma_{ab}(\delta_{A,B})$, hence by [27, Corollary 2.2] $\delta_{A,B}$ is a finitely left polaroid.

4. Consequences to Weyl's type theorem

For $T \in L(\mathcal{X})$, let $E^a(T) = \{\lambda \in iso\sigma_a(T) : 0 < \alpha(T - \lambda I)\}$ and $E_0^a(T) = \{\lambda \in E^a(T) : \alpha(T - \lambda I) < \infty\}$. Recall that T is said to satisfy a-Browder's theorem (resp. generalized a-Browder's theorem) if $\sigma_a(T) \setminus \sigma_{aw}(T) = \Pi_0^l(T)$ (resp. $\sigma_a(T) \setminus \sigma_{UBW}(T) = \Pi^l(T)$). From [4, Theorem 2.2] we have that T satisfies a-Browder's theorem if and only if T satisfies generalized a-Browder's theorem. T is said to satisfy a-Weyl's theorem (resp. generalized a-Weyl's theorem) if $\sigma_a(T) \setminus \sigma_{aw}(T) = E_0^a(T)$ (resp. $\sigma_a(T) \setminus \sigma_{UBW}(T) = E^a(T)$).

For $T \in L(\mathcal{X})$, let $E(T) = \{\lambda \in iso\sigma(T) : 0 < \alpha(T - \lambda I)\}$ and $E_0(T) = \{\lambda \in E(T) : \alpha(T - \lambda I) < \infty\}$. Recall that T is said to satisfy Weyl's theorem (resp. generalized Weyl's theorem) if $\sigma(T) \setminus \sigma_W(T) = E_0(T)$ (resp. $\sigma(T) \setminus \sigma_{BW}(T) = E(T)$). We know that if T satisfies generalized a-Weyl's theorem then T satisfies a-Weyl's theorem and this implies that T satisfies Weyl's theorem. Next, generalized a-Weyl's theorem for $\delta_{A,B}$ will be studied.

THEOREM 4.1. Let \mathcal{X} and \mathcal{Y} be two Banach spaces and let $A \in L(\mathcal{X})$ and $B \in L(\mathcal{Y})$. Suppose that A and B^* satisfy a-Browder's theorem. If A is a left polaroid and satisfies property (\mathcal{P}_l) and B is a right polaroid and satisfies (\mathcal{P}_r) , then the following assertions are equivalent.

- i) $\delta_{A,B}$ satisfies generalized a-Weyl's theorem.
- ii) $\sigma_{aw}(\delta_{A,B}) = (\sigma_{aw}(A) \sigma_s(B)) \cup (\sigma_a(A) \sigma_{aw}(B^*)).$

Proof. If A and B^* satisfy a-Browder theorem, then they satisfy generalized a-Browder theorem. By [8, Theorem 4.2] it follows that $\delta_{A,B}$ satisfies generalized a-Browder's theorem if and only if $\sigma_{aw}(\delta_{A,B}) = (\sigma_{aw}(A) - \sigma_s(B)) \cup (\sigma_a(A) - \sigma_{aw}(B^*))$. That is $\sigma_a(\delta_{A,B}) \setminus \sigma_{UBW}(\delta_{A,B}) = \Pi^l(\delta_{A,B})$. Since A is a left polaroid and B is a right polaroid, then from Theorem 3.4 $\delta_{A,B}$ is a left polaroid, consequently $\Pi^l(\delta_{A,B}) = E^a(\delta_{A,B})$. Thus $\delta_{A,B}$ satisfies generalized a-Weyl's theorem. The reverse implication is obvious from the fact that $\delta_{A,B}$ satisfies generalized a-Weyl's theorem implies $\delta_{A,B}$ satisfies generalized a-Browder's theorem \blacksquare

In the case of Hilbert spaces operators, we have the following corollaries.

COROLLARY 4.2. Let H and K be two Hilbert spaces and let $A \in L(H)$ and $B \in L(K)$. Suppose that A and B^* satisfy a-Browder's theorem. If A is a left polaroid and B is a right polaroid, then the following assertions are equivalent.

- i) $\delta_{A,B}$ satisfies generalized a-Weyl's theorem.
- ii) $\sigma_{aw}(\delta_{A,B}) = (\sigma_{aw}(A) \sigma_s(B)) \cup (\sigma_a(A) \sigma_{aw}(B^*)).$

COROLLARY 4.3. Let \mathcal{X} and \mathcal{Y} be two Banach spaces and let $A \in L(\mathcal{X})$ and $B \in L(\mathcal{Y})$. Suppose that A and B^* satisfy a-Browder's theorem. If A is a left polaroid and satisfies property (\mathcal{P}_l) and B is a right polaroid and satisfies property (\mathcal{P}_r) , then the following assertions are equivalent.

- i) $\delta_{A,B}$ has SVEP at $\lambda \notin \sigma_{UBW}(\delta_{A,B})$.
- ii) $\delta_{A,B}$ satisfies a-Browder's theorem.
- iii) $\delta_{A,B}$ satisfies a-Weyl's theorem.
- iv) $\delta_{A,B}$ satisfies generalized a-Weyl's theorem.
- v) $\sigma_{aw}(\delta_{A,B}) = (\sigma_{aw}(A) \sigma_s(B)) \cup (\sigma_a(A) \sigma_{aw}(B^*)).$

Proof. $(i) \Leftrightarrow (ii)$ follows from [5, Theorem 2.1], $(iii) \Leftrightarrow (iv)$ follows from [3, Theorem 3.7] and $(iv) \Leftrightarrow (v)$ follows from Theorem 4.1.

In the following result, we give sufficient conditions for $\delta_{A,B}$ to satisfy a-Browder's theorem.

THEOREM 4.4. Let \mathcal{X} and \mathcal{Y} be two Banach spaces and let $A \in L(\mathcal{X})$ and $B \in L(\mathcal{Y})$. If A has SVEP at $\mu \in \sigma_a(A) \setminus \sigma_{SF_+}(A)$ and B has SVEP at $\nu \in \sigma_a(B^*) \setminus \sigma_{SF_-}(B)$, then $\delta_{A,B}$ satisfies a-Browder's theorem.

Proof. Let $\lambda \in \sigma_a(\delta_{A,B}) \setminus \sigma_{aw}(\delta_{A,B})$. Then $\lambda \in \sigma_a(\delta_{A,B}) \setminus \sigma_{SF_+}(\delta_{A,B})$, and from statement i) of Lemma 3.1 there exist $\mu \in \sigma_a(A) \setminus \sigma_{SF_+}(A)$ and $\nu \in \sigma_s(B) \setminus \sigma_{SF_-}(B)$ such that $\lambda = \mu - \nu$. Since A has SVEP at $\mu \notin \sigma_{SF_+}(A)$ and B has SVEP at $\nu \notin \sigma_{SF_-}(B)$, it follows from [27, Corollary 2.2] that $\mu \notin \sigma_{ab}(A)$ and $\nu \notin \sigma_{ab}(B^*)$; applying statement ii) of Lemma 3.1 we get $\lambda \notin \sigma_{ab}(\delta_{A,B})$. Hence $\lambda \in \Pi_0^l(\delta_{A,B})$. Let $\lambda \in \Pi_0^l(\delta_{A,B})$; according to [27, Corollary 2.2], we have $\lambda \in \sigma_a(\delta_{A,B}) \setminus \sigma_{ab}(\delta_{A,B})$. Since $\sigma_{aw}(T) \subseteq \sigma_{ab}(T)$, then $\lambda \in \sigma_a(\delta_{A,B}) \setminus \sigma_{aw}(\delta_{A,B})$. Hence $\delta_{A,B}$ satisfy a-Browder's theorem.

5. Application

A Banach space operator $T \in L(\mathcal{X})$ is said to be hereditary normaloid, $T \in \mathcal{I}(\mathcal{X})$ \mathcal{HN} , if every part of T (i.e., the restriction of T to each of its invariant subspaces) is normaloid (i.e., ||T|| equals the spectral radius r(T)). $T \in \mathcal{HN}$ is totally hereditarily normaloid, $T \in \mathcal{THN}$, if also the inverse of every invertible part of T is normaloid and T is completely totally hereditarily normaloid (abbr. $T \in CHN$), if either $T \in \mathcal{THN}$ or $T - \lambda I \in \mathcal{HN}$ for every complex number λ . The class \mathcal{CHN} is large. In particular, let H be a Hilbert space and $T \in L(H)$ be a Hilbert space operator. If T is hyponormal $(T^*T \ge TT^*)$ or p-hyponormal $((T^*T)^p) \ge (TT^*)^p)$ for some $(0 or w-hyponormal <math>((|T^*|^{\frac{1}{2}}|T||T^*|^{\frac{1}{2}})^{\frac{1}{2}} \geq |T^*|)$, then T is in \mathcal{THN} . Again, totaly *-paranormal operators $(||(T - \lambda I)^* x||^2 \le ||(T - \lambda I)x||^2$ for every unit vector x) are \mathcal{HN} -operators and paranormal operators $(||Tx||^2 \le ||T^2x|| ||x||,$ for all unit vector x) are \mathcal{THN} -operators. It is proved in [11] that if $A, B^* \in L(H)$ are hyponormal, then the generalized Weyl's theorem holds for $f(\delta_{A,B})$ for every $f \in \mathcal{H}(\sigma(\delta_{A,B}))$, where $\mathcal{H}(\sigma(\delta_{A,B}))$ is the set of all analytic functions defined on a neighborhood of $\sigma(\delta_{A,B})$. This result was extended to log-hyponormal or phyponormal operators in [14] and [22]. Also, in [10] and [23], it is shown that if $A, B^* \in L(H)$ are w-hyponormal operators, then Weyl's theorem holds for $f(\delta_{A,B})$ for every $f \in \mathcal{H}(\sigma(\delta_{A,B}))$. Let $\mathcal{H}_c(\sigma(T))$ denote the space of all analytic functions defined on a neighborhood of $\sigma(T)$ which is non constant on each of the components of its domain. In the next results we can give more.

THEOREM 5.1. Suppose that $A, B \in L(H)$ are CHN operators; then $\delta_{A,B}$ satisfies a-Browder's theorem.

Proof. Since A and B are \mathcal{CHN} -operators, it follows from [13, Corollary 2.10] that A has SVEP at $\mu \in \sigma_a(A) \setminus \sigma_{SF_+}(A)$ and B has SVEP at $\mu \in \sigma_a(B^*) \setminus \sigma_{SF_-}(B)$. Then by Theorem 4.4, a-Browder's theorem holds for $\delta_{A,B}$.

COROLLARY 5.2. If $A, B \in L(H)$ are CHN operators, then

- i) $\delta_{A,B}$ has SVEP at $\lambda \notin \sigma_{UBW}(\delta_{A,B})$,
- ii) $\delta_{A,B}$ satisfies a-Browder's theorem.
- iii) $\delta_{A,B}$ satisfies a-Weyl's theorem.
- iv) $\delta_{A,B}$ satisfies generalized a-Weyl's theorem.
- v) $\sigma_{aw}(\delta_{A,B}) = (\sigma_{aw}(A) \sigma_s(B)) \cup (\sigma_a(A) \overline{\sigma_{aw}(B^*)}).$

Proof. Since A and B are CHN-operators, it follows from [13, Corollary 2.15] that A, B, A^{*} and B^{*} satisfy a-Browder's theorem. By [13, Proposition 2.1], we conclude that A and B^{*} are left polaroids. The assertions follows from Corollary 4.3.

COROLLARY 5.3. Suppose that $A, B \in L(H)$ are CHN-operators. Then $f(\delta_{A,B})$ satisfies generalized a-Browder's theorem, for every $f \in \mathcal{H}_c(\sigma(\delta_{A,B}))$.

Proof. By Corollary 5.2 and [16, Corollary 3.5], we get that generalized a-Browder's theorem holds for $f(\delta_{A,B})$.

COROLLARY 5.4. Suppose that $A, B \in L(H)$ are CHN-operators. Then $f(\delta_{A,B})$ satisfies generalized a-Weyl's theorem, for every $f \in \mathcal{H}_c(\sigma(\delta_{A,B}))$.

Proof. By [13, Proposition 2.1] and Theorem 3.4, we get that $\delta_{A,B}$ is a left polaroid and from Corollary 5.2 we have that $\delta_{A,B}$ satisfies generalized a-Weyl's theorem. Applying [16, Theorem 3.14] we get that generalized a-Weyl's's theorem holds for $f(\delta_{A,B})$.

ACKNOWLEDGEMENT. The authors wish to express their indebtedness to the referee, for his suggestions and valuable comments on this paper.

REFERENCES

- [1] P. Aiena, Fredholm and local spectral theory, with application to multipliers, Kluewer Acad. Publ., 2004.
- P. Aiena, Quasi-Fredholm operators and localized SVEP, Acta Sci. Math. (Szeged), 73 (2007), 251–263.
- [3] P. Aiena, E. Aponte, E. Balzan, Weyl type theorems for left and right polaroid operators, Intgr. Equ. Oper. Theory. 66 (2010), 1–20.
- [4] M. Amouch, H. Zguitti, On the equivalence of Browder's and generalized Browder's theorem, Glasgow. Math. J. 48 (2006), 179–185.
- [5] M. Amouch, H. Zguitti, A note on the a-Browder's and a-Weyl's theorems, Mathematica Bohemica. 133 (2008) 157–166.
- [6] E. Boasso, B. P. Duggal, I. H. Jeon, Generalized Browder's and Weyl's theorem for left and right multiplication operators, J. Math Anal. Appl. (2010) 461–471.
- [7] E. Boasso, B. P. Duggal, Tensor product of left polatoid operators, Acta Sci. Math. (Szeged) 78 (2012) 251–264.
- [8] E. Boasso, M. Amouch, Generalized Browder's and Weyl's theorem for generalized derivations, Mediterr. J. Math. 12 (2015), 117–131.
- M. Berkani, Index of B-Fredholm operators and generalization of A Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), 1717–1723.
- [10] M. Cho, S. V. Djordjević, B. P. Duggal, T. Yamazaki, On an elementary operator with w-hyponormal operator entries, Linear Algebra Appl. 433 (2010) 2070–2079.
- [11] B. P. Duggal, Weyl's theorem for a generalized derivation and an elementary operator, Mat. Vesnik. 54 (2002), 71–81.
- [12] B. P. Duggal, C. S. Kubrusly, Totally hereditarily normaloid operators and Weyl's theorem for an elementary operator, J. Math. Anal. Appl. 312 (2005) 502–513.
- [13] B. P. Duggal, Hereditarily normaloid operators, Extracta Math. 20 (2005), 203–217.
- [14] B. P. Duggal, An elementary operator with log-hyponormal, p-hyponormal entries, Linear Algebra Appl. 428 (2008), 1109–1116.
- [15] B. P. Duggal, Browder-Weyl theorems, tensor products and multiplications, J. Math. Anal. Appl. 359 (2009), 631–636.
- [16] B. P. Duggal, SVEP and generalized Weyl's theorem, Mediterr. J. Math. 4 (2007), 309-320.
- [17] J. Eschmeier, Tensor products and elementary operators, J. Reine Angew. Math. 390 (1988), 47–66.
- [18] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japon, 34 (1982), 223–254.

286

- [19] R. Harte, A.-H. Kim, Weyl's theorem, tensor products and multiplication operators, J. Math. Anal. Appl. 336 (2007), 1124–1131.
- [20] K. B. Laursen, M. M. Neumann, An Introduction to Local Spectral Theory, London Math. Soc. Monographs, Oxford Univ. Press, 2000.
- [21] F. Lombarkia, Generalized Weyl's theorem for an elementary operator, Bull. Math. Anal. Appl. 3 (4) (2011), 123–131.
- [22] F. Lombarkia, A. Bachir, Weyl's and Browder's theorem for an elementary operator, Mat. Vesnik 59 (2007), 135–142.
- [23] F. Lombarkia, A. Bachir, Property (gw) for an elementary operator, Int. J. Math. Stat. 9 (2011), 42–48.
- [24] F. Lombarkia, H. Zguitti On the Browder's theorem of an elementary operator, Extracta Math. 28, 2 (2013), 213–224.
- [25] V. Müller, On the Kato decomposition of quasi-Fredholm and B-Fredholm operators, Preprint ESI 1013, Vienna, 2001.
- [26] O. Bel Hadj Fredj, M. Burgos, M. Oudghiri, Ascent spectrum and essential ascent spectrum, Studia Math. 187 (2008), 59–73.
- [27] V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), 193–198.

(received 23.09.2014; in revised form 12.02.2015; available online 01.04.2015)

M. A., Department of Mathematics, University Chouaib Doukkali, Faculty of Sciences, Eljadida, 24000, Eljadida, Morocco.

E-mail: mohamed.amouch@gmail.com

F. L., Department of Mathematics, Faculty of Science, University of Batna, 05000, Batna, Algeria. E-mail: lombarkiafarida@yahoo.fr