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KOROVKIN TYPE APPROXIMATION THEOREM
IN AI

2-STATISTICAL SENSE

Sudipta Dutta and Pratulananda Das

Abstract. In this paper we consider the notion of AI2 -statistical convergence for real double

sequences which is an extension of the notion of AI -statistical convergence for real single sequences
introduced by Savas, Das and Dutta. We primarily apply this new notion to prove a Korovkin
type approximation theorem. In the last section, we study the rate of AI2 -statistical convergence.

1. Introduction and background

Throughout the paper N will denote the set of all positive integers. Approxima-
tion theory has important applications in the theory of polynomial approximation
in various areas of functional analysis. For a sequence {Tn}n∈N of positive linear
operators on C(X), the space of real valued continuous functions on a compact
subset X of real numbers, Korovkin [20] first established the necessary and suffi-
cient conditions for the uniform convergence of {Tnf}n∈N to a function f by using
the test functions e0 = 1, e1 = x, e2 = x2 [1]. The study of the Korovkin type
approximation theory has a long history and is a well-established area of research.
As is mentioned in [12] in particular, the matrix summability methods of Cesáro
type are strong enough to correct the lack of convergence of various sequences of
positive linear operators such as the interpolation operators of Hermite-Fejér [6]. In
recent years, using the concept of uniform statistical convergence various statistical
approximation results have been proved [9,10]. Erkuş and Duman [15] studied a
Korovkin type approximation theorem via A-statistical convergence in the space
Hw(I2) where I2 = [0,∞)× [0,∞) which was extended for double sequences of pos-
itive linear operators of two variables in A-statistical sense by Demirci and Dirik
in [12]. Our primary interest in this paper is to obtain a general Korovkin type
approximation theorem for double sequences of positive linear operators of two
variables from Hw(K) to C(K) where K = [0, A]× [0, B], A,B ∈ (0, 1), in the sense
of AI2 -statistical convergence.

2010 Mathematics Subject Classification: 40A35, 47B38, 41A25, 41A36
Keywords and phrases: Ideal; AI2 -statistical convergence; positive linear operator; Korovkin

type approximation theorem; rate of convergence.

288



Korovkin type approximation 289

The concept of convergence of a sequence of real numbers was extended to
statistical convergence by Fast [17]. Further investigations started in this area after
the pioneering works of Šalát [31] and Fridy [18]. The notion of I-convergence of
real sequences was introduced by Kostyrko et al. [23] as a generalization of statistical
convergence using the notion of ideals (see [3,4,5] for further references). Later the
idea of I-convergence was also studied in topological spaces in [24]. On the other
hand statistical convergence was generalized to A-statistical convergence by Kolk
[21,22]. Later a lot of works have been done on matrix summability and A-statistical
convergence (see [2,7,8,11,16,19,21,22,25,29]). In particular, very recently in [33]
and [34] the two above mentioned approaches were unified and the very general
notion of AI-statistical convergence was introduced and studied. In this paper
we consider an extension of this notion to double sequences, namely AI2 -statistical
convergence.

A real double sequence {xmn}m,n∈N is said to be convergent to L in Pring-
sheim’s sense if for every ε > 0 there exists N(ε) ∈ N such that |xmn−L| < ε for all
m,n > N(ε) and denoted by limm,n xmn = L. A double sequence is called bounded
if there exists a positive number M such that |xmn| ≤ M for all (m,n) ∈ N×N. A
real double sequence {xmn}m,n∈N is statistically convergent to L if for every ε > 0,

lim
j,k

|{m ≤ j, n ≤ k : |xmn − L| ≥ ε}|
jk

= 0

[27,28].
Recall that a family I ⊂ 2Y of subsets of a nonempty set Y is said to be an ideal

in Y if (i)A,B ∈ I implies A ∪ B ∈ I; (ii)A ∈ I, B ⊂ A implies B ∈ I, while an
admissible ideal I of Y further satisfies {x} ∈ I for each x ∈ Y . If I is a non-trivial
proper ideal in Y (i.e. Y /∈ I, I 6= {∅}) then the family of sets F (I) = {M ⊂ Y :
there exists A ∈ I : M = Y \A} is a filter in Y . It is called the filter associated with
the ideal I. A non-trivial ideal I of N× N is called strongly admissible if {i} × N
and N×{i} belong to I for each i ∈ N. It is evident that a strongly admissible ideal
is admissible also. Let I0 = {A ⊂ N × N :3 m(A) ∈ N such that i, j ≥ m(A) =⇒
(i, j) /∈ A}. Then I0 is a non-trivial strongly admissible ideal [14]. Let A = (ank)
be a non-negative regular matrix. For an ideal I of N a sequence {xn}n∈N is said
to be AI-statistically convergent to L if for any ε > 0 and δ > 0,{

n ∈ N :
∑

k∈K(ε)

ank ≥ δ

}
∈ I,

where K(ε) = {k ∈ N : |xk − L| ≥ ε} [33,34].
Let A = (ajkmn) be a four dimensional summability matrix. For a given double

sequence {xmn}m,n∈N, the A-transform of x, denoted by Ax := ((Ax)jk), is given
by

(Ax)jk =
∑

(m,n)∈N2

ajkmnxmn

provided the double series converges in Pringsheim sense for every (j, k) ∈ N2.
In 1926, Robison [30] presented a four dimensional analog of the regularity by
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considering an additional assumption of boundedness. This assumption was made
because a convergent double sequence is not necessarily bounded.

Recall that a four dimensional matrix A = (ajkmn) is said to be RH-regular
if it maps every bounded convergent double sequence into a convergent double
sequence with the same limit. The Robison-Hamilton conditions state that a four
dimensional matrix A = (ajkmn) is RH-regular if and only if
(i) limj,k ajkmn = 0 for each (m,n) ∈ N2,
(ii) limj,k

∑
(m,n)∈N2ajkmn = 1,

(iii) limj,k

∑
m∈N|ajkmn| = 0 for each n ∈ N,

(iv) limj,k

∑
n∈N|ajkmn| = 0 for each m ∈ N,

(v)
∑

(m,n)∈N2 |ajkmn| is convergent,

(vi) there exist finite positive integers M0 and N0 such that
∑

m,n>N0
|ajkmn| < M0

holds for every (j, k) ∈ N2.
Let A = (ajkmn) be a non-negative RH-regular summability matrix and let

K ⊂ N2. Then the A-density of K is given by

δ
(2)
A {K} = lim

j,k

∑

(m,n)∈K

ajkmn

provided the limit exists. A real double sequence x = {xmn}m,n∈N is said to be
A-statistically convergent to a number L if for every ε > 0

δ
(2)
A {(m,n) ∈ N2 : |xmn − L| ≥ ε} = 0.

We denote I
δ
(2)
A

=
{

C ⊂ N2 : δ
(2)
A {C} = 0

}
which is an admissible ideal in N× N.

Throughout we use I as a non-trivial strongly admissible ideal on N× N.

2. A Korovkin type approximation theorem

Recently the concept of I-statistical convergence for real single sequences has
been introduced by Das and Savas as a notion of convergence which is strictly
weaker than the notion of statistical convergence (see [32] for details). Consequently
this notion has been further investigated in [13]. Very recently it has been further
generalized by using a summability matrix A into AI-statistical convergence for
real single sequences by Savas, Das and Dutta [33,34]. In this paper we consider
the following natural extension of these convergence for real double sequences.

The following definition is due to E. Savas (who has informed about it in a
personal communication).

Definition 2.1. A real double sequence {xm,n}m,n∈N is said to be I2-
statistically convergent to L if for each ε > 0 and δ > 0,{

(j, k) ∈ N2 : 1
jk |{m ≤ j, n ≤ k : |xmn − L| ≥ ε}| ≥ δ

}
∈ I.

We now introduce the main definition of this paper.
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Definition 2.2. Let A = (ajkmn) be a non-negative RH-regular summability
matrix. Then a real double sequence {xmn}m,n∈N is said to be AI2 -statistically
convergent to a number L if for every ε > 0 and δ > 0,{

(j, k) ∈ N2 :
∑

(m,n)∈K2(ε)

ajkmn ≥ δ

}
∈ I,

where K2(ε) = {(m,n) ∈ N2 : |xmn − L| ≥ ε}. In this case, we write AI2 -st-
limm,n xmn = L.

It should be noted that, if we take A = C(1, 1), the double Cesáro matrix [26]
defined as follows

ajkmn =
{ 1

jk for m ≤ j, n ≤ k;

0 otherwise,
then AI2 -statistical convergence coincides with the notion of I2-statistical conver-
gence. Again if we replace the matrix A by the identity matrix for four dimensional
matrices and I = I0 then AI2 -statistical convergence reduces to the Pringsheim
convergence for double sequences. For the ideal I = I0, AI2 -statistical convergence
implies A-statistical convergence for double sequences. The basic properties of AI2 -
statistically convergent double sequences are similar to AI-statistical convergent
single sequences and can be obtained analogously as in [32,33]. So our main aim
here is to present an application of this notion in approximation theory.

Throughout this section, let K = [0, A] × [0, B] A,B ∈ (0, 1) and denote the
space of all real valued continuous functions on K by C(K). This space is endowed
with the supremum norm ‖f‖ = sup(x,y)∈K|f(x, y)|, f ∈ C(K). Consider the space
Hw(K) of real valued functions f on K satisfying

|f(u, v)− f(x, y)| ≤ w
(
f ;

√
(

u

1− u
− x

1− x
)2 + (

v

1− v
− y

1− y
)2

)

where w is the modulus of continuity for δ > 0 given by

w(f ; δ) = sup{|f(u, v)− f(x, y)| : (u, v), (x, y) ∈ K,
√

(u− x)2 + (v − y)2 ≤ δ}.
Then it is clear that any function in Hw(K) is continuous and bounded on K.

We will use the following test functions f0(x, y) = 1, f1(x, y) = x
1−x , f2 = y

1−y ,
f3(x, y) = ( x

1−x )2 + ( y
1−y )2 and we denote the value of Tf at a point (u, v) ∈ K by

T (f ;u, v).
Now we establish the Korovkin type approximation theorem in AI2 -statistical

sense.

Theorem 2.1. Let {Tmn}m,n∈N be a sequence of positive linear operators from
Hw(K) into C(K) and let A = (ajkmn) be a non-negative RH-regular summability
matrix. Then for any f ∈ Hw(K),

AI2 -st-lim
m,n

‖Tmnf − f‖ = 0 (1)

is satisfied if the following holds
AI2 -st-lim

m,n
‖Tmnfi − fi‖ = 0, i = 0, 1, 2, 3. (2)
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Proof. Assume that (2) holds. Let f ∈ Hw(K). Our objective is to show that
for given ε > 0 there exist constants C0, C1, C2, C3 (depending on ε > 0) such
that

‖Tmnf − f‖ ≤ ε + C3‖Tmnf3 − f3‖+ C2‖Tmnf2 − f2‖
+ C1‖Tmnf1 − f1‖+ C0‖Tmnf0 − f0‖.

If this is done then our hypothesis implies that for any ε > 0, δ > 0,
{

(j, k) ∈ N2 :
∑

(m,n)∈K2(ε)

ajkmn ≥ δ

}
∈ I,

where K2(ε) = {(m,n) ∈ N2 : ‖Tmnf − f‖ ≥ ε}.
To this end, start by observing that for each (u, v) ∈ K the function 0 ≤

guv ∈ Hw(K) defined by guv(s, t) = ( s
1−s − u

1−u )2 + ( t
1−t − v

1−v )2 satisfies guv =
( x
1−x )2+( y

1−y )2− 2u
1−u

x
1−x− 2v

1−v
y

1−y +( u
1−u )2+( v

1−v )2. Since each Tmn is a positive
operator, Tmnguv is a positive function. In particular, we have for each (u, v) ∈ K,

0 ≤ Tmnguv(u, v)

= [Tmn(( x
1−x )2 + ( y

1−y )2 − 2u
1−u

x
1−x − 2v

1−v
y

1−y + ( u
1−u )2 + ( v

1−v )2;u, v)]

= [Tmn(( x
1−x )2 + ( y

1−y )2; u, v)− ( u
1−u )2 − ( v

1−v )2]

− 2u
1−u [Tmn( x

1−x ; u, v)− u
1−u ]− 2v

1−v [Tmn( y
1−y ;u, v)− v

1−v ]

+ {( u
1−u )2 + ( v

1−v )2}[Tmnf0 − f0]

≤ ‖Tmnf3 − f3‖+ 2u
1−u‖Tmnf1 − f1‖

+ 2v
1−v‖Tmnf2 − f2‖+ {( u

1−u )2 + ( v
1−v )2}‖Tmnf0 − f0‖.

Let M = ‖f‖ and ε > 0. By the uniform continuity of f on K there exists a
δ > 0 such that −ε < f(s, t)− f(u, v) < ε holds whenever

√
(

s

1− s
− u

1− u
)2 + (

t

1− t
− v

1− v
)2 < δ,

(s, t), (u, v) ∈ K. Next observe that

−ε− 2M

δ2

{(
s

1− s
− u

1− u

)2

+
(

t

1− t
− v

1− v

)2
}

≤ f(s, t)− f(u, v)

≤ ε +
2M

δ2

{(
s

1− s
− u

1− u

)2

+
(

t

1− t
− v

1− v

)2
}

(3)

Indeed, if
√

( s
1−s − u

1−u )2 + ( t
1−t − v

1−v )2 < δ then (3) follows from

−ε < f(s, t)− f(u, v) < ε.
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On the other hand, if
√

( s
1−s − u

1−u )2 + ( t
1−t − v

1−v )2 ≥ δ then (3) follows from

−ε− 2M

δ2

{(
s

1− s
− u

1− u

)2

+
(

t

1− t
− v

1− v

)2
}

≤ −2M ≤ f(s, t)− f(u, v) ≤ 2M

≤ ε +
2M

δ2

{(
s

1− s
− u

1− u

)2

+
(

t

1− t
− v

1− v

)2
}

.

Since each Tmn is positive and linear it follows from (3) that

−εTmnf0 − 2M

δ2
Tmnguv ≤ Tmnf − f(u, v)Tmnf0 ≤ εTmnf0 +

2M

δ2
Tmnguv.

Therefore

|Tmn(f ; u, v)− f(u, v)Tmn(f0; u, v)|

≤ ε + ε [Tmn(f0;u, v)− f0(u, v)] +
2M

δ2
Tmnguv

≤ ε + ε‖Tmnf0 − f0‖+
2M

δ2
Tmnguv

In particular, note that

|Tmn(f ;u, v)− f(u, v)|
≤ |Tmn(f ; u, v)− f(u, v)Tmn(f0;u, v)|+ |f(u, v)| |Tmn(f0; u, v)− f0(u, v)|

≤ ε + (M + ε)‖Tmnf0 − f0‖+
2M

δ2
Tmnguv

which implies

‖Tmnf − f‖ ≤ ε + C3‖Tmnf3 − f3‖+ C2‖Tmnf2 − f2‖
+ C1‖Tmnf1 − f1‖+ C0‖Tmnf0 − f0‖,

where C0 =
[

2M
δ2 {( A

1−A )2 + ( B
1−B )2}+ M + ε

]
, C1 = 4M

δ2
A

1−A , C2 = 4M
δ2

B
1−B and

C3 = 2M
δ2 , i.e.,

‖Tmnf − f‖ ≤ ε + C

3∑

i=0

‖Tmnfi − fi‖, i = 0, 1, 2, 3,

where C = max{C0, C1, C2, C3}.
For a given γ > 0, choose ε > 0 such that ε < γ. Now let

U = {(m, n) : ‖Tmnf − f‖ ≥ γ}
and

Ui =
{

(m,n) : ‖Tmnfi − fi‖ ≥ γ − ε

4C

}
, i = 0, 1, 2, 3.

It follows that U ⊂ ⋃3
i=0 Ui and consequently for all (j, k) ∈ N2

∑

(m,n)∈U

ajkmn ≤
3∑

i=0

∑

(m,n)∈Ui

ajkmn,



294 S. Dutta, P. Das

which implies that for any σ > 0 and (m,n) ∈ U ,
{

(j, k) ∈ N2 :
∑

(m,n)∈U

ajkmn ≥ σ

}
⊆

3⋃

i=0

{
(j, k) ∈ N2 :

∑

(m,n)∈Ui

ajkmn ≥ σ

3

}
.

Therefore from hypothesis, {(j, k) ∈ N2 :
∑

(m,n)∈U ajkmn ≥ σ} ∈ I. This com-
pletes the proof of the theorem.

We now show that our theorem is stronger than the A-statistical version [12]
(and so the classical version). Let I be a non-trivial strongly admissible ideal of
N × N. Choose an infinite subset C = {(pi, qi) : i ∈ N}, from I such that pi 6= qi

for all i, p1 < p2 < · · · and q1 < q2 < · · · . Let {umn}m,n∈N be given by

umn =
{

1 m,n are even
0 otherwise.

Let A = (ajkmn) be given by

ajkmn =





1 if j = pi, k = qi,m = 2pi, n = 2qi for some i ∈ N
1 if (j, k) 6= (pi, qi), for any i,m = 2j + 1, n = 2k + 1
0 otherwise.

Now for 0 < ε < 1, K2(ε) = {(m,n) ∈ N × N : |umn − 0| ≥ ε} = {(m,n) :
m,n are even}. Observe that

∑

(m,n)∈K2(ε)

ajkmn =
{

1 if j = pi, k = qi for some i ∈ N
0 if (j, k) 6= (pi, qi), for any i ∈ N.

Thus for any δ > 0,
{

(j, k) ∈ N× N :
∑

(m,n)∈K2(ε)

ajkmn ≥ δ

}
= C ∈ I,

which shows that {umn}m,n∈N is AI2 -statistically convergent to 0. Evidently this
sequence is not A-statistically convergent to 0.

Consider the following Meyer-König and Zeler operators

Mmn(f ; x, y) = (1− x)m+1(1− y)n+1

×
∞∑

k=0

∞∑

l=0

f

(
k

k + m + 1
,

l

l + m + 1

)(
m + k

k

)(
n + l

l

)
xkyl

where f ∈ Hw(K) and K = [0, A] × [0, B], A,B ∈ (0, 1). Then Mmn(f0;x, y) =
f0(x, y), Mmn(f1;x, y) = x

1−x , Mmn(f2; x, y) = y
1−y and

Mmn(f3; x, y) =
m + 2
m + 1

(
x

1− x

)2

+
1

m + 1
x

1− x
+

n + 2
n + 1

(
y

1− y

)2

+
1

n + 1
y

1− y
.

Then limm,n ‖Mmnf − f‖ = 0.
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Now consider the following positive linear operator Tmn on Hw(K) defined by
Tmn(f ; x, y) = (1 + umn)Mmn(f ; x, y). It is easy to observe that ‖Tmnfi − fi‖ =
umn for i = 0, 1, 2 which imply that AI2 -st-limm,n ‖Tmnfi − fi‖ = 0, i = 0, 1, 2.
Again,

‖Tmnf3 − f3‖ =
∥∥∥(1 + umn)

{m + 2
m + 1

( x

1− x

)2

+
1

m + 1
x

1− x
+

n + 2
n + 1

( y

1− y

)2

+
1

n + 1
y

1− y

}
−

( x

1− x

)2

−
( y

1− y

)2∥∥∥

≤ D

{
2

m + 1
+

2
n + 1

+ umn
m + 3
m + 1

+ umn
n + 3
n + 1

}
,

where D = max
{

( A
1−A )2, ( B

1−B )2, ( A
1−A ), ( A

1−A )
}

. Therefore
{
(m,n) ∈ N2 : ‖Tmn(f3)− f3‖ ≥ ε

}

⊆
{

(m,n) ∈ N2 :
1

m + 1
+

1
n + 1

≥ ε

4D

}

∪
{

(m,n) ∈ N2 : umn
m + 3
m + 1

+ umn
n + 3
n + 1

≥ ε

2D

}

⊆
{

(m,n) ∈ N2 :
1

m + 1
+

1
n + 1

≥ ε

4D

}

∪
{

(m,n) ∈ N2 : umn +
m + 3
m + 1

+
n + 3
n + 1

≥ 2
√

ε

2D

}

⊆
{

(m,n) ∈ N2 :
1

m + 1
+

1
n + 1

≥ ε

4D

}
∪

{
(m,n) ∈ N2 : umn ≥

√
ε

2D

}

∪
{

(m,n) ∈ N2 :
m + 3
m + 1

+
n + 3
n + 1

≥
√

ε

2D

}

⊆
{

(m,n) ∈ N2 :
1

m + 1
+

1
n + 1

≥ ε

4D

}
∪

{
(m,n) ∈ N2 : umn ≥

√
ε

2D

}

∪
{

(m,n) ∈ N2 :
1

m + 1
+

1
n + 1

≥ 1
6

√
ε

2D

}

∪
{

(m,n) ∈ N2 :
m

m + 1
+

n

n + 1
≥ 1

2

√
ε

2D

}
,

which implies that AI2 -st-limm,n ‖Tmnf3 − f3‖ = 0. Hence from previous theorem
it follows that AI2 -st-limm,n ‖Tmnf − f‖ = 0 for any f ∈ Hw(K). But since
{umn}m,n∈N is not A-statistically convergent so the sequence {Tmn(f ; x, y)}m,n∈N
considered above does not converge A-statistically to the function f ∈ Hw(K).

3. Rate of AI
2-statistical convergence

In this section we present a way to compute the rate of AI2 -statistical conver-
gence in Theorem 2.1. We will need the following definitions.
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Definition 3.1. Let A = (ajkmn) be a non-negative RH-regular summability
matrix and let {αmn}m,n∈N be a positive non-increasing double sequence. Then
a real double sequence {xmn}m,n∈N is said to be AI2 -statistically convergent to a
number L with the rate of o(αmn) if for every ε > 0 and δ > 0,

{
(j, k) ∈ N2 :

1
αjk

∑

(m,n)∈K2(ε)

ajkmn ≥ δ

}
∈ I,

where K2(ε) = {(m,n) ∈ N2 : |xmn − L| ≥ ε}. In this case, we write
AI2 -st-o(αmn)-limm,n xmn = L.

Definition 3.2. Let A = (ajkmn) be a non-negative RH-regular summability
matrix and let {αmn}m,n∈N be a positive non-increasing double sequence. Then
a real double sequence {xmn}m,n∈N is said to be AI2 -statistically convergent to a
number L with the rate of om(αmn) if for every ε > 0 and δ > 0,

{
(j, k) ∈ N2 :

∑

(m,n)∈K2(ε)

ajkmn ≥ δ

}
∈ I,

where K2(ε) = {(m,n) ∈ N2 : |xmn − L| ≥ εαmn}. In this case, we write
AI2 -st-om(αmn)-limm,n xmn = L.

Lemma 3.1. Let {xmn}m,n∈N and {ymn}m,n∈N be double sequences. As-
sume that A = (ajkmn) is a non-negative RH-regular summability matrix and let
{αmn}m,n∈N and {βmn}m,n∈N be positive non-increasing double sequences. If

AI2 -st-o(αmn)-lim
m,n

xmn = L1 and AI2 -st-o(βmn)-lim
m,n

xmn = L2

then we have

(i) AI2 -st-o(γmn)-lim
m,n

(xmn ± ymn) = L1 ± L2 where γmn = max{αmn, βmn},

(ii) AI2 -st-o(αmn)-lim
m,n

λxmn = λL1 for any real number λ.

Proof. The proof is straightforward and so is omitted.

Lemma 3.2. Let {xmn}m,n∈N and {ymn}m,n∈N be double sequences. As-
sume that A = (ajkmn) is a non-negative RH-regular summability matrix and let
{αmn}m,n∈N and {βmn}m,n∈N be positive non-increasing double sequences. If

AI2 -st-om(αmn)-lim
m,n

xmn = L1 and AI2 -st-om(βmn)-lim
m,n

xmn = L2

then we have

(i) AI2 -st-om(γmn)-lim
m,n

(xmn ± ymn) = L1 ± L2 where γmn = max{αmn, βmn},

(ii) AI2 -st-om(αmn)-lim
m,n

λxmn = λL1 for any real number λ.
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Proof. The proof is straightforward and so is omitted.
Now we prove the following theorem.

Theorem 3.1. Let {Tmn}m,n∈N be a sequence of positive linear operators from
Hw(K) into C(K). Let A = (ajkmn) be a non-negative RH-regular summability ma-
trix and {αmn}m,n∈N and {βmn}m,n∈N be positive non-increasing double sequences.
Assume that the following conditions hold

(i) AI2 -st-o(αmn)-lim
m,n

‖Tmnf0 − f0‖ = 0,

(ii) AI2 -st-o(βmn)-lim
m,n

w(f ; δmn) = 0,

where δ := δmn =
√
‖Tmn(ψ)‖ with ψ(u, v) = ( x

1−x − u
1−u )2 + ( y

1−y − v
1−v )2. Then

for any f ∈ Hw(K),
AI2 -st-o(γmn)-lim

m,n
‖Tmnf − f‖ = 0,

where γmn = max{αmn, βmn} for each (m,n) ∈ N2.

Proof. Let {Tmn}m,n∈N be a sequence of positive linear operators from Hw(K)
into C(K) and let A = (ajkmn) be a non-negative RH-regular summability matrix
and N = ‖f‖. Then for any f ∈ Hw(K),
|Tmn(f ; u, v)− f(u, v)|
≤ Tmn(|f(x, y)− f(u, v)|; u, v) + |f(u, v)‖Tmn(f0; u, v)− f0(u, v)|

≤ w(f ; δ)Tmn


1 +

√
( u
1−u − x

1−x )2 + ( v
1−v − y

1−y )2

δ
; u, v




+ N |Tmn(f0; u, v)− f0(u, v)|

= w(f ; δ)Tmn(f0; u, v) + w(f ; δ)Tmn




√
( u
1−u − x

1−x )2 + ( v
1−v − y

1−y )2

δ
; u, v




+ N |Tmn(f0; u, v)− f0(u, v)|

= w(f ; δ)Tmn(f0; u, v)− w(f ; δ)f0(u, v) + w(f ; δ) +
w(f ; δ)

δ2
Tmn(ψ; u, v)

+ N |Tmn(f0; u, v)− f0(u, v)|

≤ w(f ; δ)|Tmn(f0;u, v)− f0(u, v)|+ w(f ; δ) +
w(f ; δ)

δ2
Tmn(ψ; u, v)

+ N |Tmn(f0; u, v)− f0(u, v)|.
Taking supremum over (u, v) ∈ K,

‖Tmnf − f‖ ≤ w(f ; δ)‖Tmnf0 − f0‖+ w(f ; δ) +
w(f ; δ)

δ2
‖Tmnψ‖+ N‖Tmnf0 − f0‖.

If we take δ := δmn =
√
‖Tmnψ‖ then

‖Tmnf − f‖ ≤ w(f ; δ)‖Tmnf0 − f0‖+ 2w(f ; δ) + N‖Tmnf0 − f0‖
≤ M{w(f ; δ)‖Tmnf0 − f0‖+ w(f ; δ) + ‖Tmnf0 − f0‖},
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where M = max{2, N}. Let µ > 0 be given. Now consider the following sets

U = {(m,n) : ‖Tmnf − f‖ ≥ µ},
U1 = {(m,n) : w(f ; δ) ≥ µ

3M
},

U2 = {(m,n) : ‖Tmnf0 − f0‖ ≥ µ

3M
},

U3 = {(m,n) : w(f ; δ)‖Tmnf0 − f0‖ ≥ µ

3M
}.

Then U ⊂ U1 ∪ U2 ∪ U3. Now define

U ′
3 = {(m,n) : w(f ; δ) ≥

√
µ

3M
},

U ′′
3 = {(m,n) : ‖Tmnf0 − f0‖ ≥

√
µ

3M
}.

Then U ⊂ U1∪U2∪U ′
3∪U ′′

3 . Now since γmn = max{αmn, βmn} for each (m,n) ∈ N2

then for all (j, k) ∈ N2,

1
γj,k

∑

(m,n)∈U

ajkmn ≤ 1
βj,k

∑

(m,n)∈U1

ajkmn +
1

αj,k

∑

(m,n)∈U2

ajkmn

+
1

βj,k

∑

(m,n)∈U ′3

ajkmn +
1

αj,k

∑

(m,n)∈U ′′3

ajkmn.

Then for any σ > 0
{

(j, k) ∈ N2 :
1

γj,k

∑

(m,n)∈U

ajkmn ≥ σ

}

⊆
{

(j, k) ∈ N2 :
1

βj,k

∑

(m,n)∈U1

ajkmn ≥ σ

4

}
∪

{
(j, k) ∈ N2 :

1
αj,k

∑

(m,n)∈U2

ajkmn ≥ σ

4

}

∪
{

(j, k) ∈ N2 :
1

βj,k

∑

(m,n)∈U ′3

ajkmn ≥ σ

4

}
∪

{
(j, k) ∈ N2 :

1
αj,k

∑

(m,n)∈U ′′3

ajkmn ≥ σ

4

}
.

Now from hypothesis the sets on the right-hand side belong to I and consequently
{

(j, k) ∈ N2 :
1

γj,k

∑

(m,n)∈U

ajkmn ≥ σ

}
∈ I

for any σ > 0. This completes the proof.

The proof of the following theorem is analogous to the proof of Theorem 3.1
and so is omitted.

Theorem 3.2. Let {Tmn}m,n∈N be a sequence of positive linear operators from
Hw(K) into C(K). Let A = (ajkmn) be a non-negative RH-regular summability ma-
trix and {αmn}m,n∈N and {βmn}m,n∈N be positive non-increasing double sequences.
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Assume that the following conditions hold

(i) AI2 -st-om(αmn)-lim
m,n

‖Tmnf0 − f0‖ = 0,

(ii) AI2 -st-om(βmn)-lim
m,n

w(f ; δmn) = 0,

where δmn =
√
‖Tmn(ψ)‖ with ψ(u, v) = ( x

1−x − u
1−u )2 + ( y

1−y − v
1−v )2. Then for

any f ∈ Hw(K),
AI2 -st-om(γmn)-lim

m,n
‖Tmn(f)− f‖ = 0,

where γmn = max{αmn, βmn} for each (m,n) ∈ N2.
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