KOROVKIN TYPE APPROXIMATION THEOREM IN $\boldsymbol{A}_{2}^{\mathcal{I}}$-STATISTICAL SENSE

Sudipta Dutta and Pratulananda Das

Abstract

In this paper we consider the notion of $A_{2}^{\mathcal{I}}$-statistical convergence for real double sequences which is an extension of the notion of $A^{\mathcal{I}}$-statistical convergence for real single sequences introduced by Savas, Das and Dutta. We primarily apply this new notion to prove a Korovkin type approximation theorem. In the last section, we study the rate of $A_{2}^{\mathcal{I}}$-statistical convergence.

1. Introduction and background

Throughout the paper \mathbb{N} will denote the set of all positive integers. Approximation theory has important applications in the theory of polynomial approximation in various areas of functional analysis. For a sequence $\left\{T_{n}\right\}_{n \in \mathbb{N}}$ of positive linear operators on $C(X)$, the space of real valued continuous functions on a compact subset X of real numbers, Korovkin [20] first established the necessary and sufficient conditions for the uniform convergence of $\left\{T_{n} f\right\}_{n \in \mathbb{N}}$ to a function f by using the test functions $e_{0}=1, e_{1}=x, e_{2}=x^{2}[1]$. The study of the Korovkin type approximation theory has a long history and is a well-established area of research. As is mentioned in [12] in particular, the matrix summability methods of Cesáro type are strong enough to correct the lack of convergence of various sequences of positive linear operators such as the interpolation operators of Hermite-Fejér [6]. In recent years, using the concept of uniform statistical convergence various statistical approximation results have been proved [9,10]. Erkuş and Duman [15] studied a Korovkin type approximation theorem via A-statistical convergence in the space $H_{w}\left(I^{2}\right)$ where $I^{2}=[0, \infty) \times[0, \infty)$ which was extended for double sequences of positive linear operators of two variables in A-statistical sense by Demirci and Dirik in [12]. Our primary interest in this paper is to obtain a general Korovkin type approximation theorem for double sequences of positive linear operators of two variables from $H_{w}(\mathcal{K})$ to $C(\mathcal{K})$ where $\mathcal{K}=[0, A] \times[0, B], A, B \in(0,1)$, in the sense of $A_{2}^{\mathcal{I}}$-statistical convergence.

[^0]The concept of convergence of a sequence of real numbers was extended to statistical convergence by Fast [17]. Further investigations started in this area after the pioneering works of Šalát [31] and Fridy [18]. The notion of \mathcal{I}-convergence of real sequences was introduced by Kostyrko et al. [23] as a generalization of statistical convergence using the notion of ideals (see [3,4,5] for further references). Later the idea of \mathcal{I}-convergence was also studied in topological spaces in [24]. On the other hand statistical convergence was generalized to A-statistical convergence by Kolk $[21,22]$. Later a lot of works have been done on matrix summability and A-statistical convergence (see [2,7,8,11,16,19,21,22,25,29]). In particular, very recently in [33] and [34] the two above mentioned approaches were unified and the very general notion of $A^{\mathcal{I}}$-statistical convergence was introduced and studied. In this paper we consider an extension of this notion to double sequences, namely $A_{2}^{\mathcal{I}}$-statistical convergence.

A real double sequence $\left\{x_{m n}\right\}_{m, n \in \mathbb{N}}$ is said to be convergent to L in Pringsheim's sense if for every $\varepsilon>0$ there exists $N(\varepsilon) \in \mathbb{N}$ such that $\left|x_{m n}-L\right|<\varepsilon$ for all $m, n>N(\varepsilon)$ and denoted by $\lim _{m, n} x_{m n}=L$. A double sequence is called bounded if there exists a positive number M such that $\left|x_{m n}\right| \leq M$ for all $(m, n) \in \mathbb{N} \times \mathbb{N}$. A real double sequence $\left\{x_{m n}\right\}_{m, n \in \mathbb{N}}$ is statistically convergent to L if for every $\varepsilon>0$,

$$
\lim _{j, k} \frac{\left|\left\{m \leq j, n \leq k:\left|x_{m n}-L\right| \geq \varepsilon\right\}\right|}{j k}=0
$$

[27,28].
Recall that a family $\mathcal{I} \subset 2^{Y}$ of subsets of a nonempty set Y is said to be an ideal in Y if $(i) A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I} ;(i i) A \in \mathcal{I}, B \subset A$ implies $B \in \mathcal{I}$, while an admissible ideal \mathcal{I} of Y further satisfies $\{x\} \in \mathcal{I}$ for each $x \in Y$. If \mathcal{I} is a non-trivial proper ideal in Y (i.e. $Y \notin \mathcal{I}, \mathcal{I} \neq\{\emptyset\})$ then the family of sets $F(\mathcal{I})=\{M \subset Y$: there exists $A \in \mathcal{I}: M=Y \backslash A\}$ is a filter in Y. It is called the filter associated with the ideal \mathcal{I}. A non-trivial ideal \mathcal{I} of $\mathbb{N} \times \mathbb{N}$ is called strongly admissible if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times\{i\}$ belong to \mathcal{I} for each $i \in \mathbb{N}$. It is evident that a strongly admissible ideal is admissible also. Let $\mathcal{I}_{0}=\{A \subset \mathbb{N} \times \mathbb{N}: \ni m(A) \in \mathbb{N}$ such that $i, j \geq m(A) \Longrightarrow$ $(i, j) \notin A\}$. Then \mathcal{I}_{0} is a non-trivial strongly admissible ideal [14]. Let $A=\left(a_{n k}\right)$ be a non-negative regular matrix. For an ideal \mathcal{I} of \mathbb{N} a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is said to be $A^{\mathcal{I}}$-statistically convergent to L if for any $\varepsilon>0$ and $\delta>0$,

$$
\left\{n \in \mathbb{N}: \sum_{k \in K(\varepsilon)} a_{n k} \geq \delta\right\} \in \mathcal{I}
$$

where $K(\varepsilon)=\left\{k \in \mathbb{N}:\left|x_{k}-L\right| \geq \varepsilon\right\}[33,34]$.
Let $A=\left(a_{j k m n}\right)$ be a four dimensional summability matrix. For a given double sequence $\left\{x_{m n}\right\}_{m, n \in \mathbb{N}}$, the A-transform of x, denoted by $A x:=\left((A x)_{j k}\right)$, is given by

$$
(A x)_{j k}=\sum_{(m, n) \in \mathbb{N}^{2}} a_{j k m n} x_{m n}
$$

provided the double series converges in Pringsheim sense for every $(j, k) \in \mathbb{N}^{2}$. In 1926, Robison [30] presented a four dimensional analog of the regularity by
considering an additional assumption of boundedness. This assumption was made because a convergent double sequence is not necessarily bounded.

Recall that a four dimensional matrix $A=\left(a_{j k m n}\right)$ is said to be RH-regular if it maps every bounded convergent double sequence into a convergent double sequence with the same limit. The Robison-Hamilton conditions state that a four dimensional matrix $A=\left(a_{j k m n}\right)$ is RH-regular if and only if
(i) $\lim _{j, k} a_{j k m n}=0$ for each $(m, n) \in \mathbb{N}^{2}$,
(ii) $\lim _{j, k} \sum_{(m, n) \in \mathbb{N}^{2}} a_{j k m n}=1$,
(iii) $\lim _{j, k} \sum_{m \in \mathbb{N}}\left|a_{j k m n}\right|=0$ for each $n \in \mathbb{N}$,
(iv) $\lim _{j, k} \sum_{n \in \mathbb{N}}\left|a_{j k m n}\right|=0$ for each $m \in \mathbb{N}$,
(v) $\sum_{(m, n) \in \mathbb{N}^{2}}\left|a_{j k m n}\right|$ is convergent,
(vi) there exist finite positive integers M_{0} and N_{0} such that $\sum_{m, n>N_{0}}\left|a_{j k m n}\right|<M_{0}$ holds for every $(j, k) \in \mathbb{N}^{2}$.
Let $A=\left(a_{j k m n}\right)$ be a non-negative RH-regular summability matrix and let $K \subset \mathbb{N}^{2}$. Then the A-density of K is given by

$$
\delta_{A}^{(2)}\{K\}=\lim _{j, k} \sum_{(m, n) \in K} a_{j k m n}
$$

provided the limit exists. A real double sequence $x=\left\{x_{m n}\right\}_{m, n \in \mathbb{N}}$ is said to be A-statistically convergent to a number L if for every $\varepsilon>0$

$$
\delta_{A}^{(2)}\left\{(m, n) \in \mathbb{N}^{2}:\left|x_{m n}-L\right| \geq \varepsilon\right\}=0
$$

We denote $\mathcal{I}_{\delta_{A}^{(2)}}=\left\{C \subset \mathbb{N}^{2}: \delta_{A}^{(2)}\{C\}=0\right\}$ which is an admissible ideal in $\mathbb{N} \times \mathbb{N}$. Throughout we use \mathcal{I} as a non-trivial strongly admissible ideal on $\mathbb{N} \times \mathbb{N}$.

2. A Korovkin type approximation theorem

Recently the concept of \mathcal{I}-statistical convergence for real single sequences has been introduced by Das and Savas as a notion of convergence which is strictly weaker than the notion of statistical convergence (see [32] for details). Consequently this notion has been further investigated in [13]. Very recently it has been further generalized by using a summability matrix A into $A^{\mathcal{I}}$-statistical convergence for real single sequences by Savas, Das and Dutta [33,34]. In this paper we consider the following natural extension of these convergence for real double sequences.

The following definition is due to E. Savas (who has informed about it in a personal communication).

Definition 2.1. A real double sequence $\left\{x_{m, n}\right\}_{m, n \in \mathbb{N}}$ is said to be $\mathcal{I}_{2^{-}}$ statistically convergent to L if for each $\varepsilon>0$ and $\delta>0$,

$$
\left\{(j, k) \in \mathbb{N}^{2}: \frac{1}{j k}\left|\left\{m \leq j, n \leq k:\left|x_{m n}-L\right| \geq \varepsilon\right\}\right| \geq \delta\right\} \in \mathcal{I}
$$

We now introduce the main definition of this paper.

Definition 2.2. Let $A=\left(a_{j k m n}\right)$ be a non-negative RH-regular summability matrix. Then a real double sequence $\left\{x_{m n}\right\}_{m, n \in \mathbb{N}}$ is said to be $A_{2}^{\mathcal{I}}$-statistically convergent to a number L if for every $\varepsilon>0$ and $\delta>0$,

$$
\left\{(j, k) \in \mathbb{N}^{2}: \sum_{(m, n) \in K_{2}(\varepsilon)} a_{j k m n} \geq \delta\right\} \in \mathcal{I}
$$

where $K_{2}(\varepsilon)=\left\{(m, n) \in \mathbb{N}^{2}:\left|x_{m n}-L\right| \geq \varepsilon\right\}$. In this case, we write $A_{2}^{\mathcal{I}}$-st$\lim _{m, n} x_{m n}=L$.

It should be noted that, if we take $A=C(1,1)$, the double Cesáro matrix [26] defined as follows

$$
a_{j k m n}= \begin{cases}\frac{1}{j k} & \text { for } m \leq j, n \leq k \\ 0 & \text { otherwise }\end{cases}
$$

then $A_{2}^{\mathcal{I}}$-statistical convergence coincides with the notion of \mathcal{I}_{2}-statistical convergence. Again if we replace the matrix A by the identity matrix for four dimensional matrices and $\mathcal{I}=\mathcal{I}_{0}$ then $A_{2}^{\mathcal{I}}$-statistical convergence reduces to the Pringsheim convergence for double sequences. For the ideal $\mathcal{I}=\mathcal{I}_{0}, A_{2}^{\mathcal{I}}$-statistical convergence implies A-statistical convergence for double sequences. The basic properties of $A_{2}^{\mathcal{I}}$ statistically convergent double sequences are similar to $A^{\mathcal{I}}$-statistical convergent single sequences and can be obtained analogously as in $[32,33]$. So our main aim here is to present an application of this notion in approximation theory.

Throughout this section, let $\mathcal{K}=[0, A] \times[0, B] A, B \in(0,1)$ and denote the space of all real valued continuous functions on \mathcal{K} by $C(\mathcal{K})$. This space is endowed with the supremum norm $\|f\|=\sup _{(x, y) \in \mathcal{K}}|f(x, y)|, f \in C(\mathcal{K})$. Consider the space $H_{w}(\mathcal{K})$ of real valued functions f on \mathcal{K} satisfying

$$
|f(u, v)-f(x, y)| \leq w\left(f ; \sqrt{\left(\frac{u}{1-u}-\frac{x}{1-x}\right)^{2}+\left(\frac{v}{1-v}-\frac{y}{1-y}\right)^{2}}\right)
$$

where w is the modulus of continuity for $\delta>0$ given by

$$
w(f ; \delta)=\sup \left\{|f(u, v)-f(x, y)|:(u, v),(x, y) \in \mathcal{K}, \sqrt{(u-x)^{2}+(v-y)^{2}} \leq \delta\right\}
$$

Then it is clear that any function in $H_{w}(\mathcal{K})$ is continuous and bounded on \mathcal{K}.
We will use the following test functions $f_{0}(x, y)=1, f_{1}(x, y)=\frac{x}{1-x}, f_{2}=\frac{y}{1-y}$, $f_{3}(x, y)=\left(\frac{x}{1-x}\right)^{2}+\left(\frac{y}{1-y}\right)^{2}$ and we denote the value of $T f$ at a point $(u, v) \in \mathcal{K}$ by $T(f ; u, v)$.

Now we establish the Korovkin type approximation theorem in $A_{2}^{\mathcal{I}}$-statistical sense.

Theorem 2.1. Let $\left\{T_{m n}\right\}_{m, n \in \mathbb{N}}$ be a sequence of positive linear operators from $H_{w}(\mathcal{K})$ into $C(\mathcal{K})$ and let $A=\left(a_{j k m n}\right)$ be a non-negative $R H$-regular summability matrix. Then for any $f \in H_{w}(\mathcal{K})$,

$$
\begin{equation*}
A_{2}^{\mathcal{I}}-s t-\lim _{m, n}\left\|T_{m n} f-f\right\|=0 \tag{1}
\end{equation*}
$$

is satisfied if the following holds

$$
\begin{equation*}
A_{2}^{\mathcal{I}}-s t-\lim _{m, n}\left\|T_{m n} f_{i}-f_{i}\right\|=0, \quad i=0,1,2,3 \tag{2}
\end{equation*}
$$

Proof. Assume that (2) holds. Let $f \in H_{w}(\mathcal{K})$. Our objective is to show that for given $\varepsilon>0$ there exist constants $C_{0}, C_{1}, C_{2}, C_{3}$ (depending on $\varepsilon>0$) such that

$$
\begin{aligned}
\left\|T_{m n} f-f\right\| \leq \varepsilon & +C_{3}\left\|T_{m n} f_{3}-f_{3}\right\|+C_{2}\left\|T_{m n} f_{2}-f_{2}\right\| \\
& +C_{1}\left\|T_{m n} f_{1}-f_{1}\right\|+C_{0}\left\|T_{m n} f_{0}-f_{0}\right\|
\end{aligned}
$$

If this is done then our hypothesis implies that for any $\varepsilon>0, \delta>0$,

$$
\left\{(j, k) \in \mathbb{N}^{2}: \sum_{(m, n) \in K_{2}(\varepsilon)} a_{j k m n} \geq \delta\right\} \in \mathcal{I}
$$

where $K_{2}(\varepsilon)=\left\{(m, n) \in \mathbb{N}^{2}:\left\|T_{m n} f-f\right\| \geq \varepsilon\right\}$.
To this end, start by observing that for each $(u, v) \in \mathcal{K}$ the function $0 \leq$ $g_{u v} \in H_{w}(\mathcal{K})$ defined by $g_{u v}(s, t)=\left(\frac{s}{1-s}-\frac{u}{1-u}\right)^{2}+\left(\frac{t}{1-t}-\frac{v}{1-v}\right)^{2}$ satisfies $g_{u v}=$ $\left(\frac{x}{1-x}\right)^{2}+\left(\frac{y}{1-y}\right)^{2}-\frac{2 u}{1-u} \frac{x}{1-x}-\frac{2 v}{1-v} \frac{y}{1-y}+\left(\frac{u}{1-u}\right)^{2}+\left(\frac{v}{1-v}\right)^{2}$. Since each $T_{m n}$ is a positive operator, $T_{m n} g_{u v}$ is a positive function. In particular, we have for each $(u, v) \in \mathcal{K}$,

$$
\begin{aligned}
0 \leq & T_{m n} g_{u v}(u, v) \\
= & {\left[T_{m n}\left(\left(\frac{x}{1-x}\right)^{2}+\left(\frac{y}{1-y}\right)^{2}-\frac{2 u}{1-u} \frac{x}{1-x}-\frac{2 v}{1-v} \frac{y}{1-y}+\left(\frac{u}{1-u}\right)^{2}+\left(\frac{v}{1-v}\right)^{2} ; u, v\right)\right] } \\
= & {\left[T_{m n}\left(\left(\frac{x}{1-x}\right)^{2}+\left(\frac{y}{1-y}\right)^{2} ; u, v\right)-\left(\frac{u}{1-u}\right)^{2}-\left(\frac{v}{1-v}\right)^{2}\right] } \\
& -\frac{2 u}{1-u}\left[T_{m n}\left(\frac{x}{1-x} ; u, v\right)-\frac{u}{1-u}\right]-\frac{2 v}{1-v}\left[T_{m n}\left(\frac{y}{1-y} ; u, v\right)-\frac{v}{1-v}\right] \\
& +\left\{\left(\frac{u}{1-u}\right)^{2}+\left(\frac{v}{1-v}\right)^{2}\right\}\left[T_{m n} f_{0}-f_{0}\right] \\
\leq & \left\|T_{m n} f_{3}-f_{3}\right\|+\frac{2 u}{1-u}\left\|T_{m n} f_{1}-f_{1}\right\| \\
& +\frac{2 v}{1-v}\left\|T_{m n} f_{2}-f_{2}\right\|+\left\{\left(\frac{u}{1-u}\right)^{2}+\left(\frac{v}{1-v}\right)^{2}\right\}\left\|T_{m n} f_{0}-f_{0}\right\| .
\end{aligned}
$$

Let $M=\|f\|$ and $\varepsilon>0$. By the uniform continuity of f on \mathcal{K} there exists a $\delta>0$ such that $-\varepsilon<f(s, t)-f(u, v)<\varepsilon$ holds whenever

$$
\sqrt{\left(\frac{s}{1-s}-\frac{u}{1-u}\right)^{2}+\left(\frac{t}{1-t}-\frac{v}{1-v}\right)^{2}}<\delta
$$

$(s, t),(u, v) \in \mathcal{K}$. Next observe that

$$
\begin{align*}
-\varepsilon & -\frac{2 M}{\delta^{2}}\left\{\left(\frac{s}{1-s}-\frac{u}{1-u}\right)^{2}+\left(\frac{t}{1-t}-\frac{v}{1-v}\right)^{2}\right\} \\
& \leq f(s, t)-f(u, v) \\
& \leq \varepsilon+\frac{2 M}{\delta^{2}}\left\{\left(\frac{s}{1-s}-\frac{u}{1-u}\right)^{2}+\left(\frac{t}{1-t}-\frac{v}{1-v}\right)^{2}\right\} \tag{3}
\end{align*}
$$

Indeed, if $\sqrt{\left(\frac{s}{1-s}-\frac{u}{1-u}\right)^{2}+\left(\frac{t}{1-t}-\frac{v}{1-v}\right)^{2}}<\delta$ then (3) follows from

$$
-\varepsilon<f(s, t)-f(u, v)<\varepsilon
$$

On the other hand, if $\sqrt{\left(\frac{s}{1-s}-\frac{u}{1-u}\right)^{2}+\left(\frac{t}{1-t}-\frac{v}{1-v}\right)^{2}} \geq \delta$ then (3) follows from

$$
\begin{aligned}
-\varepsilon & -\frac{2 M}{\delta^{2}}\left\{\left(\frac{s}{1-s}-\frac{u}{1-u}\right)^{2}+\left(\frac{t}{1-t}-\frac{v}{1-v}\right)^{2}\right\} \\
& \leq-2 M \leq f(s, t)-f(u, v) \leq 2 M \\
& \leq \varepsilon+\frac{2 M}{\delta^{2}}\left\{\left(\frac{s}{1-s}-\frac{u}{1-u}\right)^{2}+\left(\frac{t}{1-t}-\frac{v}{1-v}\right)^{2}\right\} .
\end{aligned}
$$

Since each $T_{m n}$ is positive and linear it follows from (3) that

$$
-\varepsilon T_{m n} f_{0}-\frac{2 M}{\delta^{2}} T_{m n} g_{u v} \leq T_{m n} f-f(u, v) T_{m n} f_{0} \leq \varepsilon T_{m n} f_{0}+\frac{2 M}{\delta^{2}} T_{m n} g_{u v}
$$

Therefore

$$
\begin{aligned}
\mid T_{m n}(f ; u, v) & -f(u, v) T_{m n}\left(f_{0} ; u, v\right) \mid \\
& \leq \varepsilon+\varepsilon\left[T_{m n}\left(f_{0} ; u, v\right)-f_{0}(u, v)\right]+\frac{2 M}{\delta^{2}} T_{m n} g_{u v} \\
& \leq \varepsilon+\varepsilon\left\|T_{m n} f_{0}-f_{0}\right\|+\frac{2 M}{\delta^{2}} T_{m n} g_{u v}
\end{aligned}
$$

In particular, note that

$$
\begin{aligned}
& \left|T_{m n}(f ; u, v)-f(u, v)\right| \\
& \quad \leq\left|T_{m n}(f ; u, v)-f(u, v) T_{m n}\left(f_{0} ; u, v\right)\right|+|f(u, v)|\left|T_{m n}\left(f_{0} ; u, v\right)-f_{0}(u, v)\right| \\
& \quad \leq \varepsilon+(M+\varepsilon)\left\|T_{m n} f_{0}-f_{0}\right\|+\frac{2 M}{\delta^{2}} T_{m n} g_{u v}
\end{aligned}
$$

which implies

$$
\begin{aligned}
\left\|T_{m n} f-f\right\| \leq \varepsilon & +C_{3}\left\|T_{m n} f_{3}-f_{3}\right\|+C_{2}\left\|T_{m n} f_{2}-f_{2}\right\| \\
& +C_{1}\left\|T_{m n} f_{1}-f_{1}\right\|+C_{0}\left\|T_{m n} f_{0}-f_{0}\right\|
\end{aligned}
$$

where $C_{0}=\left[\frac{2 M}{\delta^{2}}\left\{\left(\frac{A}{1-A}\right)^{2}+\left(\frac{B}{1-B}\right)^{2}\right\}+M+\varepsilon\right], C_{1}=\frac{4 M}{\delta^{2}} \frac{A}{1-A}, C_{2}=\frac{4 M}{\delta^{2}} \frac{B}{1-B}$ and $C_{3}=\frac{2 M}{\delta^{2}}$, i.e.,

$$
\left\|T_{m n} f-f\right\| \leq \varepsilon+C \sum_{i=0}^{3}\left\|T_{m n} f_{i}-f_{i}\right\|, i=0,1,2,3
$$

where $C=\max \left\{C_{0}, C_{1}, C_{2}, C_{3}\right\}$.
For a given $\gamma>0$, choose $\varepsilon>0$ such that $\varepsilon<\gamma$. Now let

$$
U=\left\{(m, n):\left\|T_{m n} f-f\right\| \geq \gamma\right\}
$$

and

$$
U_{i}=\left\{(m, n):\left\|T_{m n} f_{i}-f_{i}\right\| \geq \frac{\gamma-\varepsilon}{4 C}\right\}, i=0,1,2,3
$$

It follows that $U \subset \bigcup_{i=0}^{3} U_{i}$ and consequently for all $(j, k) \in \mathbb{N}^{2}$

$$
\sum_{(m, n) \in U} a_{j k m n} \leq \sum_{i=0}^{3} \sum_{(m, n) \in U_{i}} a_{j k m n}
$$

which implies that for any $\sigma>0$ and $(m, n) \in U$,

$$
\left\{(j, k) \in \mathbb{N}^{2}: \sum_{(m, n) \in U} a_{j k m n} \geq \sigma\right\} \subseteq \bigcup_{i=0}^{3}\left\{(j, k) \in \mathbb{N}^{2}: \sum_{(m, n) \in U_{i}} a_{j k m n} \geq \frac{\sigma}{3}\right\}
$$

Therefore from hypothesis, $\left\{(j, k) \in \mathbb{N}^{2}: \sum_{(m, n) \in U} a_{j k m n} \geq \sigma\right\} \in \mathcal{I}$. This completes the proof of the theorem.

We now show that our theorem is stronger than the A-statistical version [12] (and so the classical version). Let \mathcal{I} be a non-trivial strongly admissible ideal of $\mathbb{N} \times \mathbb{N}$. Choose an infinite subset $C=\left\{\left(p_{i}, q_{i}\right): i \in \mathbb{N}\right\}$, from \mathcal{I} such that $p_{i} \neq q_{i}$ for all $i, p_{1}<p_{2}<\cdots$ and $q_{1}<q_{2}<\cdots$. Let $\left\{u_{m n}\right\}_{m, n \in \mathbb{N}}$ be given by

$$
u_{m n}= \begin{cases}1 & m, n \text { are even } \\ 0 & \text { otherwise }\end{cases}
$$

Let $A=\left(a_{j k m n}\right)$ be given by

$$
a_{j k m n}= \begin{cases}1 & \text { if } j=p_{i}, k=q_{i}, m=2 p_{i}, n=2 q_{i} \text { for some } i \in \mathbb{N} \\ 1 & \text { if }(j, k) \neq\left(p_{i}, q_{i}\right), \text { for any } i, m=2 j+1, n=2 k+1 \\ 0 & \text { otherwise }\end{cases}
$$

Now for $0<\varepsilon<1, K_{2}(\varepsilon)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N}:\left|u_{m n}-0\right| \geq \varepsilon\right\}=\{(m, n)$: m, n are even $\}$. Observe that

$$
\sum_{(m, n) \in K_{2}(\varepsilon)} a_{j k m n}= \begin{cases}1 & \text { if } j=p_{i}, k=q_{i} \text { for some } i \in \mathbb{N} \\ 0 & \text { if }(j, k) \neq\left(p_{i}, q_{i}\right), \text { for any } i \in \mathbb{N}\end{cases}
$$

Thus for any $\delta>0$,

$$
\left\{(j, k) \in \mathbb{N} \times \mathbb{N}: \sum_{(m, n) \in K_{2}(\varepsilon)} a_{j k m n} \geq \delta\right\}=C \in \mathcal{I}
$$

which shows that $\left\{u_{m n}\right\}_{m, n \in \mathbb{N}}$ is $A_{2}^{\mathcal{I}}$-statistically convergent to 0 . Evidently this sequence is not A-statistically convergent to 0 .

Consider the following Meyer-König and Zeler operators

$$
\begin{aligned}
M_{m n}(f ; x, y)= & (1-x)^{m+1}(1-y)^{n+1} \\
& \times \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} f\left(\frac{k}{k+m+1}, \frac{l}{l+m+1}\right)\binom{m+k}{k}\binom{n+l}{l} x^{k} y^{l}
\end{aligned}
$$

where $f \in H_{w}(\mathcal{K})$ and $\mathcal{K}=[0, A] \times[0, B], A, B \in(0,1)$. Then $M_{m n}\left(f_{0} ; x, y\right)=$ $f_{0}(x, y), M_{m n}\left(f_{1} ; x, y\right)=\frac{x}{1-x}, M_{m n}\left(f_{2} ; x, y\right)=\frac{y}{1-y}$ and
$M_{m n}\left(f_{3} ; x, y\right)=\frac{m+2}{m+1}\left(\frac{x}{1-x}\right)^{2}+\frac{1}{m+1} \frac{x}{1-x}+\frac{n+2}{n+1}\left(\frac{y}{1-y}\right)^{2}+\frac{1}{n+1} \frac{y}{1-y}$.
Then $\lim _{m, n}\left\|M_{m n} f-f\right\|=0$.

Now consider the following positive linear operator $T_{m n}$ on $H_{w}(\mathcal{K})$ defined by $T_{m n}(f ; x, y)=\left(1+u_{m n}\right) M_{m n}(f ; x, y)$. It is easy to observe that $\left\|T_{m n} f_{i}-f_{i}\right\|=$ $u_{m n}$ for $i=0,1,2$ which imply that $A_{2}^{\mathcal{I}}-s t-\lim _{m, n}\left\|T_{m n} f_{i}-f_{i}\right\|=0, i=0,1,2$. Again,

$$
\begin{aligned}
\left\|T_{m n} f_{3}-f_{3}\right\|= & \|\left(1+u_{m n}\right)\left\{\frac{m+2}{m+1}\left(\frac{x}{1-x}\right)^{2}+\frac{1}{m+1} \frac{x}{1-x}+\frac{n+2}{n+1}\left(\frac{y}{1-y}\right)^{2}\right. \\
& \left.+\frac{1}{n+1} \frac{y}{1-y}\right\}-\left(\frac{x}{1-x}\right)^{2}-\left(\frac{y}{1-y}\right)^{2} \| \\
\leq & D\left\{\frac{2}{m+1}+\frac{2}{n+1}+u_{m n} \frac{m+3}{m+1}+u_{m n} \frac{n+3}{n+1}\right\}
\end{aligned}
$$

where $D=\max \left\{\left(\frac{A}{1-A}\right)^{2},\left(\frac{B}{1-B}\right)^{2},\left(\frac{A}{1-A}\right),\left(\frac{A}{1-A}\right)\right\}$. Therefore

$$
\begin{aligned}
\{ & \left.(m, n) \in \mathbb{N}^{2}:\left\|T_{m n}\left(f_{3}\right)-f_{3}\right\| \geq \varepsilon\right\} \\
& \subseteq\left\{(m, n) \in \mathbb{N}^{2}: \frac{1}{m+1}+\frac{1}{n+1} \geq \frac{\varepsilon}{4 D}\right\} \\
& \cup\left\{(m, n) \in \mathbb{N}^{2}: u_{m n} \frac{m+3}{m+1}+u_{m n} \frac{n+3}{n+1} \geq \frac{\varepsilon}{2 D}\right\} \\
& \subseteq\left\{(m, n) \in \mathbb{N}^{2}: \frac{1}{m+1}+\frac{1}{n+1} \geq \frac{\varepsilon}{4 D}\right\} \\
& \cup\left\{(m, n) \in \mathbb{N}^{2}: u_{m n}+\frac{m+3}{m+1}+\frac{n+3}{n+1} \geq 2 \sqrt{\frac{\varepsilon}{2 D}}\right\} \\
\subseteq & \left\{(m, n) \in \mathbb{N}^{2}: \frac{1}{m+1}+\frac{1}{n+1} \geq \frac{\varepsilon}{4 D}\right\} \cup\left\{(m, n) \in \mathbb{N}^{2}: u_{m n} \geq \sqrt{\frac{\varepsilon}{2 D}}\right\} \\
& \cup\left\{(m, n) \in \mathbb{N}^{2}: \frac{m+3}{m+1}+\frac{n+3}{n+1} \geq \sqrt{\frac{\varepsilon}{2 D}}\right\} \\
\subseteq & \left\{(m, n) \in \mathbb{N}^{2}: \frac{1}{m+1}+\frac{1}{n+1} \geq \frac{\varepsilon}{4 D}\right\} \cup\left\{(m, n) \in \mathbb{N}^{2}: u_{m n} \geq \sqrt{\frac{\varepsilon}{2 D}}\right\} \\
& \cup\left\{(m, n) \in \mathbb{N}^{2}: \frac{1}{m+1}+\frac{1}{n+1} \geq \frac{1}{6} \sqrt{\frac{\varepsilon}{2 D}}\right\} \\
& \cup\left\{(m, n) \in \mathbb{N}^{2}: \frac{m}{m+1}+\frac{n}{n+1} \geq \frac{1}{2} \sqrt{\frac{\varepsilon}{2 D}}\right\},
\end{aligned}
$$

which implies that $A_{2}^{\mathcal{I}}$-st- $\lim _{m, n}\left\|T_{m n} f_{3}-f_{3}\right\|=0$. Hence from previous theorem it follows that $A_{2}^{\mathcal{I}}-s t-\lim _{m, n}\left\|T_{m n} f-f\right\|=0$ for any $f \in H_{w}(\mathcal{K})$. But since $\left\{u_{m n}\right\}_{m, n \in \mathbb{N}}$ is not A-statistically convergent so the sequence $\left\{T_{m n}(f ; x, y)\right\}_{m, n \in \mathbb{N}}$ considered above does not converge A-statistically to the function $f \in H_{w}(\mathcal{K})$.

3. Rate of $\boldsymbol{A}_{2}^{\mathcal{I}}$-statistical convergence

In this section we present a way to compute the rate of $A_{2}^{\mathcal{I}}$-statistical convergence in Theorem 2.1. We will need the following definitions.

Definition 3.1. Let $A=\left(a_{j k m n}\right)$ be a non-negative RH-regular summability matrix and let $\left\{\alpha_{m n}\right\}_{m, n \in \mathbb{N}}$ be a positive non-increasing double sequence. Then a real double sequence $\left\{x_{m n}\right\}_{m, n \in \mathbb{N}}$ is said to be $A_{2}^{\mathcal{I}}$-statistically convergent to a number L with the rate of $o\left(\alpha_{m n}\right)$ if for every $\varepsilon>0$ and $\delta>0$,

$$
\left\{(j, k) \in \mathbb{N}^{2}: \frac{1}{\alpha_{j k}} \sum_{(m, n) \in K_{2}(\varepsilon)} a_{j k m n} \geq \delta\right\} \in \mathcal{I}
$$

where $K_{2}(\varepsilon)=\left\{(m, n) \in \mathbb{N}^{2}:\left|x_{m n}-L\right| \geq \varepsilon\right\}$. In this case, we write $A_{2}^{\mathcal{I}}$-st-o $\left(\alpha_{m n}\right)-\lim _{m, n} x_{m n}=L$.

Definition 3.2. Let $A=\left(a_{j k m n}\right)$ be a non-negative RH-regular summability matrix and let $\left\{\alpha_{m n}\right\}_{m, n \in \mathbb{N}}$ be a positive non-increasing double sequence. Then a real double sequence $\left\{x_{m n}\right\}_{m, n \in \mathbb{N}}$ is said to be $A_{2}^{\mathcal{I}}$-statistically convergent to a number L with the rate of $o_{m}\left(\alpha_{m n}\right)$ if for every $\varepsilon>0$ and $\delta>0$,

$$
\left\{(j, k) \in \mathbb{N}^{2}: \sum_{(m, n) \in K_{2}(\varepsilon)} a_{j k m n} \geq \delta\right\} \in \mathcal{I}
$$

where $K_{2}(\varepsilon)=\left\{(m, n) \in \mathbb{N}^{2}:\left|x_{m n}-L\right| \geq \varepsilon \alpha_{m n}\right\}$. In this case, we write $A_{2}^{\mathcal{I}}-s t-o_{m}\left(\alpha_{m n}\right)-\lim _{m, n} x_{m n}=L$.

Lemma 3.1. Let $\left\{x_{m n}\right\}_{m, n \in \mathbb{N}}$ and $\left\{y_{m n}\right\}_{m, n \in \mathbb{N}}$ be double sequences. Assume that $A=\left(a_{j k m n}\right)$ is a non-negative $R H$-regular summability matrix and let $\left\{\alpha_{m n}\right\}_{m, n \in \mathbb{N}}$ and $\left\{\beta_{m n}\right\}_{m, n \in \mathbb{N}}$ be positive non-increasing double sequences. If

$$
A_{2}^{\mathcal{I}}-s t-o\left(\alpha_{m n}\right)-\lim _{m, n} x_{m n}=L_{1} \text { and } A_{2}^{\mathcal{I}}-s t-o\left(\beta_{m n}\right)-\lim _{m, n} x_{m n}=L_{2}
$$

then we have
(i) $A_{2}^{\mathcal{I}}-s t-o\left(\gamma_{m n}\right)-\lim _{m, n}\left(x_{m n} \pm y_{m n}\right)=L_{1} \pm L_{2}$ where $\gamma_{m n}=\max \left\{\alpha_{m n}, \beta_{m n}\right\}$,
(ii) $A_{2}^{\mathcal{I}}-$ st-o $\left(\alpha_{m n}\right)-\lim _{m, n} \lambda x_{m n}=\lambda L_{1}$ for any real number λ.

Proof. The proof is straightforward and so is omitted.
Lemma 3.2. Let $\left\{x_{m n}\right\}_{m, n \in \mathbb{N}}$ and $\left\{y_{m n}\right\}_{m, n \in \mathbb{N}}$ be double sequences. Assume that $A=\left(a_{j k m n}\right)$ is a non-negative $R H$-regular summability matrix and let $\left\{\alpha_{m n}\right\}_{m, n \in \mathbb{N}}$ and $\left\{\beta_{m n}\right\}_{m, n \in \mathbb{N}}$ be positive non-increasing double sequences. If

$$
A_{2}^{\mathcal{I}}-s t-o_{m}\left(\alpha_{m n}\right)-\lim _{m, n} x_{m n}=L_{1} \text { and } A_{2}^{\mathcal{I}}-s t-o_{m}\left(\beta_{m n}\right)-\lim _{m, n} x_{m n}=L_{2}
$$

then we have
(i) $A_{2}^{\mathcal{I}}-s t-o_{m}\left(\gamma_{m n}\right)-\lim _{m, n}\left(x_{m n} \pm y_{m n}\right)=L_{1} \pm L_{2}$ where $\gamma_{m n}=\max \left\{\alpha_{m n}, \beta_{m n}\right\}$,
(ii) $A_{2}^{\mathcal{I}}$-st-o $\left(\alpha_{m n}\right)-\lim _{m, n} \lambda x_{m n}=\lambda L_{1}$ for any real number λ.

Proof. The proof is straightforward and so is omitted.
Now we prove the following theorem.
THEOREM 3.1. Let $\left\{T_{m n}\right\}_{m, n \in \mathbb{N}}$ be a sequence of positive linear operators from $H_{w}(\mathcal{K})$ into $C(\mathcal{K})$. Let $A=\left(a_{j k m n}\right)$ be a non-negative $R H$-regular summability matrix and $\left\{\alpha_{m n}\right\}_{m, n \in \mathbb{N}}$ and $\left\{\beta_{m n}\right\}_{m, n \in \mathbb{N}}$ be positive non-increasing double sequences. Assume that the following conditions hold
(i) $A_{2}^{\mathcal{I}}-s t-o\left(\alpha_{m n}\right)-\lim _{m, n}\left\|T_{m n} f_{0}-f_{0}\right\|=0$,
(ii) $A_{2}^{\mathcal{I}}-s t-o\left(\beta_{m n}\right)-\lim _{m, n} w\left(f ; \delta_{m n}\right)=0$,
where $\delta:=\delta_{m n}=\sqrt{\left\|T_{m n}(\psi)\right\|}$ with $\psi(u, v)=\left(\frac{x}{1-x}-\frac{u}{1-u}\right)^{2}+\left(\frac{y}{1-y}-\frac{v}{1-v}\right)^{2}$. Then for any $f \in H_{w}(\mathcal{K})$,

$$
A_{2}^{\mathcal{I}}-s t-o\left(\gamma_{m n}\right)-\lim _{m, n}\left\|T_{m n} f-f\right\|=0
$$

where $\gamma_{m n}=\max \left\{\alpha_{m n}, \beta_{m n}\right\}$ for each $(m, n) \in \mathbb{N}^{2}$.
Proof. Let $\left\{T_{m n}\right\}_{m, n \in \mathbb{N}}$ be a sequence of positive linear operators from $H_{w}(\mathcal{K})$ into $C(\mathcal{K})$ and let $A=\left(a_{j k m n}\right)$ be a non-negative RH-regular summability matrix and $N=\|f\|$. Then for any $f \in H_{w}(\mathcal{K})$,

$$
\begin{aligned}
& \left|T_{m n}(f ; u, v)-f(u, v)\right| \\
& \leq \\
& \leq \\
& \leq \quad T_{m n}(|f(x, y)-f(u, v)| ; u, v)+\left|f(u, v) \| T_{m n}\left(f_{0} ; u, v\right)-f_{0}(u, v)\right| \\
& \quad \\
& \quad+N \left\lvert\, T_{m n}\left(1+\frac{\sqrt{\left(\frac{u}{1-u}-\frac{x}{1-x}\right)^{2}+\left(\frac{v}{1-v}-\frac{y}{1-y}\right)^{2}}}{\delta} ; u, v\right)\right. \\
& = \\
& \quad w(f ; \delta) T_{m n}\left(f_{0} ; u, v\right)-f_{0}(u, v) \mid \\
& \quad+N\left|T_{m n}\left(f_{0} ; u, v\right)-f_{0}(u, v)\right| \\
& = \\
& \quad w(f ; \delta) T_{m n}\left(f_{0} ; u, v\right)-w(f ; \delta) f_{0}(u, v)+w(f ; \delta)+\frac{w(f ; \delta)}{\delta^{2}} T_{m n}(\psi ; u, v) \\
& \quad+N\left|T_{m n}\left(f_{0} ; u, v\right)-f_{0}(u, v)\right| \\
& \leq \\
& \quad w(f ; \delta)\left|T_{m n}\left(f_{0} ; u, v\right)-f_{0}(u, v)\right|+w(f ; \delta)+\frac{w(f ; \delta)}{\delta^{2}} T_{m n}(\psi ; u, v) \\
& \quad+N\left|T_{m n}\left(f_{0} ; u, v\right)-f_{0}(u, v)\right| .
\end{aligned}
$$

Taking supremum over $(u, v) \in \mathcal{K}$,

$$
\left\|T_{m n} f-f\right\| \leq w(f ; \delta)\left\|T_{m n} f_{0}-f_{0}\right\|+w(f ; \delta)+\frac{w(f ; \delta)}{\delta^{2}}\left\|T_{m n} \psi\right\|+N\left\|T_{m n} f_{0}-f_{0}\right\|
$$

If we take $\delta:=\delta_{m n}=\sqrt{\left\|T_{m n} \psi\right\|}$ then

$$
\begin{aligned}
\left\|T_{m n} f-f\right\| & \leq w(f ; \delta)\left\|T_{m n} f_{0}-f_{0}\right\|+2 w(f ; \delta)+N\left\|T_{m n} f_{0}-f_{0}\right\| \\
& \leq M\left\{w(f ; \delta)\left\|T_{m n} f_{0}-f_{0}\right\|+w(f ; \delta)+\left\|T_{m n} f_{0}-f_{0}\right\|\right\}
\end{aligned}
$$

where $M=\max \{2, N\}$. Let $\mu>0$ be given. Now consider the following sets

$$
\begin{aligned}
U & =\left\{(m, n):\left\|T_{m n} f-f\right\| \geq \mu\right\} \\
U_{1} & =\left\{(m, n): w(f ; \delta) \geq \frac{\mu}{3 M}\right\} \\
U_{2} & =\left\{(m, n):\left\|T_{m n} f_{0}-f_{0}\right\| \geq \frac{\mu}{3 M}\right\} \\
U_{3} & =\left\{(m, n): w(f ; \delta)\left\|T_{m n} f_{0}-f_{0}\right\| \geq \frac{\mu}{3 M}\right\}
\end{aligned}
$$

Then $U \subset U_{1} \cup U_{2} \cup U_{3}$. Now define

$$
\begin{aligned}
U_{3}^{\prime} & =\left\{(m, n): w(f ; \delta) \geq \sqrt{\frac{\mu}{3 M}}\right\} \\
U_{3}^{\prime \prime} & =\left\{(m, n):\left\|T_{m n} f_{0}-f_{0}\right\| \geq \sqrt{\frac{\mu}{3 M}}\right\}
\end{aligned}
$$

Then $U \subset U_{1} \cup U_{2} \cup U_{3}^{\prime} \cup U_{3}^{\prime \prime}$. Now since $\gamma_{m n}=\max \left\{\alpha_{m n}, \beta_{m n}\right\}$ for each $(m, n) \in \mathbb{N}^{2}$ then for all $(j, k) \in \mathbb{N}^{2}$,

$$
\begin{aligned}
\frac{1}{\gamma_{j, k}} \sum_{(m, n) \in U} a_{j k m n} \leq & \frac{1}{\beta_{j, k}} \sum_{(m, n) \in U_{1}} a_{j k m n}+\frac{1}{\alpha_{j, k}} \sum_{(m, n) \in U_{2}} a_{j k m n} \\
& +\frac{1}{\beta_{j, k}} \sum_{(m, n) \in U_{3}^{\prime}} a_{j k m n}+\frac{1}{\alpha_{j, k}} \sum_{(m, n) \in U_{3}^{\prime \prime}} a_{j k m n}
\end{aligned}
$$

Then for any $\sigma>0$

$$
\begin{aligned}
& \left\{(j, k) \in \mathbb{N}^{2}: \frac{1}{\gamma_{j, k}} \sum_{(m, n) \in U} a_{j k m n} \geq \sigma\right\} \\
& \subseteq\left\{(j, k) \in \mathbb{N}^{2}: \frac{1}{\beta_{j, k}} \sum_{(m, n) \in U_{1}} a_{j k m n} \geq \frac{\sigma}{4}\right\} \cup\left\{(j, k) \in \mathbb{N}^{2}: \frac{1}{\alpha_{j, k}} \sum_{(m, n) \in U_{2}} a_{j k m n} \geq \frac{\sigma}{4}\right\} \\
& \cup\left\{(j, k) \in \mathbb{N}^{2}: \frac{1}{\beta_{j, k}} \sum_{(m, n) \in U_{3}^{\prime}} a_{j k m n} \geq \frac{\sigma}{4}\right\} \cup\left\{(j, k) \in \mathbb{N}^{2}: \frac{1}{\alpha_{j, k}} \sum_{(m, n) \in U_{3}^{\prime \prime}} a_{j k m n} \geq \frac{\sigma}{4}\right\}
\end{aligned}
$$

Now from hypothesis the sets on the right-hand side belong to \mathcal{I} and consequently

$$
\left\{(j, k) \in \mathbb{N}^{2}: \frac{1}{\gamma_{j, k}} \sum_{(m, n) \in U} a_{j k m n} \geq \sigma\right\} \in \mathcal{I}
$$

for any $\sigma>0$. This completes the proof.
The proof of the following theorem is analogous to the proof of Theorem 3.1 and so is omitted.

THEOREM 3.2. Let $\left\{T_{m n}\right\}_{m, n \in \mathbb{N}}$ be a sequence of positive linear operators from $H_{w}(\mathcal{K})$ into $C(\mathcal{K})$. Let $A=\left(a_{j k m n}\right)$ be a non-negative $R H$-regular summability matrix and $\left\{\alpha_{m n}\right\}_{m, n \in \mathbb{N}}$ and $\left\{\beta_{m n}\right\}_{m, n \in \mathbb{N}}$ be positive non-increasing double sequences.

Assume that the following conditions hold
(i) $A_{2}^{\mathcal{I}}-s t-o_{m}\left(\alpha_{m n}\right)-\lim _{m, n}\left\|T_{m n} f_{0}-f_{0}\right\|=0$,
(ii) $A_{2}^{\mathcal{I}}-s t-o_{m}\left(\beta_{m n}\right)-\lim _{m, n} w\left(f ; \delta_{m n}\right)=0$,
where $\delta_{m n}=\sqrt{\left\|T_{m n}(\psi)\right\|}$ with $\psi(u, v)=\left(\frac{x}{1-x}-\frac{u}{1-u}\right)^{2}+\left(\frac{y}{1-y}-\frac{v}{1-v}\right)^{2}$. Then for any $f \in H_{w}(\mathcal{K})$,

$$
A_{2}^{\mathcal{I}}-s t-o_{m}\left(\gamma_{m n}\right)-\lim _{m, n}\left\|T_{m n}(f)-f\right\|=0
$$

where $\gamma_{m n}=\max \left\{\alpha_{m n}, \beta_{m n}\right\}$ for each $(m, n) \in \mathbb{N}^{2}$.
Acknowledgement. The first author is thankful to CSIR, India for giving JRF during the tenure of which this work was done.

REFERENCES

[1] C.D. Aliprantis and O. Burkinshaw, Principles of Real Analysis, Academic Press.
[2] G.A. Anastassiou and O. Duman, Towards Intelligent Modeling: Statistical Approximation Theory, Intelligent System Reference Library 14, Springer-Verlag Berlin Heidelberg), 2011.
[3] A. Boccuto, X. Dimitriou and N. Papanastassiou, Some versions of limit and Dieudonnetype theorems with respect to filter convergence for (ℓ)-group-valued measures, Cent. Eur. J. Math. 9 (6) (2011), 1298-1311.
[4] A. Boccuto, X. Dimitriou and N. Papanastassiou, Brooks-Jewett-type theorems for the pointwise ideal convergence of measures with values in (ℓ)-groups, Tatra Mt. Math. Publ. 49 (2011), 17-26.
[5] A. Boccuto, X. Dimitriou and N. Papanastassiou, Basic matrix theorems for \mathcal{I}-convergence in (ℓ)-groups, Math. Slovaca 62 (5) (2012), 885-908.
[6] R. Bojanić and M.K. Khan, Summability of Hermite-Fejér interpolation for functions of bounded variation, J. Natur. Sci. Math. 32 (1) (1992), 5-10.
[7] J. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis 8 (1988), 47-63.
[8] J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989), 194-198.
[9] O. Duman, E. Erkuş and V. Gupta, Statistical rates on the multivariate approximation theory, Math. Comp. Model. 44 (9-10) (2006), 763-770.
[10] O. Duman, M.K. Khan and C. Orhan, A-statistical convergence of approximating operators, Math. Inequal. Appl. 6 (4) (2003), 689-699.
[11] K. Demirci, Strong A-summabilty and A-statistical convergence, Indian J. Pure Appl. Math. 27 (1996), 589-593.
[12] K. Demirci and F. Dirik, A Korovkin type approximation theorem for double sequences of positive linear operators of two variables in A-statistical sense, Bull. Korean Math. Soc. 47 (4) (2010), 825-837.
[13] P. Das, E. Savas and S.K. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Lett. 24 (2011), 1509-1514.
[14] P. Das, P. Kostyrko, W. Wilczyński and P. Malik, \mathcal{I} and \mathcal{I}^{*}-convergence of double sequences, Math. Slovaca 58 (5) (2008), 605-620.
[15] E. Erkuş and O. Duman, A-statistical extension of the Korovkin type approximation theorem, Proc. Indian Acad. Sci. Math. Sci., 115 (4) (2005), 499-508.
[16] O.H.H. Edely and M. Mursaleen, On statistical A-summability, Math. Comp. Model. 49 (8) (2009), 672-680.
[17] H. Fast, Sur la convergences statistique, Colloq. Math. 2 (1951), 241-244.
[18] J.A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.
[19] A.R. Freedman and J.J. Sember, Densities and summability, Pacific J. Math. 95 (1981), 293-305.
[20] P.P. Korovkin, Linear Operators and Approximation Theory, Delhi: Hindustan Publ. Co., 1960.
[21] E. Kolk, Matrix summability of statistically convergent sequences, Analysis 13 (1993), 77-83.
[22] E. Kolk, The statistical convergence in Banach spaces, Tartu Ül. Toimetised 928 (1991), 41-52.
[23] P. Kostyrko, T. Šalát and W. Wilczyński, I-convergence, Real Anal. Exchange 26 (2) (2000/2001), 669-685.
[24] B.K. Lahiri and P. Das, \mathcal{I} and \mathcal{I}^{*} convergence in topological spaces, Math. Bohemica 130 (2005), 153-160.
[25] I.J. Maddox, Space of strongly summable sequence, Quart. J. Math. Oxford Ser. 18 (2) (1967), 345-355.
[26] H.I. Miller and L. Miller-Van Wieren, A matrix characterization of statistical convergence of double sequences, Sarajevo J. Math. 4 (16) (2008), 91-95.
[27] F. Móricz, Statistical convergence of multiple sequences, Arch. Math. (Basel) 81 (1) (2003), 82-89.
[28] M. Mursaleen and O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), 223-331.
[29] M. Mursaleen and A. Alotaibi, Statistical summability and approximation by de la ValléePoussin mean, Appl. Math. Lett. 24 (2011), 672-680.
[30] G.M. Robison, Divergent double sequences and series, Trans. Amer. Math. Soc. 28 (1) (1926), 50-73.
[31] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150.
[32] E. Savas and P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett. 24 (2011), 826-830.
[33] E. Savas, P. Das and S. Dutta, A note on some generalised summability methods, Acta. Math. Univ. Commen. 82 (2) (2013), 297-304.
[34] E. Savas, P. Das and S. Dutta, A note on strong matrix summability via ideals, Appl. Math. Lett. 25 (2012), 733-738.
(received 03.11.2014; in revised form 29.05.2015; available online 20.06.2015)
Department of Mathematics, Jadavpur University, Jadavpur, Kol-32, West Bengal, India
E-mail: dutta.sudipta@ymail.com, sudiptaju.scholar@gmail.com, pratulananda@yahoo.co.in

[^0]: 2010 Mathematics Subject Classification: 40A35, 47B38, 41A25, 41A36
 Keywords and phrases: Ideal; $A_{2}^{\mathcal{I}}$-statistical convergence; positive linear operator; Korovkin type approximation theorem; rate of convergence.

