KOROVKIN TYPE APPROXIMATION THEOREM IN A_2^T -STATISTICAL SENSE

Sudipta Dutta and Pratulananda Das

Abstract. In this paper we consider the notion of A_2^T -statistical convergence for real double sequences which is an extension of the notion of A^T -statistical convergence for real single sequences introduced by Savas, Das and Dutta. We primarily apply this new notion to prove a Korovkin type approximation theorem. In the last section, we study the rate of A_2^T -statistical convergence.

1. Introduction and background

Throughout the paper \mathbb{N} will denote the set of all positive integers. Approximation theory has important applications in the theory of polynomial approximation in various areas of functional analysis. For a sequence $\{T_n\}_{n\in\mathbb{N}}$ of positive linear operators on C(X), the space of real valued continuous functions on a compact subset X of real numbers, Korovkin [20] first established the necessary and sufficient conditions for the uniform convergence of $\{T_n f\}_{n \in \mathbb{N}}$ to a function f by using the test functions $e_0 = 1$, $e_1 = x$, $e_2 = x^2$ [1]. The study of the Korovkin type approximation theory has a long history and is a well-established area of research. As is mentioned in [12] in particular, the matrix summability methods of Cesáro type are strong enough to correct the lack of convergence of various sequences of positive linear operators such as the interpolation operators of Hermite-Fejér [6]. In recent years, using the concept of uniform statistical convergence various statistical approximation results have been proved [9,10]. Erkuş and Duman [15] studied a Korovkin type approximation theorem via A-statistical convergence in the space $H_w(I^2)$ where $I^2 = [0,\infty) \times [0,\infty)$ which was extended for double sequences of positive linear operators of two variables in A-statistical sense by Demirci and Dirik in [12]. Our primary interest in this paper is to obtain a general Korovkin type approximation theorem for double sequences of positive linear operators of two variables from $H_w(\mathcal{K})$ to $C(\mathcal{K})$ where $\mathcal{K} = [0, A] \times [0, B], A, B \in (0, 1)$, in the sense of $A_2^{\mathcal{I}}$ -statistical convergence.

²⁰¹⁰ Mathematics Subject Classification: 40A35, 47B38, 41A25, 41A36

Keywords and phrases: Ideal; $A_2^{\underline{T}}$ -statistical convergence; positive linear operator; Korovkin type approximation theorem; rate of convergence.

The concept of convergence of a sequence of real numbers was extended to statistical convergence by Fast [17]. Further investigations started in this area after the pioneering works of Šalát [31] and Fridy [18]. The notion of \mathcal{I} -convergence of real sequences was introduced by Kostyrko et al. [23] as a generalization of statistical convergence using the notion of ideals (see [3,4,5] for further references). Later the idea of \mathcal{I} -convergence was also studied in topological spaces in [24]. On the other hand statistical convergence was generalized to A-statistical convergence by Kolk [21,22]. Later a lot of works have been done on matrix summability and A-statistical convergence (see [2,7,8,11,16,19,21,22,25,29]). In particular, very recently in [33] and [34] the two above mentioned approaches were unified and the very general notion of $A^{\mathcal{I}}$ -statistical convergence was introduced and studied. In this paper we consider an extension of this notion to double sequences, namely $A_2^{\mathcal{I}}$ -statistical convergence.

A real double sequence $\{x_{mn}\}_{m,n\in\mathbb{N}}$ is said to be convergent to L in Pringsheim's sense if for every $\varepsilon > 0$ there exists $N(\varepsilon) \in \mathbb{N}$ such that $|x_{mn} - L| < \varepsilon$ for all $m, n > N(\varepsilon)$ and denoted by $\lim_{m,n} x_{mn} = L$. A double sequence is called bounded if there exists a positive number M such that $|x_{mn}| \leq M$ for all $(m, n) \in \mathbb{N} \times \mathbb{N}$. A real double sequence $\{x_{mn}\}_{m,n\in\mathbb{N}}$ is statistically convergent to L if for every $\varepsilon > 0$,

$$\lim_{j,k} \frac{|\{m \le j, n \le k : |x_{mn} - L| \ge \varepsilon\}|}{jk} = 0$$

[27, 28].

Recall that a family $\mathcal{I} \subset 2^Y$ of subsets of a nonempty set Y is said to be an ideal in Y if $(i)A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$; $(ii)A \in \mathcal{I}, B \subset A$ implies $B \in \mathcal{I}$, while an admissible ideal \mathcal{I} of Y further satisfies $\{x\} \in \mathcal{I}$ for each $x \in Y$. If \mathcal{I} is a non-trivial proper ideal in Y (i.e. $Y \notin \mathcal{I}, \mathcal{I} \neq \{\emptyset\}$) then the family of sets $F(\mathcal{I}) = \{M \subset Y :$ there exists $A \in \mathcal{I} : M = Y \setminus A\}$ is a filter in Y. It is called the filter associated with the ideal \mathcal{I} . A non-trivial ideal \mathcal{I} of $\mathbb{N} \times \mathbb{N}$ is called strongly admissible if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times \{i\}$ belong to \mathcal{I} for each $i \in \mathbb{N}$. It is evident that a strongly admissible ideal is admissible also. Let $\mathcal{I}_0 = \{A \subset \mathbb{N} \times \mathbb{N} :\ni m(A) \in \mathbb{N}$ such that $i, j \ge m(A) \Longrightarrow$ $(i, j) \notin A\}$. Then \mathcal{I}_0 is a non-trivial strongly admissible ideal [14]. Let $A = (a_{nk})$ be a non-negative regular matrix. For an ideal \mathcal{I} of \mathbb{N} a sequence $\{x_n\}_{n \in \mathbb{N}}$ is said to be $A^{\mathcal{I}}$ -statistically convergent to L if for any $\varepsilon > 0$ and $\delta > 0$,

$$\left\{n \in \mathbb{N} : \sum_{k \in K(\varepsilon)} a_{nk} \ge \delta\right\} \in \mathcal{I}$$

where $K(\varepsilon) = \{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\}$ [33,34].

Let $A = (a_{jkmn})$ be a four dimensional summability matrix. For a given double sequence $\{x_{mn}\}_{m,n\in\mathbb{N}}$, the A-transform of x, denoted by $Ax := ((Ax)_{jk})$, is given by

$$(Ax)_{jk} = \sum_{(m,n) \in \mathbb{N}^2} a_{jkmn} x_{mn}$$

provided the double series converges in Pringsheim sense for every $(j,k) \in \mathbb{N}^2$. In 1926, Robison [30] presented a four dimensional analog of the regularity by S. Dutta, P. Das

considering an additional assumption of boundedness. This assumption was made because a convergent double sequence is not necessarily bounded.

Recall that a four dimensional matrix $A = (a_{jkmn})$ is said to be RH-regular if it maps every bounded convergent double sequence into a convergent double sequence with the same limit. The Robison-Hamilton conditions state that a four dimensional matrix $A = (a_{jkmn})$ is RH-regular if and only if

(i) $\lim_{j,k} a_{jkmn} = 0$ for each $(m, n) \in \mathbb{N}^2$,

(ii) $\lim_{j,k} \sum_{(m,n) \in \mathbb{N}^2} a_{jkmn} = 1$,

- (iii) $\lim_{j,k} \sum_{m \in \mathbb{N}} |a_{jkmn}| = 0$ for each $n \in \mathbb{N}$,
- (iv) $\lim_{j,k} \sum_{n \in \mathbb{N}} |a_{jkmn}| = 0$ for each $m \in \mathbb{N}$,
- (v) $\sum_{(m,n)\in\mathbb{N}^2}|a_{jkmn}|$ is convergent,
- (vi) there exist finite positive integers M_0 and N_0 such that $\sum_{m,n>N_0} |a_{jkmn}| < M_0$ holds for every $(j,k) \in \mathbb{N}^2$.

Let $A = (a_{jkmn})$ be a non-negative RH-regular summability matrix and let $K \subset \mathbb{N}^2$. Then the A-density of K is given by

$$S_A^{(2)}{K} = \lim_{j,k} \sum_{(m,n)\in K} a_{jkmn}$$

provided the limit exists. A real double sequence $x = \{x_{mn}\}_{m,n\in\mathbb{N}}$ is said to be *A*-statistically convergent to a number *L* if for every $\varepsilon > 0$

$$\delta_A^{(2)}\{(m,n)\in\mathbb{N}^2:|x_{mn}-L|\geq\varepsilon\}=0.$$

We denote $\mathcal{I}_{\delta_A^{(2)}} = \left\{ C \subset \mathbb{N}^2 : \delta_A^{(2)} \{C\} = 0 \right\}$ which is an admissible ideal in $\mathbb{N} \times \mathbb{N}$. Throughout we use \mathcal{I} as a non-trivial strongly admissible ideal on $\mathbb{N} \times \mathbb{N}$.

2. A Korovkin type approximation theorem

Recently the concept of \mathcal{I} -statistical convergence for real single sequences has been introduced by Das and Savas as a notion of convergence which is strictly weaker than the notion of statistical convergence (see [32] for details). Consequently this notion has been further investigated in [13]. Very recently it has been further generalized by using a summability matrix A into $A^{\mathcal{I}}$ -statistical convergence for real single sequences by Savas, Das and Dutta [33,34]. In this paper we consider the following natural extension of these convergence for real double sequences.

The following definition is due to E. Savas (who has informed about it in a personal communication).

DEFINITION 2.1. A real double sequence $\{x_{m,n}\}_{m,n\in\mathbb{N}}$ is said to be \mathcal{I}_2 -statistically convergent to L if for each $\varepsilon > 0$ and $\delta > 0$,

$$\left\{ (j,k) \in \mathbb{N}^2 : \frac{1}{jk} |\{m \le j, n \le k : |x_{mn} - L| \ge \varepsilon \}| \ge \delta \right\} \in \mathcal{I}.$$

We now introduce the main definition of this paper.

DEFINITION 2.2. Let $A = (a_{jkmn})$ be a non-negative RH-regular summability matrix. Then a real double sequence $\{x_{mn}\}_{m,n\in\mathbb{N}}$ is said to be $A_2^{\mathcal{I}}$ -statistically convergent to a number L if for every $\varepsilon > 0$ and $\delta > 0$,

$$\left\{ (j,k) \in \mathbb{N}^2 : \sum_{(m,n) \in K_2(\varepsilon)} a_{jkmn} \ge \delta \right\} \in \mathcal{I}_2$$

where $K_2(\varepsilon) = \{(m,n) \in \mathbb{N}^2 : |x_{mn} - L| \ge \varepsilon\}$. In this case, we write $A_2^{\mathcal{I}}$ -st- $\lim_{m,n} x_{mn} = L$.

It should be noted that, if we take A = C(1, 1), the double Cesáro matrix [26] defined as follows

$$a_{jkmn} = \begin{cases} \frac{1}{jk} & \text{for } m \le j, n \le k; \\ 0 & \text{otherwise,} \end{cases}$$

then $A_2^{\mathcal{I}}$ -statistical convergence coincides with the notion of \mathcal{I}_2 -statistical convergence. Again if we replace the matrix A by the identity matrix for four dimensional matrices and $\mathcal{I} = \mathcal{I}_0$ then $A_2^{\mathcal{I}}$ -statistical convergence reduces to the Pringsheim convergence for double sequences. For the ideal $\mathcal{I} = \mathcal{I}_0$, $A_2^{\mathcal{I}}$ -statistical convergence implies A-statistical convergence for double sequences. The basic properties of $A_2^{\mathcal{I}}$ statistically convergent double sequences are similar to $A^{\mathcal{I}}$ -statistical convergent single sequences and can be obtained analogously as in [32,33]. So our main aim here is to present an application of this notion in approximation theory.

Throughout this section, let $\mathcal{K} = [0, A] \times [0, B]$ $A, B \in (0, 1)$ and denote the space of all real valued continuous functions on \mathcal{K} by $C(\mathcal{K})$. This space is endowed with the supremum norm $||f|| = \sup_{(x,y)\in\mathcal{K}} |f(x,y)|, f \in C(\mathcal{K})$. Consider the space $H_w(\mathcal{K})$ of real valued functions f on \mathcal{K} satisfying

$$|f(u,v) - f(x,y)| \le w \Big(f; \sqrt{(\frac{u}{1-u} - \frac{x}{1-x})^2 + (\frac{v}{1-v} - \frac{y}{1-y})^2} \Big)$$

where w is the modulus of continuity for $\delta > 0$ given by

 $w(f;\delta) = \sup\{|f(u,v) - f(x,y)| : (u,v), (x,y) \in \mathcal{K}, \sqrt{(u-x)^2 + (v-y)^2} \le \delta\}.$ Then it is clear that any function in $H_w(\mathcal{K})$ is continuous and bounded on \mathcal{K} .

We will use the following test functions $f_0(x, y) = 1$, $f_1(x, y) = \frac{x}{1-x}$, $f_2 = \frac{y}{1-y}$, $f_3(x, y) = (\frac{x}{1-x})^2 + (\frac{y}{1-y})^2$ and we denote the value of Tf at a point $(u, v) \in \mathcal{K}$ by T(f; u, v).

Now we establish the Korovkin type approximation theorem in $A_2^{\mathcal{I}}$ -statistical sense.

THEOREM 2.1. Let $\{T_{mn}\}_{m,n\in\mathbb{N}}$ be a sequence of positive linear operators from $H_w(\mathcal{K})$ into $C(\mathcal{K})$ and let $A = (a_{jkmn})$ be a non-negative RH-regular summability matrix. Then for any $f \in H_w(\mathcal{K})$,

$$A_2^{\mathcal{I}} - st - \lim_{m,n} \|T_{mn}f - f\| = 0$$
 (1)

is satisfied if the following holds

$$A_2^{\mathcal{I}} - st - \lim_{m,n} \|T_{mn}f_i - f_i\| = 0, \ i = 0, 1, 2, 3.$$
(2)

S. Dutta, P. Das

Proof. Assume that (2) holds. Let $f \in H_w(\mathcal{K})$. Our objective is to show that for given $\varepsilon > 0$ there exist constants C_0 , C_1 , C_2 , C_3 (depending on $\varepsilon > 0$) such that

$$||T_{mn}f - f|| \le \varepsilon + C_3 ||T_{mn}f_3 - f_3|| + C_2 ||T_{mn}f_2 - f_2|| + C_1 ||T_{mn}f_1 - f_1|| + C_0 ||T_{mn}f_0 - f_0||$$

If this is done then our hypothesis implies that for any $\varepsilon > 0$, $\delta > 0$,

$$\left\{(j,k)\in\mathbb{N}^2:\sum_{(m,n)\in K_2(\varepsilon)}a_{jkmn}\geq\delta\right\}\in\mathcal{I},$$

where $K_2(\varepsilon) = \{(m, n) \in \mathbb{N}^2 : ||T_{mn}f - f|| \ge \varepsilon\}.$

To this end, start by observing that for each $(u,v) \in \mathcal{K}$ the function $0 \leq g_{uv} \in H_w(\mathcal{K})$ defined by $g_{uv}(s,t) = (\frac{s}{1-s} - \frac{u}{1-u})^2 + (\frac{t}{1-t} - \frac{v}{1-v})^2$ satisfies $g_{uv} = (\frac{x}{1-x})^2 + (\frac{y}{1-y})^2 - \frac{2u}{1-u}\frac{x}{1-x} - \frac{2v}{1-v}\frac{y}{1-y} + (\frac{u}{1-u})^2 + (\frac{v}{1-v})^2$. Since each T_{mn} is a positive operator, $T_{mn}g_{uv}$ is a positive function. In particular, we have for each $(u,v) \in \mathcal{K}$,

$$\begin{split} 0 &\leq T_{mn}g_{uv}(u,v) \\ &= [T_{mn}((\frac{x}{1-x})^2 + (\frac{y}{1-y})^2 - \frac{2u}{1-u}\frac{x}{1-x} - \frac{2v}{1-v}\frac{y}{1-y} + (\frac{u}{1-u})^2 + (\frac{v}{1-v})^2; u,v)] \\ &= [T_{mn}((\frac{x}{1-x})^2 + (\frac{y}{1-y})^2; u,v) - (\frac{u}{1-u})^2 - (\frac{v}{1-v})^2] \\ &- \frac{2u}{1-u}[T_{mn}(\frac{x}{1-x}; u,v) - \frac{u}{1-u}] - \frac{2v}{1-v}[T_{mn}(\frac{y}{1-y}; u,v) - \frac{v}{1-v}] \\ &+ \{(\frac{u}{1-u})^2 + (\frac{v}{1-v})^2\}[T_{mn}f_0 - f_0] \\ &\leq \|T_{mn}f_3 - f_3\| + \frac{2u}{1-u}\|T_{mn}f_1 - f_1\| \\ &+ \frac{2v}{1-v}\|T_{mn}f_2 - f_2\| + \{(\frac{u}{1-u})^2 + (\frac{v}{1-v})^2\}\|T_{mn}f_0 - f_0\|. \end{split}$$

Let M = ||f|| and $\varepsilon > 0$. By the uniform continuity of f on \mathcal{K} there exists a $\delta > 0$ such that $-\varepsilon < f(s,t) - f(u,v) < \varepsilon$ holds whenever

$$\sqrt{(\frac{s}{1-s} - \frac{u}{1-u})^2 + (\frac{t}{1-t} - \frac{v}{1-v})^2} < \delta,$$

 $(s,t), (u,v) \in \mathcal{K}$. Next observe that

$$-\varepsilon - \frac{2M}{\delta^2} \left\{ \left(\frac{s}{1-s} - \frac{u}{1-u} \right)^2 + \left(\frac{t}{1-t} - \frac{v}{1-v} \right)^2 \right\}$$

$$\leq f(s,t) - f(u,v)$$

$$\leq \varepsilon + \frac{2M}{\delta^2} \left\{ \left(\frac{s}{1-s} - \frac{u}{1-u} \right)^2 + \left(\frac{t}{1-t} - \frac{v}{1-v} \right)^2 \right\}$$
(3)

Indeed, if $\sqrt{\left(\frac{s}{1-s}-\frac{u}{1-u}\right)^2 + \left(\frac{t}{1-t}-\frac{v}{1-v}\right)^2} < \delta$ then (3) follows from

$$\varepsilon < f(s,t) - f(u,v) < \varepsilon.$$

On the other hand, if
$$\sqrt{\left(\frac{s}{1-s} - \frac{u}{1-u}\right)^2 + \left(\frac{t}{1-t} - \frac{v}{1-v}\right)^2} \ge \delta$$
 then (3) follows from
 $-\varepsilon - \frac{2M}{\delta^2} \left\{ \left(\frac{s}{1-s} - \frac{u}{1-u}\right)^2 + \left(\frac{t}{1-t} - \frac{v}{1-v}\right)^2 \right\}$
 $\le -2M \le f(s,t) - f(u,v) \le 2M$
 $\le \varepsilon + \frac{2M}{\delta^2} \left\{ \left(\frac{s}{1-s} - \frac{u}{1-u}\right)^2 + \left(\frac{t}{1-t} - \frac{v}{1-v}\right)^2 \right\}.$

Since each T_{mn} is positive and linear it follows from (3) that

$$-\varepsilon T_{mn}f_0 - \frac{2M}{\delta^2}T_{mn}g_{uv} \le T_{mn}f - f(u,v)T_{mn}f_0 \le \varepsilon T_{mn}f_0 + \frac{2M}{\delta^2}T_{mn}g_{uv}.$$

Therefore

$$\begin{aligned} |T_{mn}(f;u,v) - f(u,v)T_{mn}(f_0;u,v)| \\ &\leq \varepsilon + \varepsilon \left[T_{mn}(f_0;u,v) - f_0(u,v)\right] + \frac{2M}{\delta^2} T_{mn}g_{uv} \\ &\leq \varepsilon + \varepsilon \|T_{mn}f_0 - f_0\| + \frac{2M}{\delta^2} T_{mn}g_{uv} \end{aligned}$$

In particular, note that

$$\begin{aligned} |T_{mn}(f;u,v) - f(u,v)| \\ &\leq |T_{mn}(f;u,v) - f(u,v)T_{mn}(f_0;u,v)| + |f(u,v)| |T_{mn}(f_0;u,v) - f_0(u,v)| \\ &\leq \varepsilon + (M+\varepsilon) ||T_{mn}f_0 - f_0|| + \frac{2M}{\delta^2} T_{mn}g_{uv} \end{aligned}$$

which implies

$$||T_{mn}f - f|| \le \varepsilon + C_3 ||T_{mn}f_3 - f_3|| + C_2 ||T_{mn}f_2 - f_2|| + C_1 ||T_{mn}f_1 - f_1|| + C_0 ||T_{mn}f_0 - f_0||,$$

where $C_0 = \left[\frac{2M}{\delta^2}\left\{\left(\frac{A}{1-A}\right)^2 + \left(\frac{B}{1-B}\right)^2\right\} + M + \varepsilon\right], C_1 = \frac{4M}{\delta^2}\frac{A}{1-A}, C_2 = \frac{4M}{\delta^2}\frac{B}{1-B}$ and $C_3 = \frac{2M}{\delta^2}$, i.e.,

$$||T_{mn}f - f|| \le \varepsilon + C \sum_{i=0}^{3} ||T_{mn}f_i - f_i||, \ i = 0, 1, 2, 3,$$

where $C = \max\{C_0, C_1, C_2, C_3\}.$

For a given $\gamma > 0$, choose $\varepsilon > 0$ such that $\varepsilon < \gamma$. Now let

$$U = \{ (m, n) : ||T_{mn}f - f|| \ge \gamma \}$$

and

$$U_{i} = \left\{ (m, n) : \|T_{mn}f_{i} - f_{i}\| \ge \frac{\gamma - \varepsilon}{4C} \right\}, \ i = 0, 1, 2, 3.$$

It follows that $U \subset \bigcup_{i=0}^{3} U_i$ and consequently for all $(j,k) \in \mathbb{N}^2$

$$\sum_{(m,n)\in U} a_{jkmn} \leq \sum_{i=0}^{5} \sum_{(m,n)\in U_i} a_{jkmn},$$

which implies that for any $\sigma > 0$ and $(m, n) \in U$,

$$\left\{ (j,k) \in \mathbb{N}^2 : \sum_{(m,n) \in U} a_{jkmn} \ge \sigma \right\} \subseteq \bigcup_{i=0}^3 \left\{ (j,k) \in \mathbb{N}^2 : \sum_{(m,n) \in U_i} a_{jkmn} \ge \frac{\sigma}{3} \right\}$$

Therefore from hypothesis, $\{(j,k) \in \mathbb{N}^2 : \sum_{(m,n)\in U} a_{jkmn} \geq \sigma\} \in \mathcal{I}$. This completes the proof of the theorem.

We now show that our theorem is stronger than the A-statistical version [12] (and so the classical version). Let \mathcal{I} be a non-trivial strongly admissible ideal of $\mathbb{N} \times \mathbb{N}$. Choose an infinite subset $C = \{(p_i, q_i) : i \in \mathbb{N}\}$, from \mathcal{I} such that $p_i \neq q_i$ for all $i, p_1 < p_2 < \cdots$ and $q_1 < q_2 < \cdots$. Let $\{u_{mn}\}_{m,n\in\mathbb{N}}$ be given by

$$u_{mn} = \begin{cases} 1 & m, n \text{ are even} \\ 0 & \text{otherwise.} \end{cases}$$

Let $A = (a_{jkmn})$ be given by

$$a_{jkmn} = \begin{cases} 1 & \text{if } j = p_i, k = q_i, m = 2p_i, n = 2q_i \text{ for some } i \in \mathbb{N} \\ 1 & \text{if } (j,k) \neq (p_i,q_i), \text{ for any } i, m = 2j+1, n = 2k+1 \\ 0 & \text{otherwise.} \end{cases}$$

Now for $0 < \varepsilon < 1$, $K_2(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : |u_{mn} - 0| \ge \varepsilon\} = \{(m, n) : m, n \text{ are even}\}$. Observe that

$$\sum_{(m,n)\in K_2(\varepsilon)} a_{jkmn} = \begin{cases} 1 & \text{if } j = p_i, k = q_i \text{ for some } i \in \mathbb{N} \\ 0 & \text{if } (j,k) \neq (p_i,q_i), \text{ for any } i \in \mathbb{N}. \end{cases}$$

Thus for any $\delta > 0$,

$$\left\{ (j,k) \in \mathbb{N} \times \mathbb{N} : \sum_{(m,n) \in K_2(\varepsilon)} a_{jkmn} \ge \delta \right\} = C \in \mathcal{I},$$

which shows that $\{u_{mn}\}_{m,n\in\mathbb{N}}$ is $A_2^{\mathcal{I}}$ -statistically convergent to 0. Evidently this sequence is not A-statistically convergent to 0.

Consider the following Meyer-König and Zeler operators

$$M_{mn}(f;x,y) = (1-x)^{m+1} (1-y)^{n+1} \\ \times \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} f\left(\frac{k}{k+m+1}, \frac{l}{l+m+1}\right) \binom{m+k}{k} \binom{n+l}{l} x^k y^l$$

where $f \in H_w(\mathcal{K})$ and $\mathcal{K} = [0, A] \times [0, B]$, $A, B \in (0, 1)$. Then $M_{mn}(f_0; x, y) = f_0(x, y)$, $M_{mn}(f_1; x, y) = \frac{x}{1-x}$, $M_{mn}(f_2; x, y) = \frac{y}{1-y}$ and

$$M_{mn}(f_3; x, y) = \frac{m+2}{m+1} \left(\frac{x}{1-x}\right)^2 + \frac{1}{m+1} \frac{x}{1-x} + \frac{n+2}{n+1} \left(\frac{y}{1-y}\right)^2 + \frac{1}{n+1} \frac{y}{1-y}$$

Then $\lim_{x \to \infty} \|M - f_{n-1}\| = 0$

Then $\lim_{m,n} ||M_{mn}f - f|| = 0.$

Now consider the following positive linear operator T_{mn} on $H_w(\mathcal{K})$ defined by $T_{mn}(f;x,y) = (1+u_{mn})M_{mn}(f;x,y)$. It is easy to observe that $||T_{mn}f_i - f_i|| = u_{mn}$ for i = 0, 1, 2 which imply that $A_2^{\mathcal{I}}$ -st-lim_{m,n} $||T_{mn}f_i - f_i|| = 0, i = 0, 1, 2$. Again,

$$||T_{mn}f_3 - f_3|| = \left\| (1 + u_{mn}) \left\{ \frac{m+2}{m+1} \left(\frac{x}{1-x} \right)^2 + \frac{1}{m+1} \frac{x}{1-x} + \frac{n+2}{n+1} \left(\frac{y}{1-y} \right)^2 \right. \\ \left. + \frac{1}{n+1} \frac{y}{1-y} \right\} - \left(\frac{x}{1-x} \right)^2 - \left(\frac{y}{1-y} \right)^2 \right\| \\ \le D \left\{ \frac{2}{m+1} + \frac{2}{n+1} + u_{mn} \frac{m+3}{m+1} + u_{mn} \frac{n+3}{n+1} \right\},$$

where $D = \max\left\{\left(\frac{A}{1-A}\right)^2, \left(\frac{B}{1-B}\right)^2, \left(\frac{A}{1-A}\right), \left(\frac{A}{1-A}\right)\right\}$. Therefore

$$\begin{split} \left\{ (m,n) \in \mathbb{N}^2 : \|T_{mn}(f_3) - f_3\| \ge \varepsilon \right\} \\ &\subseteq \left\{ (m,n) \in \mathbb{N}^2 : \frac{1}{m+1} + \frac{1}{n+1} \ge \frac{\varepsilon}{4D} \right\} \\ &\cup \left\{ (m,n) \in \mathbb{N}^2 : u_{mn} \frac{m+3}{m+1} + u_{mn} \frac{n+3}{n+1} \ge \frac{\varepsilon}{2D} \right\} \\ &\subseteq \left\{ (m,n) \in \mathbb{N}^2 : \frac{1}{m+1} + \frac{1}{n+1} \ge \frac{\varepsilon}{4D} \right\} \\ &\cup \left\{ (m,n) \in \mathbb{N}^2 : u_{mn} + \frac{m+3}{m+1} + \frac{n+3}{n+1} \ge 2\sqrt{\frac{\varepsilon}{2D}} \right\} \\ &\subseteq \left\{ (m,n) \in \mathbb{N}^2 : \frac{1}{m+1} + \frac{1}{n+1} \ge \frac{\varepsilon}{4D} \right\} \cup \left\{ (m,n) \in \mathbb{N}^2 : u_{mn} \ge \sqrt{\frac{\varepsilon}{2D}} \right\} \\ &\cup \left\{ (m,n) \in \mathbb{N}^2 : \frac{m+3}{m+1} + \frac{n+3}{n+1} \ge \sqrt{\frac{\varepsilon}{2D}} \right\} \\ &\cup \left\{ (m,n) \in \mathbb{N}^2 : \frac{1}{m+1} + \frac{1}{n+1} \ge \frac{\varepsilon}{4D} \right\} \cup \left\{ (m,n) \in \mathbb{N}^2 : u_{mn} \ge \sqrt{\frac{\varepsilon}{2D}} \right\} \\ &\cup \left\{ (m,n) \in \mathbb{N}^2 : \frac{1}{m+1} + \frac{1}{n+1} \ge \frac{1}{6}\sqrt{\frac{\varepsilon}{2D}} \right\} \\ &\cup \left\{ (m,n) \in \mathbb{N}^2 : \frac{1}{m+1} + \frac{1}{n+1} \ge \frac{1}{2}\sqrt{\frac{\varepsilon}{2D}} \right\}, \end{split}$$

which implies that $A_2^{\mathcal{I}}$ -st-lim_{m,n} $||T_{mn}f_3 - f_3|| = 0$. Hence from previous theorem it follows that $A_2^{\mathcal{I}}$ -st-lim_{m,n} $||T_{mn}f - f|| = 0$ for any $f \in H_w(\mathcal{K})$. But since $\{u_{mn}\}_{m,n\in\mathbb{N}}$ is not A-statistically convergent so the sequence $\{T_{mn}(f;x,y)\}_{m,n\in\mathbb{N}}$ considered above does not converge A-statistically to the function $f \in H_w(\mathcal{K})$.

3. Rate of $A_2^{\mathcal{I}}$ -statistical convergence

In this section we present a way to compute the rate of $A_2^{\mathcal{I}}$ -statistical convergence in Theorem 2.1. We will need the following definitions.

S. Dutta, P. Das

DEFINITION 3.1. Let $A = (a_{jkmn})$ be a non-negative RH-regular summability matrix and let $\{\alpha_{mn}\}_{m,n\in\mathbb{N}}$ be a positive non-increasing double sequence. Then a real double sequence $\{x_{mn}\}_{m,n\in\mathbb{N}}$ is said to be $A_2^{\mathcal{I}}$ -statistically convergent to a number L with the rate of $o(\alpha_{mn})$ if for every $\varepsilon > 0$ and $\delta > 0$,

$$\left\{ (j,k) \in \mathbb{N}^2 : \frac{1}{\alpha_{jk}} \sum_{(m,n) \in K_2(\varepsilon)} a_{jkmn} \ge \delta \right\} \in \mathcal{I},$$

where $K_2(\varepsilon) = \{(m,n) \in \mathbb{N}^2 : |x_{mn} - L| \geq \varepsilon\}$. In this case, we write $A_2^{\mathcal{I}}$ -st- $o(\alpha_{mn})$ -lim_{m,n} $x_{mn} = L$.

DEFINITION 3.2. Let $A = (a_{jkmn})$ be a non-negative RH-regular summability matrix and let $\{\alpha_{mn}\}_{m,n\in\mathbb{N}}$ be a positive non-increasing double sequence. Then a real double sequence $\{x_{mn}\}_{m,n\in\mathbb{N}}$ is said to be $A_2^{\mathcal{I}}$ -statistically convergent to a number L with the rate of $o_m(\alpha_{mn})$ if for every $\varepsilon > 0$ and $\delta > 0$,

$$\left\{ (j,k) \in \mathbb{N}^2 : \sum_{(m,n) \in K_2(\varepsilon)} a_{jkmn} \ge \delta \right\} \in \mathcal{I},$$

where $K_2(\varepsilon) = \{(m,n) \in \mathbb{N}^2 : |x_{mn} - L| \ge \varepsilon \alpha_{mn}\}$. In this case, we write $A_2^{\mathcal{I}}$ -st- $o_m(\alpha_{mn})$ -lim_{m,n} $x_{mn} = L$.

LEMMA 3.1. Let $\{x_{mn}\}_{m,n\in\mathbb{N}}$ and $\{y_{mn}\}_{m,n\in\mathbb{N}}$ be double sequences. Assume that $A = (a_{jkmn})$ is a non-negative RH-regular summability matrix and let $\{\alpha_{mn}\}_{m,n\in\mathbb{N}}$ and $\{\beta_{mn}\}_{m,n\in\mathbb{N}}$ be positive non-increasing double sequences. If

$$A_{2}^{\mathcal{I}}-st-o(\alpha_{mn})-\lim_{m,n} x_{mn} = L_{1} \text{ and } A_{2}^{\mathcal{I}}-st-o(\beta_{mn})-\lim_{m,n} x_{mn} = L_{2}$$

then we have

(i) $A_2^{\mathcal{I}}$ -st-o (γ_{mn}) -lim $(x_{mn} \pm y_{mn}) = L_1 \pm L_2$ where $\gamma_{mn} = \max\{\alpha_{mn}, \beta_{mn}\},$ (ii) $A_2^{\mathcal{I}}$ -st-o (α_{mn}) -lim $\lambda x_{mn} = \lambda L_1$ for any real number λ .

Proof. The proof is straightforward and so is omitted.

LEMMA 3.2. Let $\{x_{mn}\}_{m,n\in\mathbb{N}}$ and $\{y_{mn}\}_{m,n\in\mathbb{N}}$ be double sequences. Assume that $A = (a_{jkmn})$ is a non-negative RH-regular summability matrix and let $\{\alpha_{mn}\}_{m,n\in\mathbb{N}}$ and $\{\beta_{mn}\}_{m,n\in\mathbb{N}}$ be positive non-increasing double sequences. If

$$A_2^{\mathcal{I}}$$
-st- $o_m(\alpha_{mn})$ -lim $x_{mn} = L_1$ and $A_2^{\mathcal{I}}$ -st- $o_m(\beta_{mn})$ -lim $x_{mn} = L_2$

then we have

(i)
$$A_2^{\mathcal{I}} - st - o_m(\gamma_{mn}) - \lim_{m,n} (x_{mn} \pm y_{mn}) = L_1 \pm L_2$$
 where $\gamma_{mn} = \max\{\alpha_{mn}, \beta_{mn}\},$
(ii) $A_2^{\mathcal{I}} - st - o_m(\alpha_{mn}) - \lim_{m,n} \lambda x_{mn} = \lambda L_1$ for any real number λ .

Proof. The proof is straightforward and so is omitted. ■ Now we prove the following theorem.

THEOREM 3.1. Let $\{T_{mn}\}_{m,n\in\mathbb{N}}$ be a sequence of positive linear operators from $H_w(\mathcal{K})$ into $C(\mathcal{K})$. Let $A = (a_{jkmn})$ be a non-negative RH-regular summability matrix and $\{\alpha_{mn}\}_{m,n\in\mathbb{N}}$ and $\{\beta_{mn}\}_{m,n\in\mathbb{N}}$ be positive non-increasing double sequences. Assume that the following conditions hold

(i)
$$A_2^{\mathcal{I}} - st - o(\alpha_{mn}) - \lim_{m,n} ||T_{mn}f_0 - f_0|| = 0$$

(ii) $A_2^{\mathcal{I}} - st - o(\beta_{mn}) - \lim_{m,n} w(f; \delta_{mn}) = 0$,

where $\delta := \delta_{mn} = \sqrt{\|T_{mn}(\psi)\|}$ with $\psi(u, v) = (\frac{x}{1-x} - \frac{u}{1-u})^2 + (\frac{y}{1-y} - \frac{v}{1-v})^2$. Then for any $f \in H_w(\mathcal{K})$,

$$A_2^{\mathcal{I}} - st - o(\gamma_{mn}) - \lim_{m,n} ||T_{mn}f - f|| = 0,$$

where $\gamma_{mn} = \max\{\alpha_{mn}, \beta_{mn}\}$ for each $(m, n) \in \mathbb{N}^2$.

Proof. Let $\{T_{mn}\}_{m,n\in\mathbb{N}}$ be a sequence of positive linear operators from $H_w(\mathcal{K})$ into $C(\mathcal{K})$ and let $A = (a_{jkmn})$ be a non-negative RH-regular summability matrix and N = ||f||. Then for any $f \in H_w(\mathcal{K})$,

$$\begin{split} |T_{mn}(f;u,v) - f(u,v)| \\ &\leq T_{mn}(|f(x,y) - f(u,v)|;u,v) + |f(u,v)||T_{mn}(f_{0};u,v) - f_{0}(u,v)| \\ &\leq w(f;\delta)T_{mn}\left(1 + \frac{\sqrt{(\frac{u}{1-u} - \frac{x}{1-x})^{2} + (\frac{v}{1-v} - \frac{y}{1-y})^{2}}}{\delta};u,v\right) \\ &+ N|T_{mn}(f_{0};u,v) - f_{0}(u,v)| \\ &= w(f;\delta)T_{mn}(f_{0};u,v) + w(f;\delta)T_{mn}\left(\frac{\sqrt{(\frac{u}{1-u} - \frac{x}{1-x})^{2} + (\frac{v}{1-v} - \frac{y}{1-y})^{2}}}{\delta};u,v\right) \\ &+ N|T_{mn}(f_{0};u,v) - f_{0}(u,v)| \\ &= w(f;\delta)T_{mn}(f_{0};u,v) - w(f;\delta)f_{0}(u,v) + w(f;\delta) + \frac{w(f;\delta)}{\delta^{2}}T_{mn}(\psi;u,v) \\ &+ N|T_{mn}(f_{0};u,v) - f_{0}(u,v)| \\ &\leq w(f;\delta)|T_{mn}(f_{0};u,v) - f_{0}(u,v)| + w(f;\delta) + \frac{w(f;\delta)}{\delta^{2}}T_{mn}(\psi;u,v) \\ &+ N|T_{mn}(f_{0};u,v) - f_{0}(u,v)|. \end{split}$$
Taking supremum over $(u,v) \in \mathcal{K}$,
$$\|T_{mn}f - f\| \leq w(f;\delta)\|T_{mn}f_{0} - f_{0}\| + w(f;\delta) + \frac{w(f;\delta)}{\delta^{2}}\|T_{mn}\psi\| + N\|T_{mn}f_{0} - f_{0}\| \\ \end{split}$$

If we take
$$\delta := \delta_{mn} = \sqrt{\|T_{mn}\psi\|}$$
 then
 $\|T_{mn}f - f\| \le w(f;\delta) \|T_{mn}f_0 - f_0\| + 2w(f;\delta) + N\|T_{mn}f_0 - f_0\|$
 $\le M\{w(f;\delta)\|T_{mn}f_0 - f_0\| + w(f;\delta) + \|T_{mn}f_0 - f_0\|\},$

where $M = \max\{2, N\}$. Let $\mu > 0$ be given. Now consider the following sets

$$U = \{(m,n) : ||T_{mn}f - f|| \ge \mu\},\$$
$$U_1 = \{(m,n) : w(f;\delta) \ge \frac{\mu}{3M}\},\$$
$$U_2 = \{(m,n) : ||T_{mn}f_0 - f_0|| \ge \frac{\mu}{3M}\},\$$
$$U_3 = \{(m,n) : w(f;\delta)||T_{mn}f_0 - f_0|| \ge \frac{\mu}{3M}\}$$

Then $U \subset U_1 \cup U_2 \cup U_3$. Now define

$$U'_{3} = \{(m, n) : w(f; \delta) \ge \sqrt{\frac{\mu}{3M}} \},\$$
$$U''_{3} = \{(m, n) : \|T_{mn}f_{0} - f_{0}\| \ge \sqrt{\frac{\mu}{3M}} \}.$$

Then $U \subset U_1 \cup U_2 \cup U'_3 \cup U''_3$. Now since $\gamma_{mn} = \max\{\alpha_{mn}, \beta_{mn}\}$ for each $(m, n) \in \mathbb{N}^2$ then for all $(j, k) \in \mathbb{N}^2$,

$$\frac{1}{\gamma_{j,k}} \sum_{(m,n)\in U} a_{jkmn} \leq \frac{1}{\beta_{j,k}} \sum_{(m,n)\in U_1} a_{jkmn} + \frac{1}{\alpha_{j,k}} \sum_{(m,n)\in U_2} a_{jkmn} + \frac{1}{\beta_{j,k}} \sum_{(m,n)\in U'_3} a_{jkmn} + \frac{1}{\alpha_{j,k}} \sum_{(m,n)\in U''_3} a_{jkmn}.$$

Then for any $\sigma > 0$

$$\begin{split} &\left\{ (j,k) \in \mathbb{N}^2 : \frac{1}{\gamma_{j,k}} \sum_{(m,n) \in U} a_{jkmn} \ge \sigma \right\} \\ &\subseteq \left\{ (j,k) \in \mathbb{N}^2 : \frac{1}{\beta_{j,k}} \sum_{(m,n) \in U_1} a_{jkmn} \ge \frac{\sigma}{4} \right\} \cup \left\{ (j,k) \in \mathbb{N}^2 : \frac{1}{\alpha_{j,k}} \sum_{(m,n) \in U_2} a_{jkmn} \ge \frac{\sigma}{4} \right\} \\ &\cup \left\{ (j,k) \in \mathbb{N}^2 : \frac{1}{\beta_{j,k}} \sum_{(m,n) \in U_3'} a_{jkmn} \ge \frac{\sigma}{4} \right\} \cup \left\{ (j,k) \in \mathbb{N}^2 : \frac{1}{\alpha_{j,k}} \sum_{(m,n) \in U_3'} a_{jkmn} \ge \frac{\sigma}{4} \right\} \end{split}$$

Now from hypothesis the sets on the right-hand side belong to \mathcal{I} and consequently

$$\left\{ (j,k) \in \mathbb{N}^2 : \frac{1}{\gamma_{j,k}} \sum_{(m,n) \in U} a_{jkmn} \ge \sigma \right\} \in \mathcal{I}$$

for any $\sigma > 0$. This completes the proof.

The proof of the following theorem is analogous to the proof of Theorem 3.1 and so is omitted.

THEOREM 3.2. Let $\{T_{mn}\}_{m,n\in\mathbb{N}}$ be a sequence of positive linear operators from $H_w(\mathcal{K})$ into $C(\mathcal{K})$. Let $A = (a_{jkmn})$ be a non-negative RH-regular summability matrix and $\{\alpha_{mn}\}_{m,n\in\mathbb{N}}$ and $\{\beta_{mn}\}_{m,n\in\mathbb{N}}$ be positive non-increasing double sequences.

Assume that the following conditions hold

(i)
$$A_2^{\mathcal{I}} \cdot st \cdot o_m(\alpha_{mn}) \cdot \lim_{m,n} ||T_{mn}f_0 - f_0|| = 0$$

(ii) $A_2^{\mathcal{I}} \cdot st \cdot o_m(\beta_{mn}) \cdot \lim_{m,n} w(f; \delta_{mn}) = 0$,

where $\delta_{mn} = \sqrt{\|T_{mn}(\psi)\|}$ with $\psi(u, v) = (\frac{x}{1-x} - \frac{u}{1-u})^2 + (\frac{y}{1-y} - \frac{v}{1-v})^2$. Then for any $f \in H_w(\mathcal{K})$,

$$A_2^2$$
-st- $o_m(\gamma_{mn})$ - $\lim_{m,n} ||T_{mn}(f) - f|| = 0,$

where $\gamma_{mn} = \max\{\alpha_{mn}, \beta_{mn}\}$ for each $(m, n) \in \mathbb{N}^2$.

ACKNOWLEDGEMENT. The first author is thankful to CSIR, India for giving JRF during the tenure of which this work was done.

REFERENCES

- [1] C.D. Aliprantis and O. Burkinshaw, Principles of Real Analysis, Academic Press.
- [2] G.A. Anastassiou and O. Duman, Towards Intelligent Modeling: Statistical Approximation Theory, Intelligent System Reference Library 14, Springer-Verlag Berlin Heidelberg), 2011.
- [3] A. Boccuto, X. Dimitriou and N. Papanastassiou, Some versions of limit and Dieudonnetype theorems with respect to filter convergence for (ℓ)-group-valued measures, Cent. Eur. J. Math. 9 (6) (2011), 1298–1311.
- [4] A. Boccuto, X. Dimitriou and N. Papanastassiou, Brooks-Jewett-type theorems for the pointwise ideal convergence of measures with values in (ℓ)-groups, Tatra Mt. Math. Publ. 49 (2011), 17–26.
- [5] A. Boccuto, X. Dimitriou and N. Papanastassiou, Basic matrix theorems for *I*-convergence in (*l*)-groups, Math. Slovaca 62 (5) (2012), 885–908.
- [6] R. Bojanić and M.K. Khan, Summability of Hermite-Fejér interpolation for functions of bounded variation, J. Natur. Sci. Math. 32 (1) (1992), 5–10.
- [7] J. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis 8 (1988), 47–63.
- [8] J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989), 194–198.
- [9] O. Duman, E. Erkuş and V. Gupta, Statistical rates on the multivariate approximation theory, Math. Comp. Model. 44 (9–10) (2006), 763–770.
- [10] O. Duman, M.K. Khan and C. Orhan, A-statistical convergence of approximating operators, Math. Inequal. Appl. 6 (4) (2003), 689–699.
- [11] K. Demirci, Strong A-summability and A-statistical convergence, Indian J. Pure Appl. Math. 27 (1996), 589–593.
- [12] K. Demirci and F. Dirik, A Korovkin type approximation theorem for double sequences of positive linear operators of two variables in A-statistical sense, Bull. Korean Math. Soc. 47 (4) (2010), 825–837.
- [13] P. Das, E. Savas and S.K. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Lett. 24 (2011), 1509–1514.
- [14] P. Das, P. Kostyrko, W. Wilczyński and P. Malik, *I* and *I*^{*}-convergence of double sequences, Math. Slovaca 58 (5) (2008), 605–620.
- [15] E. Erkuş and O. Duman, A-statistical extension of the Korovkin type approximation theorem, Proc. Indian Acad. Sci. Math. Sci., 115 (4) (2005), 499–508.
- [16] O.H.H. Edely and M. Mursaleen, On statistical A-summability, Math. Comp. Model. 49 (8) (2009), 672–680.

- [17] H. Fast, Sur la convergences statistique, Colloq. Math. 2 (1951), 241-244.
- [18] J.A. Fridy, On statistical convergence, Analysis 5 (1985), 301–313.
- [19] A.R. Freedman and J.J. Sember, Densities and summability, Pacific J. Math. 95 (1981), 293–305.
- [20] P.P. Korovkin, Linear Operators and Approximation Theory, Delhi: Hindustan Publ. Co., 1960.
- [21] E. Kolk, Matrix summability of statistically convergent sequences, Analysis 13 (1993), 77–83.
- [22] E. Kolk, The statistical convergence in Banach spaces, Tartu Ül. Toimetised 928 (1991), 41–52.
- [23] P. Kostyrko, T. Šalát and W. Wilczyński, *I-convergence*, Real Anal. Exchange 26 (2) (2000/2001), 669–685.
- [24] B.K. Lahiri and P. Das, I and I* convergence in topological spaces, Math. Bohemica 130 (2005), 153–160.
- [25] I.J. Maddox, Space of strongly summable sequence, Quart. J. Math. Oxford Ser. 18 (2) (1967), 345–355.
- [26] H.I. Miller and L. Miller-Van Wieren, A matrix characterization of statistical convergence of double sequences, Sarajevo J. Math. 4 (16) (2008), 91–95.
- [27] F. Móricz, Statistical convergence of multiple sequences, Arch. Math. (Basel) 81 (1) (2003), 82–89.
- [28] M. Mursaleen and O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), 223–331.
- [29] M. Mursaleen and A. Alotaibi, Statistical summability and approximation by de la Vallée-Poussin mean, Appl. Math. Lett. 24 (2011), 672–680.
- [30] G.M. Robison, Divergent double sequences and series, Trans. Amer. Math. Soc. 28 (1) (1926), 50-73.
- [31] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150.
- [32] E. Savas and P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett. 24 (2011), 826–830.
- [33] E. Savas, P. Das and S. Dutta, A note on some generalised summability methods, Acta. Math. Univ. Commen. 82 (2) (2013), 297–304.
- [34] E. Savas, P. Das and S. Dutta, A note on strong matrix summability via ideals, Appl. Math. Lett. 25 (2012), 733–738.

(received 03.11.2014; in revised form 29.05.2015; available online 20.06.2015)

Department of Mathematics, Jadavpur University, Jadavpur, Kol-32, West Bengal, India *E-mail*: dutta.sudipta@ymail.com, sudiptaju.scholar@gmail.com, pratulananda@yahoo.co.in