SOME SPECTRAL PROPERTIES OF GENERALIZED DERIVATIONS

Mohamed Amouch and Farida Lombarkia

Abstract

Given Banach spaces \mathcal{X} and \mathcal{Y} and Banach space operators $A \in L(\mathcal{X})$ and $B \in$ $L(\mathcal{Y})$, the generalized derivation $\delta_{A, B} \in L(L(\mathcal{Y}, \mathcal{X}))$ is defined by $\delta_{A, B}(X)=\left(L_{A}-R_{B}\right)(X)=$ $A X-X B$. This paper is concerned with the problem of transferring the left polaroid property, from operators A and B^{*} to the generalized derivation $\delta_{A, B}$. As a consequence, we give necessary and sufficient conditions for $\delta_{A, B}$ to satisfy generalized a-Browder's theorem and generalized aWeyl's theorem. As an application, we extend some recent results concerning Weyl-type theorems.

1. Introduction

Given Banach spaces \mathcal{X} and \mathcal{Y} and Banach space operators $A \in L(\mathcal{X})$ and $B \in$ $L(\mathcal{Y})$, let $L_{A} \in L(L(\mathcal{X}))$ and $R_{B} \in L(L(\mathcal{Y}))$ be the left and the right multiplication operators, respectively, and denote by $\delta_{A, B} \in L(L(\mathcal{Y}, \mathcal{X}))$ the generalized derivation $\delta_{A, B}(X)=\left(L_{A}-R_{B}\right)(X)=A X-X B$. The problem of transferring spectral properties from A and B to $L_{A}, R_{B}, L_{A} R_{B}$ and $\delta_{A, B}$ was studied by numerous mathematicians, see $[6-8,10,11,15,19,22,23]$ and the references therein. The main objective of this paper is to study the problem of transferring the left polaroid property and its strong version, finitely left polaroid property, from A and B^{*} to $\delta_{A, B}$. After Section 2 where several basic definitions and facts will be recalled, we will prove that if A is a left polaroid and satisfies property $\left(\mathcal{P}_{l}\right)$ and B is a right polaroid and satisfy property $\left(\mathcal{P}_{r}\right)$, then $\delta_{A, B}$ is a left polaroid. Also, we prove that if A is a finitely left polaroid and B is a finitely right polaroid, then $\delta_{A, B}$ is a finitely left polaroid. In Section 4, we give necessary and sufficient conditions for $\delta_{A, B}$ to satisfy generalized a-Weyl's theorem. In the last section we apply results obtained previously. If $\mathcal{X}=H$ and $\mathcal{Y}=K$ are Hilbert spaces, we prove that if $A \in L(H)$ and $B \in L(K)$ are completely totally hereditarily normaloid operators, then $f\left(\delta_{A, B}\right)$ satisfies generalized a-Weyl's theorem, for every analytic function f defined on a neighborhood of $\sigma\left(\delta_{A, B}\right)$ which is non constant on each of the components of its domain. This generalizes results obtained in $[8,10,11,14,22,23]$.

2010 Mathematics Subject Classification: 47A10, 47A53, 47B47
Keywords and phrases: Left polaroid; elementary operator; finitely left polaroid.

2. Notation and terminology

Unless otherwise stated, from now on \mathcal{X} (similarly, \mathcal{Y}) shall denote a complex Banach space and $L(\mathcal{X})$ (similarly, $L(\mathcal{Y})$) the algebra of all bounded linear maps defined on and with values in \mathcal{X} (resp. \mathcal{Y}). Given $T \in L(\mathcal{X}), N(T)$ and $R(T)$ will stand for the null space and the range of T, resp. Recall that $T \in L(\mathcal{X})$ is said to be bounded below, if $N(T)=\{0\}$ and $R(T)$ is closed. Denote the approximate point spectrum of T by

$$
\sigma_{a}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not bounded below }\}
$$

Let

$$
\sigma_{s}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not surjective }\}
$$

denote the surjective spectrum of T. In addition, \mathcal{X}^{*} will denote the dual space of \mathcal{X}, and if $T \in \mathcal{X}$, then $T^{*} \in L\left(\mathcal{X}^{*}\right)$ will stand for the adjoint map of T. Clearly, $\sigma_{a}\left(T^{*}\right)=\sigma_{s}(T)$ and $\sigma_{a}(T) \cup \sigma_{s}(T)=\sigma(T)$, the spectrum of T. Recall that the ascent $\operatorname{asc}(T)$ of an operator T is defined by $\operatorname{asc}(T)=\inf \left\{n \in \mathbb{N}: N\left(T^{n}\right)=\right.$ $\left.N\left(T^{n+1}\right)\right\}$ and the descent $d s c(T)=\inf \left\{n \in \mathbb{N}: R\left(T^{n}\right)=R\left(T^{n+1}\right)\right\}$, with $\inf \emptyset=$ ∞. It is well known that if $\operatorname{asc}(T)$ and $d s c(T)$ are both finite, then they are equal.

A complex number $\lambda \in \sigma_{a}(T)$ (resp. $\left.\lambda \in \sigma_{s}(T)\right)$ is a left pole (resp. a right pole) of order d of $T \in L(\mathcal{X})$ if $\operatorname{asc}(T-\lambda I)=d<\infty$ and $R\left((T-\lambda I)^{d+1}\right)$ is closed (resp. $d s c(T-\lambda I)=d<\infty$ and $R\left((T-\lambda I)^{d}\right)$ is closed). We say that T is left polar (resp. right polar) of order d at a point $\lambda \in \sigma_{a}(T)$ (resp. $\left.\lambda \in \sigma_{s}(T)\right)$ if λ is a left pole of T (resp. right pole of T) of order d. Now, T is a left polaroid (resp. right polaroid) if T is left polar (resp. right polar) at every $\lambda \in i s o \sigma_{a}(T)$ (resp. $\lambda \in i s o \sigma_{s}(T)$), where iso \mathcal{K} is the set of all isolated points of \mathcal{K} for $\mathcal{K} \subseteq \mathbb{C}$. According to [7], a left polar operator $T \in L(\mathcal{X})$ of order $d(\lambda)$ at $\lambda \in \sigma_{a}(T)$, satisfies property $\left(\mathcal{P}_{l}\right)$ if the closed subspace $N\left((T-\lambda)^{d(\lambda)}\right)+R(T-\lambda)$ is complemented in \mathcal{X} for every $\lambda \in i s o \sigma_{a}(T)$. Dually, a right polar operator $T \in L(\mathcal{X})$ of order $d(\lambda)$ at $\lambda \in \sigma_{s}(T)$, satisfies property $\left(\mathcal{P}_{r}\right)$ if the closed subspace $N(T-\lambda) \cap R\left((T-\lambda)^{d(\lambda)}\right)$ is complemented in \mathcal{X} for every $\lambda \in i \operatorname{iso}_{s}(T)$. If $\mathcal{X}=H$ is a Hilbert space, then every left polar (resp. right polar) operator $T \in L(H)$ of order $d(\lambda)$ at $\lambda \in i s o \sigma_{a}(T)$ (resp. $\left.\lambda \in i s o \sigma_{s}(T)\right)$ satisfies property $\left(\mathcal{P}_{l}\right)$ (resp. $\left(\mathcal{P}_{r}\right)$). On the other hand, it is known that $T \in L(\mathcal{X})$ is a right polaroid if and only if T^{*} is a left polaroid and T is a polaroid if it is both left and right polaroid, whenever $\operatorname{iso\sigma }(T)=i s o \sigma_{a}(T) \cup i s o \sigma_{s}(T)$.

Recall that $T \in L(\mathcal{X})$ is said to be a Fredholm operator, if both $\alpha(T)=$ $\operatorname{dim} N(T)$ and $\beta(T)=\operatorname{dim} \mathcal{X} / R(T)$ are finite dimensional, in which case its index is given by $\operatorname{ind}(T)=\alpha(T)-\beta(T)$. If $R(T)$ is closed and $\alpha(T)$ is finite (resp. $\beta(T)$ is finite), then $T \in L(\mathcal{X})$ is said to be an upper semi-Fredholm (resp. a lower semi-Fredholm) while if $\alpha(T)$ and $\beta(T)$ are both finite and equal, so the index is zero and T is said to be a Weyl operator. These classes of opertaors generate the Fredholm spectrum, the upper semi-Fredholm spectrum, the lower semi-Fredholm spectrum and the Weyl spectrum of $T \in L(\mathcal{X})$ which will be denoted by $\sigma_{e}(T)$, $\sigma_{S F_{+}}(T), \sigma_{S F_{-}}(T)$ and $\sigma_{W}(T)$, respectively. The Weyl essential approximate point spectrum and the Browder essential approximate point spectrum of $T \in L(\mathcal{X})$ are
the sets

$$
\sigma_{a w}(T)=\left\{\lambda \in \sigma_{a}(T): \lambda \in \sigma_{S F_{+}}(T) \text { or } 0<i n d(T-\lambda I)\right\}
$$

and

$$
\sigma_{a b}(T)=\left\{\lambda \in \sigma_{a}(T): \lambda \in \sigma_{a w}(T) \text { or } \operatorname{asc}(T-\lambda I)=\infty\right\}
$$

It is clear that

$$
\sigma_{S F_{+}}(T) \subseteq \sigma_{a w}(T) \subseteq \sigma_{a b}(T) \subseteq \sigma_{a}(T)
$$

For $T \in L(\mathcal{X})$ and a nonnegative integer n define T_{n} to be the restriction of T to $R\left(T^{n}\right)$ viewed as a map from $R\left(T^{n}\right)$ into $R\left(T^{n}\right)$. If for some integer n the range space $R\left(T^{n}\right)$ is closed and the induced operator $T_{n} \in L\left(R\left(T^{n}\right)\right)$ is Fredholm, then T will be said to be B-Fredholm. In a similar way, if T_{n} is an upper semi-Fredholm (resp. lower semi-Fredholm) operator, then T is called upper semi B-Fredholm (resp. lower semi B-Fredholm). In this case the index of T is defined as the index of semi-Fredholm operator T_{n}, see [9]. $T \in L(\mathcal{X})$ is called semi B-Fredholm if T is upper semi B-Fredholm or lower semi B-Fredholm. Let

$$
\begin{aligned}
& \Phi_{S B F}(\mathcal{X})=\{T \in L(\mathcal{X}): T \text { is semi B-Fredholm }\} \\
\Phi_{S B F_{+}^{-}}(\mathcal{X})= & \left\{T \in \Phi_{S B F}(\mathcal{X}): T \text { is upper semi B-Fredholm with } \operatorname{ind}(T) \leq 0\right\} \\
\Phi_{S B F_{-}^{+}}(\mathcal{X})= & \left\{T \in \Phi_{S B F}(\mathcal{X}): T \text { is lower semi B-Fredholm with } \operatorname{ind}(T) \geq 0\right\}
\end{aligned}
$$

Then the upper semi B-Weyl and lower semi B-Weyl spectrum of T are the sets

$$
\sigma_{U B W}(T)=\left\{\lambda \in \sigma_{a}(T): T-\lambda I \notin \Phi_{S B F_{+}^{-}}(\mathcal{X})\right\}
$$

and

$$
\sigma_{L B W}(T)=\left\{\lambda \in \sigma_{a}(T): T-\lambda I \notin \Phi_{S B F_{-}^{+}}(\mathcal{X})\right\}
$$

respectively. $T \in L(\mathcal{X})$ will be said to be B-Weyl, if T is both upper and lower semi B-Weyl (equivalently, T is B-Fredholm operator of index zero). The B-Weyl spectrum $\sigma_{B W}(T)$ of T is defined by

$$
\sigma_{B W}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not B-Weyl operator }\}
$$

Let $\Pi^{l}(T)$ denote the set of left pole of $T \in L(\mathcal{X})$.

$$
\Pi^{l}(T)=\left\{\lambda \in \sigma_{a}(T): \operatorname{asc}(T-\lambda I)=d<\infty \text { and } R\left((T-\lambda I)^{d+1}\right) \text { is closed }\right\}
$$

A strong version of the left polaroid property says that $T \in L(\mathcal{X})$ is a finitely left polaroid (resp. a finitely right polaroid) if and only if every $\lambda \in i \operatorname{so} \sigma_{a}(T)$ (resp. $\left.\lambda \in i s o \sigma_{s}(T)\right)$ is a left pole of T and $\alpha(T-\lambda I)<\infty$ (resp. a right pole of T and $\beta(T-\lambda I)<\infty)$. Let $\Pi_{0}^{l}(T)$ (resp. $\left.\Pi_{0}^{r}(T)\right)$ denote the set of finite left poles (resp. the set of finite right poles) of T. Then $T \in L(\mathcal{X})$ is a finitely left polaroid (resp. a finitely right polaroid) if and only if $i s o \sigma_{a}(T)=\Pi_{0}^{l}(T)$ (resp. $\left.i s o \sigma_{a}(T)=\Pi_{0}^{r}(T)\right)$.

For $T \in L(\mathcal{X})$ define

$$
\Delta(T)=\left\{n \in \mathbb{N}: m \geq n, m \in \mathbb{N} \Rightarrow R\left(T^{n}\right) \cap N(T) \subseteq R\left(T^{m}\right) \cap N(T)\right\}
$$

The degree of stable iteration is defined as $\operatorname{dis}(T)=\inf \Delta(T)$ if $\Delta(T) \neq \emptyset$, while $\operatorname{dis}(T)=\infty$ if $\Delta(T)=\emptyset . T \in L(\mathcal{X})$ is said to be quasi-Fredholm of degree d, if there exists $d \in \mathbb{N}$ such that $\operatorname{dis}(T)=d, R\left(T^{n}\right)$ is a closed subspace of \mathcal{X} for each $n \geq d$ and $R(T)+N\left(T^{n}\right)$ is a closed subspace of \mathcal{X}. An operator $T \in L(\mathcal{X})$ is said to be semi-regular, if $R(T)$ is closed and $N\left(T^{n}\right) \subseteq R\left(T^{m}\right)$ for all $m, n \in \mathbb{N}$.

An important property in local spectral theory is the single valued extension property. An operator $T \in L(\mathcal{X})$ is said to have the single valued extension property at $\lambda_{0} \in \mathbb{C}\left(\right.$ abbreviated SVEP at $\left.\lambda_{0}\right)$, if for every open disc \mathbb{D} centered at λ_{0}, the only analytic function $f: \mathbb{D} \rightarrow \mathcal{X}$ which satisfies the equation $(T-\lambda I) f(\lambda)=0$ for all $\lambda \in \mathbb{D}$ is the function $f \equiv 0$. An operator $T \in L(\mathcal{X})$ is said to have SVEP if T has SVEP at every $\lambda \in \mathbb{C}$.

Furthermore, for $T \in L(\mathcal{X})$ the quasi-nilpotent part of T is defined by

$$
H_{0}(T)=\left\{x \in \mathcal{X}: \lim _{n \rightarrow \infty}\left\|T^{n}(\mathcal{X})\right\|^{\frac{1}{n}}=0\right\}
$$

It can be easily seen that $N\left(T^{n}\right) \subset H_{0}(T)$ for every $n \in \mathbb{N}$. The analytic core of an operator $T \in L(\mathcal{X})$ is the subspace $K(T)$ defined as the set of all $x \in \mathcal{X}$ such that there exists a constant $c>0$ and a sequence of elements $x_{n} \in \mathcal{X}$ such that $x_{0}=x$, $T x_{n}=x_{n-1}$, and $\left\|x_{n}\right\| \leq c^{n}\|x\|$ for all $n \in \mathbb{N}$, the spaces $K(T)$ are hyperinvariant under T and satisfy $K(T) \subset R\left(T^{n}\right)$, for every $n \in \mathbb{N}$ and $T(K(T))=K(T)$, see [1] for information on $H_{0}(T)$ and $K(T)$.

3. Left polaroid generalized derivation

We begin this section by recalling some results concerning spectra of generalized derivations.

Let \mathcal{X} and \mathcal{Y} be two Banach spaces and consider $A \in L(\mathcal{X})$ and $B \in L(\mathcal{Y})$. Let $\delta_{A, B} \in L(L(\mathcal{Y}, \mathcal{X}))$ be the generalized derivation induced by A and B, i.e.,

$$
\delta_{A, B}(X)=\left(L_{A}-R_{B}\right)(X)=A X-X B \text { where } X \in L(\mathcal{Y}, \mathcal{X})
$$

According to [20, Theorem 3.5.1], we have that

$$
\sigma_{a}\left(\delta_{A, B}\right)=\sigma_{a}(A)-\sigma_{s}(B)
$$

and it is not difficult to conclude that

$$
i s o \sigma_{a}\left(\delta_{A, B}\right)=\left(i s o \sigma_{a}(A)-i s o \sigma_{a}\left(B^{*}\right)\right) \backslash \operatorname{acc} \sigma_{a}\left(\delta_{A, B}\right)
$$

The following results concerning upper semi Fredholm spectrum and Browder essential approximate point spectrum of generalized derivation were proved in $[8,24]$. They will be used in the sequel.

Lemma 3.1. Let \mathcal{X} and \mathcal{Y} be two Banach spaces and consider $A \in L(\mathcal{X})$ and $B \in L(\mathcal{Y})$. Then the following statements hold.
i) $\sigma_{S F_{+}}\left(\delta_{A, B}\right)=\left(\sigma_{S F_{+}}(A)-\sigma_{s}(B)\right) \cup\left(\sigma_{a}(A)-\sigma_{S F_{-}}(B)\right)$.
ii) $\sigma_{a b}\left(\delta_{A, B}\right)=\left(\sigma_{a b}(A)-\sigma_{s}(B)\right) \cup\left(\sigma_{a}(A)-\sigma_{a b}\left(B^{*}\right)\right)$.

The following lemma concerning the Weyl essential approximate point spectrum of a generalized derivation will also be used in the sequel.

Lemma 3.2. Let \mathcal{X} and \mathcal{Y} be two Banach spaces and consider $A \in L(\mathcal{X})$ and $B \in L(\mathcal{Y})$. Then

$$
\sigma_{a w}\left(\delta_{A, B}\right) \subseteq\left(\sigma_{a w}(A)-\sigma_{s}(B)\right) \cup\left(\sigma_{a}(A)-\sigma_{a w}\left(B^{*}\right)\right)
$$

Proof. Let $\lambda \notin\left(\sigma_{a w}(A)-\sigma_{s}(B)\right) \cup\left(\sigma_{a}(A)-\sigma_{a w}\left(B^{*}\right)\right)$. If $\mu_{i} \in \sigma_{a}(A)$ and $\nu_{i} \in \sigma_{s}(B)$ are such that $\lambda=\mu_{i}-\nu_{i}$. Then $\mu_{i} \notin \sigma_{S F_{+}}(A)$ and $\nu_{i} \notin \sigma_{S F_{-}}(B)$, hence from statement i) of Lemma $3.1 \lambda \notin \sigma_{S F_{+}}\left(\delta_{A, B}\right)$. Now, we will prove that

$$
\operatorname{ind}\left(\delta_{A, B}-\lambda I\right) \leq 0
$$

Suppose to the contrary that $\operatorname{ind}\left(\delta_{A, B}-\lambda I\right)>0$. Then $\lambda \notin \sigma_{e}\left(\delta_{A, B}\right)$. It follows from [17, Corollary 3.4] that

$$
\lambda=\mu_{i}-\nu_{i} \quad(1 \leq i \leq n),
$$

where $\mu_{i} \in \operatorname{iso\sigma }(A)$ for $1 \leq i \leq m$ and $\nu_{i} \in \operatorname{iso\sigma }(B)$, for $m+1 \leq i \leq n$. We have that $\operatorname{ind}\left(\delta_{A, B}-\lambda I\right)$ is equal to

$$
\sum_{j=m+1}^{n} \operatorname{dim} H_{0}\left(B-\nu_{j}\right) \operatorname{ind}\left(A-\mu_{j}\right)-\sum_{k=1}^{m} \operatorname{dim} H_{0}\left(A-\mu_{k}\right) \operatorname{ind}\left(B-\nu_{k}\right) .
$$

Since $\mu_{i} \in \operatorname{iso\sigma }(A)$, for $1 \leq i \leq m$ and $\nu_{i} \in i s o \sigma(B)$, for $m+1 \leq i \leq n$, it follows that $\operatorname{dim} H_{0}\left(A-\mu_{j}\right)$ is finite, for $1 \leq j \leq m$ and $\operatorname{dim} H_{0}\left(B-\nu_{k}\right)$ is finite, for $m+1 \leq k \leq n$ and we have also $\operatorname{ind}\left(A-\mu_{i}\right) \leq 0$ and $\operatorname{ind}\left(B-\nu_{j}\right) \geq 0$. Thus $\operatorname{ind}\left(\delta_{A, B}-\lambda I\right) \leq 0$. This a contradiction. Hence $\lambda \notin \sigma_{a w}\left(\delta_{A, B}\right)$.

According to $[7]$, a left polaroid operator (resp. a right polaroid operator) satisfies property $\left(\mathcal{P}_{l}\right),\left(\right.$ resp. $\left.\left(\mathcal{P}_{r}\right)\right)$, if it is left polar at every $\lambda \in i s o \sigma_{a}(T)$ (resp. right polar at every $\lambda \in \operatorname{iso\sigma _{s}}(T)$ which satisfies property $\left(\mathcal{P}_{l}\right)$, (resp. property $\left(\mathcal{P}_{r}\right)$. The following lemma is the dual version of [7, Lemma 3.1].

Lemma 3.3. Let \mathcal{X} be a Banach space. If $T \in L(\mathcal{X})$ is a right polaroid and satisfies property $\left(\mathcal{P}_{r}\right)$, then for every $\lambda \in$ iso $_{s}(T)$ there exist T-invariant closed subspaces N_{1} and N_{2} such that $\mathcal{X}=N_{1} \oplus N_{2},\left.(T-\lambda)\right|_{N_{1}}$ is nilpotent of order $d(\lambda)$ and $\left.(T-\lambda I)\right|_{N_{2}}$ is surjective, where $d(\lambda)$ is the order of the right pole at λ. Moreover, $K(T-\lambda I)=R\left((T-\lambda I)^{d(\lambda)}\right)$.

Proof. From the hypothesis, $T-\lambda$ is quasi-Fredholm of degree $d(\lambda)$ and closed subspace $N\left((T-\lambda I)^{d(\lambda)}\right)+R(T-\lambda)$ is complemented in \mathcal{X}. Since $T \in L(\mathcal{X})$ is right polaroid and satisfies property $\left(\mathcal{P}_{r}\right)$, then $N(T-\lambda) \cap R\left((T-\lambda)^{d(\lambda)}\right)$ is complemented in \mathcal{X}. From [25, Theorem 5], there exist T-invariant closed subspaces N_{1} and N_{2} such that $\mathcal{X}=N_{1} \oplus N_{2},\left.(T-\lambda)\right|_{N_{1}}$ is nilpotent of order $d(\lambda)$ and $\left.(T-\lambda I)\right|_{N_{2}}$ is semi-regular. Since $d s c(T-\lambda I)=d(\lambda)$, the semi-regular operator $\left.(T-\lambda I)\right|_{N_{2}}$ is surjective. Since $K(T-\lambda I)=K\left((T-\lambda I) \mid N_{1}\right) \oplus K\left((T-\lambda I) \mid N_{2}\right)=0 \oplus N_{2}=N_{2}$, we can conclude from [2, Theorem 2.7] that $K(T-\lambda I)=R\left((T-\lambda I)^{d(\lambda)}\right.$.

Next follows the main result of this section.
Theorem 3.4. Let \mathcal{X} and \mathcal{Y} be two Banach spaces and let $A \in L(\mathcal{X})$ be a left polaroid and $B \in L \mathcal{(Y)}$ be a right polaroid. If A satisfies property $\left(\mathcal{P}_{l}\right)$ and B satisfies property $\left(\mathcal{P}_{r}\right)$, then $\delta_{A, B}$ is a left polaroid.

Proof. Let $\lambda \in i \operatorname{so} \sigma_{a}\left(\delta_{A, B}\right)$. Then there exist $\mu \in \sigma_{a}(A)$ and $\nu \in \sigma_{s}(B)$ such that $\lambda=\mu-\nu$, and it follows that $\mu \in i \operatorname{so\sigma _{a}}(A)$ and $\nu \in i \operatorname{so\sigma _{s}}(B)=i \operatorname{so\sigma _{a}}\left(B^{*}\right)$. Since A is a left polaroid, then there exist A-invariant closed subspaces M_{1} and M_{2} such that $\mathcal{X}=M_{1} \oplus M_{2},\left.(A-\mu I)\right|_{M_{1}}=A_{1}-\left.\mu I\right|_{M_{1}}$ is nilpotent of order d_{1} where $d_{1}=d(\mu)$ is the order of left pole of A at μ and that $\left.(A-\mu I)\right|_{M_{2}}=A_{2}-\left.\mu I\right|_{M_{2}}$ is bounded below. Also, since B is a right polaroid, then there exists B-invariant closed subspaces N_{1} and N_{2} such that $\mathcal{Y}=N_{1} \oplus N_{2},\left.(B-\nu)\right|_{N_{1}}=B_{1}-\left.\nu I\right|_{N_{1}}$ is nilpotent of order d_{2} where $d_{2}=d(\nu)$ is the order of right pole of B at ν and $\left.(B-\nu I)\right|_{N_{2}}=B_{2}-\left.\nu I\right|_{N_{2}}$ is surjective. Let $d=d_{1}+d_{2}$ and $X \in L\left(N_{1} \oplus N_{2}, M_{1} \oplus M_{2}\right)$ have the representation $X=\left[X_{k l}\right]_{k, l=1}^{2}$. We will prove that $\operatorname{asc}\left(\delta_{A, B}-\lambda I\right)$ is finite.

Let $\left(\delta_{A, B}-\lambda I\right)^{d+1}(X)=0$ imply that $X_{12}=X_{21}=X_{22}=0$. Since $\left(\delta_{A_{1}, B_{1}}-\right.$ $\lambda I)$ is d-nilpotent it follows that $\left(\delta_{A, B}-\lambda I\right)^{d}(X)=0$. Hence $\operatorname{asc}\left(\delta_{A, B}-\lambda I\right) \leq d<$ ∞.

Now, we prove that $\left(\delta_{A, B}-\lambda I\right)^{d+1}(L(\mathcal{Y}, \mathcal{X}))$ is closed. First, we will prove that $0 \notin \sigma_{a}\left(\delta_{A_{2}-\left.\mu I\right|_{M_{2}}, B_{2}-\left.\nu I\right|_{N_{2}}}\right)$. For this, it suffices to prove that $\sigma_{a}\left(A_{2}-\left.\mu I\right|_{M_{2}}\right) \cap$ $\sigma_{s}\left(B_{2}-\left.\nu I\right|_{N_{2}}\right)=\emptyset$. Suppose that there exists a complex number α such that $\alpha \in$ $\sigma_{a}\left(A_{2}-\left.\mu I\right|_{M_{2}}\right) \cap \sigma_{s}\left(B_{2}-\left.\nu I\right|_{N_{2}}\right)$. Then $\alpha \in \sigma_{a}\left(A_{2}-\left.\mu I\right|_{M_{2}}\right)$ and $\alpha \in \sigma_{s}\left(B_{2}-\left.\nu I\right|_{N_{2}}\right)$, from [1, Theorem 2.48], $0 \in \sigma_{a}\left(A_{2}-\left.(\mu+\alpha) I\right|_{M_{2}}\right)$ and $0 \in \sigma_{s}\left(B_{2}-\left.(\nu+\alpha) I\right|_{N_{2}}\right)$. Since $(\mu+\alpha)$ is isolated in the approximate point spectrum of A and $(\nu+\alpha)$ is isolated in the surjective spectrum of B, then by the hypothesis A is a left polaroid which satisfies property $\left(\mathcal{P}_{l}\right)$ and B is a right polaroid which satisfies property $\left(\mathcal{P}_{r}\right)$. We conclude that

$$
\left.(A-(\mu+\alpha) I)\right|_{M_{2}}=A_{2}-\left.(\mu+\alpha) I\right|_{M_{2}}
$$

is bounded below and

$$
\left.(B-(\nu+\alpha) I)\right|_{N_{2}}=B_{2}-\left.(\nu+\alpha) I\right|_{N_{2}}
$$

is surjective. That is

$$
0 \notin \sigma_{a}\left(A_{2}-\left.(\mu+\alpha) I\right|_{M_{2}}\right) \text { and } 0 \notin \sigma_{s}\left(B_{2}-\left.(\nu+\alpha) I\right|_{N_{2}}\right)
$$

This is a contradiction, hence $0 \notin \sigma_{a}\left(\delta_{A_{2}-\left.\mu I\right|_{M_{2}}, B_{2}-\left.\nu I\right|_{N_{2}}}\right)$. Since $0 \notin \sigma_{a}\left(\delta_{A_{2}, B_{2}}-\right.$ $\lambda I)$, then from [3, Lemma 1.1] $\left(\delta_{A_{2}, B_{2}}-\lambda I\right)^{d+1}\left(L\left(N_{2}, M_{2}\right)\right)$ is closed. We have that $\delta_{A_{1}, B_{1}}-\lambda I$ is nilpotent of order d, and then by [26, Theorem 2.7] it follows that

$$
\left(\delta_{A_{1}, B_{1}}-\lambda I\right)^{d+1}\left(L\left(N_{1}, M_{1}\right)\right) \text { is closed. }
$$

From the fact that $0 \notin \sigma_{a}\left(\delta_{A_{i}, B_{j}}-\lambda I\right)$ and [3, Lemma 1.1]AA, it follows that

$$
\left(\delta_{A_{i}, B_{j}}-\lambda I\right)^{d+1}\left(L\left(N_{j}, M_{i}\right)\right) \text { is closed for } 1 \leq i, j \leq 2 \text { and } i \neq j
$$

Consequently, $\left(\delta_{A, B}-\lambda I\right)^{d+1}(L(\mathcal{X}, \mathcal{Y}))$ is closed. Hence λ is a left pole of $\delta_{A, B}$ which means that $\delta_{A, B}$ is a left polaroid.

In the case of Hilbert spaces, we have the following corollary.
Corollary 3.5. Let H and K be Hilbert spaces and let $A \in L(H)$ and $B \in L(K)$. If A and B^{*} are left polaroids, then $\delta_{A, B}$ is left polaroid.

Remark. From [18, Theorem 3.8] we have that if $T \in L(\mathcal{X})$, such that $\alpha(T)<\infty$ and $\operatorname{asc}(T)<\infty$, then $R\left(T^{n}\right)$ is closed for some integer $n>1$, if and only if $R(T)$ is closed. Hence T is a finitely left polaroid if and only if $\alpha(T-\lambda I)<\infty$, $\operatorname{asc}(T-\lambda I)<\infty$ and $R(T-\lambda I)$ is closed for every $\lambda \in i s o \sigma_{a}(T)$.

In the following theorem, we characterize finitely left polaroid generalized derivation.

Theorem 3.6. Let \mathcal{X} and \mathcal{Y} be two Banach spaces and let $A \in L(\mathcal{X})$ and $B \in L(\mathcal{Y})$. If A and B^{*} are finitely left polaroid operators, then $\delta_{A, B}$ is a finitely left polaroid.

Proof. Let $\lambda \in i \operatorname{so} \sigma_{a}\left(\delta_{A, B}\right)$. Then there exist $\mu \in \sigma_{a}(A)$ and $\nu \in \sigma_{s}(B)$ such that $\lambda=\mu-\nu$, hence we have $\mu \in i \operatorname{so\sigma _{a}}(A)$ and $\nu \in i \operatorname{so\sigma _{s}}(B)=i \operatorname{so\sigma _{a}}\left(B^{*}\right)$. Suppose that A and B^{*} are finitely left polaroids. Then from [27, Corollary 2.2] we have that $\mu \notin \sigma_{a b}(A)$ and $\nu \notin \sigma_{a b}\left(B^{*}\right)$. Applying statement ii) of Lemma 3.1, we get $\lambda \notin \sigma_{a b}\left(\delta_{A, B}\right)$, hence by [27, Corollary 2.2] $\delta_{A, B}$ is a finitely left polaroid.

4. Consequences to Weyl's type theorem

For $T \in L(\mathcal{X})$, let $E^{a}(T)=\left\{\lambda \in i s o \sigma_{a}(T): 0<\alpha(T-\lambda I)\right\}$ and $E_{0}^{a}(T)=$ $\left\{\lambda \in E^{a}(T): \alpha(T-\lambda I)<\infty\right\}$. Recall that T is said to satisfy a-Browder's theorem (resp. generalized a-Browder's theorem) if $\sigma_{a}(T) \backslash \sigma_{a w}(T)=\Pi_{0}^{l}(T)$ (resp. $\left.\sigma_{a}(T) \backslash \sigma_{U B W}(T)=\Pi^{l}(T)\right)$. From [4, Theorem 2.2] we have that T satisfies aBrowder's theorem if and only if T satisfies generalized a-Browder's theorem. T is said to satisfy a-Weyl's theorem (resp. generalized a-Weyl's theorem) if $\sigma_{a}(T) \backslash$ $\sigma_{a w}(T)=E_{0}^{a}(T)\left(\right.$ resp. $\left.\sigma_{a}(T) \backslash \sigma_{U B W}(T)=E^{a}(T)\right)$.

For $T \in L(\mathcal{X})$, let $E(T)=\{\lambda \in \operatorname{iso\sigma }(T): 0<\alpha(T-\lambda I)\}$ and $E_{0}(T)=\{\lambda \in$ $E(T): \alpha(T-\lambda I)<\infty\}$. Recall that T is said to satisfy Weyl's theorem (resp. generalized Weyl's theorem) if $\sigma(T) \backslash \sigma_{W}(T)=E_{0}(T)$ (resp. $\sigma(T) \backslash \sigma_{B W}(T)=$ $E(T)$). We know that if T satisfies generalized a-Weyl's theorem then T satisfies aWeyl's theorem and this implies that T satisfies Weyl's theorem. Next, generalized a-Weyl's theorem for $\delta_{A, B}$ will be studied.

Theorem 4.1. Let \mathcal{X} and \mathcal{Y} be two Banach spaces and let $A \in L(\mathcal{X})$ and $B \in L(\mathcal{Y})$. Suppose that A and B^{*} satisfy a-Browder's theorem. If A is a left polaroid and satisfies property $\left(\mathcal{P}_{l}\right)$ and B is a right polaroid and satisfies $\left(\mathcal{P}_{r}\right)$, then the following assertions are equivalent.
i) $\delta_{A, B}$ satisfies generalized a-Weyl's theorem.
ii) $\sigma_{a w}\left(\delta_{A, B}\right)=\left(\sigma_{a w}(A)-\sigma_{s}(B)\right) \cup\left(\sigma_{a}(A)-\sigma_{a w}\left(B^{*}\right)\right)$.

Proof. If A and B^{*} satisfy a-Browder theorem, then they satisfy generalized a-Browder theorem. By [8, Theorem 4.2] it follows that $\delta_{A, B}$ satisfies generalized aBrowder's theorem if and only if $\sigma_{a w}\left(\delta_{A, B}\right)=\left(\sigma_{a w}(A)-\sigma_{s}(B)\right) \cup\left(\sigma_{a}(A)-\sigma_{a w}\left(B^{*}\right)\right)$. That is $\sigma_{a}\left(\delta_{A, B}\right) \backslash \sigma_{U B W}\left(\delta_{A, B}\right)=\Pi^{l}\left(\delta_{A, B}\right)$. Since A is a left polaroid and B is a right polaroid, then from Theorem $3.4 \delta_{A, B}$ is a left polaroid, consequently $\Pi^{l}\left(\delta_{A, B}\right)=E^{a}\left(\delta_{A, B}\right)$. Thus $\delta_{A, B}$ satisfies generalized a-Weyl's theorem. The reverse implication is obvious from the fact that $\delta_{A, B}$ satisfies generalized a-Weyl's theorem implies $\delta_{A, B}$ satisfies generalized a-Browder's theorem

In the case of Hilbert spaces operators, we have the following corollaries.
Corollary 4.2. Let H and K be two Hilbert spaces and let $A \in L(H)$ and $B \in L(K)$. Suppose that A and B^{*} satisfy a-Browder's theorem. If A is a left polaroid and B is a right polaroid, then the following assertions are equivalent.
i) $\delta_{A, B}$ satisfies generalized a-Weyl's theorem.
ii) $\sigma_{a w}\left(\delta_{A, B}\right)=\left(\sigma_{a w}(A)-\sigma_{s}(B)\right) \cup\left(\sigma_{a}(A)-\overline{\sigma_{a w}\left(B^{*}\right)}\right)$.

Corollary 4.3. Let \mathcal{X} and \mathcal{Y} be two Banach spaces and let $A \in L(\mathcal{X})$ and $B \in L(\mathcal{Y})$. Suppose that A and B^{*} satisfy a-Browder's theorem. If A is a left polaroid and satisfies property $\left(\mathcal{P}_{l}\right)$ and B is a right polaroid and satisfies property $\left(\mathcal{P}_{r}\right)$, then the following assertions are equivalent.
i) $\delta_{A, B}$ has SVEP at $\lambda \notin \sigma_{U B W}\left(\delta_{A, B}\right)$.
ii) $\delta_{A, B}$ satisfies a-Browder's theorem.
iii) $\delta_{A, B}$ satisfies a-Weyl's theorem.
iv) $\delta_{A, B}$ satisfies generalized a-Weyl's theorem.
v) $\sigma_{a w}\left(\delta_{A, B}\right)=\left(\sigma_{a w}(A)-\sigma_{s}(B)\right) \cup\left(\sigma_{a}(A)-\sigma_{a w}\left(B^{*}\right)\right)$.

Proof. (i) \Leftrightarrow (ii) follows from [5, Theorem 2.1], (iii) \Leftrightarrow (iv) follows from [3, Theorem 3.7] and $(i v) \Leftrightarrow(v)$ follows from Theorem 4.1.

In the following result, we give sufficient conditions for $\delta_{A, B}$ to satisfy aBrowder's theorem.

Theorem 4.4. Let \mathcal{X} and \mathcal{Y} be two Banach spaces and let $A \in L(\mathcal{X})$ and $B \in L(\mathcal{Y})$. If A has SVEP at $\mu \in \sigma_{a}(A) \backslash \sigma_{S F_{+}}(A)$ and B has SVEP at $\nu \in$ $\sigma_{a}\left(B^{*}\right) \backslash \sigma_{S F_{-}}(B)$, then $\delta_{A, B}$ satisfies a-Browder's theorem.

Proof. Let $\lambda \in \sigma_{a}\left(\delta_{A, B}\right) \backslash \sigma_{a w}\left(\delta_{A, B}\right)$. Then $\lambda \in \sigma_{a}\left(\delta_{A, B}\right) \backslash \sigma_{S F_{+}}\left(\delta_{A, B}\right)$, and from statement i) of Lemma 3.1 there exist $\mu \in \sigma_{a}(A) \backslash \sigma_{S F_{+}}(A)$ and $\nu \in \sigma_{s}(B) \backslash \sigma_{S F_{-}}(B)$ such that $\lambda=\mu-\nu$. Since A has SVEP at $\mu \notin \sigma_{S F_{+}}(A)$ and B has SVEP at $\nu \notin \sigma_{S F_{-}}(B)$, it follows from [27, Corollary 2.2] that $\mu \notin \sigma_{a b}(A)$ and $\nu \notin \sigma_{a b}\left(B^{*}\right)$; applying statement ii) of Lemma 3.1 we get $\lambda \notin \sigma_{a b}\left(\delta_{A, B}\right)$. Hence $\lambda \in \Pi_{0}^{l}\left(\delta_{A, B}\right)$. Let $\lambda \in \Pi_{0}^{l}\left(\delta_{A, B}\right)$; according to [27, Corollary 2.2], we have $\lambda \in \sigma_{a}\left(\delta_{A, B}\right) \backslash \sigma_{a b}\left(\delta_{A, B}\right)$. Since $\sigma_{a w}(T) \subseteq \sigma_{a b}(T)$, then $\lambda \in \sigma_{a}\left(\delta_{A, B}\right) \backslash \sigma_{a w}\left(\delta_{A, B}\right)$. Hence $\delta_{A, B}$ satisfy aBrowder's theorem.

5. Application

A Banach space operator $T \in L(\mathcal{X})$ is said to be hereditary normaloid, $T \in$ $\mathcal{H} \mathcal{N}$, if every part of T (i.e., the restriction of T to each of its invariant subspaces) is normaloid (i.e., $\|T\|$ equals the spectral radius $r(T)) . T \in \mathcal{H} \mathcal{N}$ is totally hereditarily normaloid, $T \in \mathcal{T H} \mathcal{N}$, if also the inverse of every invertible part of T is normaloid and T is completely totally hereditarily normaloid (abbr. $T \in \mathcal{C H} \mathcal{N}$), if either $T \in \mathcal{T H} \mathcal{N}$ or $T-\lambda I \in \mathcal{H} \mathcal{N}$ for every complex number λ. The class $\mathcal{C H} \mathcal{N}$ is large. In particular, let H be a Hilbert space and $T \in L(H)$ be a Hilbert space operator. If T is hyponormal $\left(T^{*} T \geq T T^{*}\right)$ or p-hyponormal $\left.\left(\left(T^{*} T\right)^{p}\right) \geq\left(T T^{*}\right)^{p}\right)$ for some $(0<p \leq 1)$ or w-hyponormal $\left(\left(\left|T^{*}\right|^{\frac{1}{2}}|T|\left|T^{*}\right|^{\frac{1}{2}}\right)^{\frac{1}{2}} \geq\left|T^{*}\right|\right)$, then T is in $\mathcal{T H} \mathcal{N}$. Again, totaly ${ }^{*}$-paranormal operators $\left(\left\|(T-\lambda I)^{*} x\right\|^{2} \leq\|(T-\lambda I) x\|^{2}\right.$ for every unit vector x) are $\mathcal{H} \mathcal{N}$-operators and paranormal operators $\left(\|T x\|^{2} \leq\left\|T^{2} x\right\|\|x\|\right.$, for all unit vector x) are $\mathcal{T} \mathcal{H} \mathcal{N}$-operators. It is proved in[11] that if $A, B^{*} \in L(H)$ are hyponormal, then the generalized Weyl's theorem holds for $f\left(\delta_{A, B}\right)$ for every $f \in \mathcal{H}\left(\sigma\left(\delta_{A, B}\right)\right)$, where $\mathcal{H}\left(\sigma\left(\delta_{A, B}\right)\right)$ is the set of all analytic functions defined on a neighborhood of $\sigma\left(\delta_{A, B}\right)$. This result was extended to log-hyponormal or phyponormal operators in [14] and [22]. Also, in [10] and [23], it is shown that if $A, B^{*} \in L(H)$ are w-hyponormal operators, then Weyl's theorem holds for $f\left(\delta_{A, B}\right)$ for every $f \in \mathcal{H}\left(\sigma\left(\delta_{A, B}\right)\right)$. Let $\mathcal{H}_{c}(\sigma(T))$ denote the space of all analytic functions defined on a neighborhood of $\sigma(T)$ which is non constant on each of the components of its domain. In the next results we can give more.

Theorem 5.1. Suppose that $A, B \in L(H)$ are $\mathcal{C H N}$ operators; then $\delta_{A, B}$ satisfies a-Browder's theorem.

Proof. Since A and B are $\mathcal{C H} \mathcal{N}$-operators, it follows from [13, Corollary 2.10] that A has SVEP at $\mu \in \sigma_{a}(A) \backslash \sigma_{S F_{+}}(A)$ and B has SVEP at $\mu \in \sigma_{a}\left(B^{*}\right) \backslash \sigma_{S F_{-}}(B)$. Then by Theorem 4.4, a-Browder's theorem holds for $\delta_{A, B}$.

Corollary 5.2. If $A, B \in L(H)$ are $\mathcal{C H} \mathcal{N}$ operators, then
i) $\delta_{A, B}$ has SVEP at $\lambda \notin \sigma_{U B W}\left(\delta_{A, B}\right)$,
ii) $\delta_{A, B}$ satisfies a-Browder's theorem.
iii) $\delta_{A, B}$ satisfies a-Weyl's theorem.
iv) $\delta_{A, B}$ satisfies generalized a-Weyl's theorem.
v) $\sigma_{a w}\left(\delta_{A, B}\right)=\left(\sigma_{a w}(A)-\sigma_{s}(B)\right) \cup\left(\sigma_{a}(A)-\overline{\sigma_{a w}\left(B^{*}\right)}\right)$.

Proof. Since A and B are $\mathcal{C H} \mathcal{N}$-operators, it follows from [13, Corollary 2.15] that A, B, A^{*} and B^{*} satisfy a-Browder's theorem. By [13, Proposition 2.1], we conclude that A and B^{*} are left polaroids. The assertions follows from Corollary 4.3.

Corollary 5.3. Suppose that $A, B \in L(H)$ are $\mathcal{C H} \mathcal{N}$-operators. Then $f\left(\delta_{A, B}\right)$ satisfies generalized a-Browder's theorem, for every $f \in \mathcal{H}_{c}\left(\sigma\left(\delta_{A, B}\right)\right)$.

Proof. By Corollary 5.2 and [16, Corollary 3.5], we get that generalized aBrowder's theorem holds for $f\left(\delta_{A, B}\right)$.

Corollary 5.4. Suppose that $A, B \in L(H)$ are $\mathcal{C H} \mathcal{N}$-operators. Then $f\left(\delta_{A, B}\right)$ satisfies generalized a-Weyl's theorem, for every $f \in \mathcal{H}_{c}\left(\sigma\left(\delta_{A, B}\right)\right)$.

Proof. By [13, Proposition 2.1] and Theorem 3.4, we get that $\delta_{A, B}$ is a left polaroid and from Corollary 5.2 we have that $\delta_{A, B}$ satisfies generalized a-Weyl's theorem. Applying [16, Theorem 3.14] we get that generalized a-Weyl's's theorem holds for $f\left(\delta_{A, B}\right)$.

Acknowledgement. The authors wish to express their indebtedness to the referee, for his suggestions and valuable comments on this paper.

REFERENCES

[1] P. Aiena, Fredholm and local spectral theory, with application to multipliers, Kluewer Acad. Publ., 2004.
[2] P. Aiena, Quasi-Fredholm operators and localized SVEP, Acta Sci. Math. (Szeged), 73 (2007), 251-263.
[3] P. Aiena, E. Aponte, E. Balzan, Weyl type theorems for left and right polaroid operators, Intgr. Equ. Oper. Theory. 66 (2010), 1-20.
[4] M. Amouch, H. Zguitti, On the equivalencr of Browder's and generalized Browder's theorem, Glasgow. Math. J. 48 (2006), 179-185.
[5] M. Amouch, H. Zguitti, A note on the a-Browder's and a-Weyl's theorems, Mathematica Bohemica. 133 (2008) 157-166.
[6] E. Boasso, B. P. Duggal, I. H. Jeon, Generalized Browder's and Weyl's theorem for left and right multiplication operators, J. Math Anal. Appl. (2010) 461-471.
[7] E. Boasso, B. P. Duggal, Tensor product of left polatoid operators, Acta Sci. Math. (Szeged) 78 (2012) 251-264.
[8] E. Boasso, M. Amouch, Generalized Browder's and Weyl's theorem for generalized derivations, Mediterr. J. Math. 12 (2015), 117-131.
[9] M. Berkani, Index of B-Fredholm operators and generalization af A Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), 1717-1723.
[10] M. Cho, S. V. Djordjević, B. P. Duggal, T. Yamazaki, On an elementary operator with w-hyponormal operator entries, Linear Algebra Appl. 433 (2010) 2070-2079.
[11] B. P. Duggal, Weyl's theorem for a generalized derivation and an elementary operator, Mat. Vesnik. 54 (2002), 71-81.
[12] B. P. Duggal, C. S. Kubrusly, Totally hereditarily normaloid operators and Weyl's theorem for an elementary operator, J. Math. Anal. Appl. 312 (2005) 502-513.
[13] B. P. Duggal, Hereditarily normaloid operators, Extracta Math. 20 (2005), 203-217.
[14] B. P. Duggal, An elementary operator with log-hyponormal, p-hyponormal entries, Linear Algebra Appl. 428 (2008), 1109-1116.
[15] B. P. Duggal, Browder-Weyl theorems, tensor products and multiplications, J. Math. Anal. Appl. 359 (2009), 631-636.
[16] B. P. Duggal, SVEP and generalized Weyl's theorem, Mediterr. J. Math. 4 (2007), 309-320.
[17] J. Eschmeier, Tensor products and elementary operators, J. Reine Angew. Math. 390 (1988), 47-66.
[18] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japon, 34 (1982), 223-254.
[19] R. Harte, A.-H. Kim, Weyl's theorem, tensor products and multiplication operators, J. Math. Anal. Appl. 336 (2007), 1124-1131.
[20] K. B. Laursen, M. M. Neumann, An Introduction to Local Spectral Theory, London Math. Soc. Monographs, Oxford Univ. Press, 2000.
[21] F. Lombarkia, Generalized Weyl's theorem for an elementary operator, Bull. Math. Anal. Appl. 3 (4) (2011), 123-131.
[22] F. Lombarkia, A. Bachir, Weyl's and Browder's theorem for an elementary operator, Mat. Vesnik 59 (2007), 135-142.
[23] F. Lombarkia, A. Bachir, Property (gw) for an elementary operator, Int. J. Math. Stat. 9 (2011), 42-48.
[24] F. Lombarkia, H. Zguitti On the Browder's theorem of an elementary operator, Extracta Math. 28, 2 (2013), 213-224.
[25] V. Müller, On the Kato decomposition of quasi-Fredholm and B-Fredholm operators, Preprint ESI 1013, Vienna, 2001.
[26] O. Bel Hadj Fredj, M. Burgos, M. Oudghiri, Ascent spectrum and essential ascent spectrum, Studia Math. 187 (2008), 59-73.
[27] V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), 193-198.
(received 23.09.2014; in revised form 12.02.2015; available online 01.04.2015)
M. A., Department of Mathematics, University Chouaib Doukkali, Faculty of Sciences, Eljadida, 24000, Eljadida, Morocco.
E-mail: mohamed.amouch@gmail.com
F. L., Department of Mathematics, Faculty of Science, University of Batna, 05000, Batna, Algeria.

E-mail: lombarkiafarida@yahoo.fr

