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COEFFICIENT INEQUALITY FOR CERTAIN SUBCLASS OF
p-VALENT ANALYTIC FUNCTIONS WHOSE RECIPROCAL

DERIVATIVE HAS A POSITIVE REAL PART

D. Vamshee Krishna, B. Venkateswarlu and T. RamReddy

Abstract. The objective of this paper is to introduce certain new subclass of p-valent
analytic functions in the open unit disc E = {z : |z| < 1} and obtain sharp upper bound for the
second Hankel determinant of functions belonging to this class, using Toeplitz determinants.

1. Introduction

Let Ap (p is a fixed integer ≥ 1) denote the class of functions f of the form

f(z) = zp + ap+1z
p+1 + · · · , (1.1)

in the open unit disc E = {z : |z| < 1} with p ∈ N = {1, 2, 3, . . . }. Let S be the
subclass of A1 = A, consisting of univalent functions. The Hankel determinant of
f for q ≥ 1 and n ≥ 1 was defined by Pommerenke [11] as follows, and has been
extensively studied by several authors in the literature. For example, Ehrenborg [2]
studied the Hankel determinant of exponential polynomials. Noonan and Thomas
[8] studied the second Hankel determinant of areally mean p-valent functions. Noor
[9] determined the rate of growth of Hq(n) as n → ∞ for the functions in S with
bounded boundary rotation. The Hankel transform of an integer sequence and
some of its properties were discussed by Layman in [5].

Hq(n) =

∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣
.

One can easily observe that the Fekete-Szegö functional is H2(1). Fekete-Szegö
then further generalized the estimate |a3 − µa2

2| with µ real and f ∈ S. Further

sharp upper bound for the functional H2(2) =
∣∣∣∣
a2 a3

a3 a4

∣∣∣∣ = a2a4 − a2
3, when q = 2
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88 Coefficient inequality for p-valent functions

and n = 2, known as the second Hankel determinant (functional) was obtained
for various subclasses of univalent and multivalent analytic functions by several
authors. Janteng et al. [4] considered the functional |a2a4 − a2

3| and found a sharp
upper bound for functions f in the subclass RT of S, consisting of functions whose
derivative has a positive real part (also called bounded turning functions), exten-
sively studied by Mac Gregor [7]. In their work, they have shown that if f ∈ RT
then |a2a4 − a2

3| ≤ 4
9 . Similarly, the same coefficient inequality was calculated for

certain subclasses of univalent and multivalent analytic functions by many authors
in the literature.

Motivated by the above result, in the present paper, we introduce certain
new subclass of p-valent analytic functions and consider the Hankel determinant
H2(p + 1) in the case of q = 2 and n = p + 1, given by

H2(p + 1) =
∣∣∣∣
ap+1 ap+2

ap+2 ap+3

∣∣∣∣ = ap+1ap+3 − a2
p+2

and we seek sharp upper bound to the functional |ap+1ap+3 − a2
p+2| for function f

given in (1.1), when it belongs to the new subclass, defined as follows.

Definition 1.1. A function f ∈ Ap is said to be in the class R̃T p with p ∈ N ,
consisting of p-valent analytic functions, whose reciprocal derivative has a positive
real part, if it satisfies the condition

Re
[
pzp−1

f ′(z)

]
> 0, ∀z ∈ E.

Some preliminary lemmas required for proving our result are given in the next
section.

2. Preliminary results

Let P denote the class of functions consisting of g, such that

g(z) = 1 + c1z + c2z
2 + c3z

3 + · · · = 1 +
∞∑

n=1
cnzn, (2.1)

which are regular in the open unit disc E and satisfy Re g(z) > 0 for any z ∈ E.
Here g(z) is called a Caratheòdory function [1].

Lemma 2.1. [10, 12] If g ∈ P, then |ck| ≤ 2, for each k ≥ 1 and the inequality
is sharp for the function 1+z

1−z .

Lemma 2.2. [3] The power series for g given in (2.1) converges in the open
unit disc E to a function in P if and only if the Toeplitz determinants

Dn =

∣∣∣∣∣∣∣∣

2 c1 c2 · · · cn

c−1 2 c1 · · · cn−1

...
...

...
...

...
c−n c−n+1 c−n+2 · · · 2

∣∣∣∣∣∣∣∣
, n = 1, 2, 3 . . .
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and c−k = ck, are all non-negative. They are strictly positive except for p(z) =∑m
k=1 ρkp0(exp(itk)z) with

∑∞
k=1 ρk = 1, tk real and tk 6= tj, for k 6= j, where

p0(z) = 1+z
1−z ; in this case Dn > 0 for n < (m− 1) and Dn

.= 0 for n ≥ m.

This necessary and sufficient condition found in [3] is due to Caratheòdory and
Toeplitz. We may assume without restriction that c1 > 0. On using Lemma 2.2,
for n = 2 and n = 3 respectively, for some complex valued x with |x| ≤ 1 and for
some complex valued z with |z| ≤ 1, we have

2c2 = c2
1 + x(4− c2

1) (2.2)

and 4c3 = c3
1 + 2c1(4− c2

1)x− c1(4− c2
1)x

2 + 2(4− c2
1)(1− |x|2)z. (2.3)

To obtain our result, we refer to the classical method initiated by Libera and
Zlotkiewicz [6], used by several authors in the literature.

3. Main result

Theorem 3.1. If f(z) ∈ R̃T p with p ∈ N , then

|ap+1ap+3 − a2
p+2| ≤

[
2p

p + 2

]2

and the inequality is sharp.

Proof. For the function f(z) = zp +
∑∞

n=p+1 anzn ∈ R̃T p, by virtue of Def-
inition 1.1, there exists an analytic function g ∈ P in the open unit disc E with
g(0) = 1 and Re g(z) > 0 such that

pzp−1 = g(z)f ′(z). (3.1)

Using the series representations for f ′(z) and g(z) in (3.1), we have

pzp−1 =
{

1 +
∞∑

n=1
cnzn

}{
pzp−1 +

∞∑
n=p+1

nanzn−1

}
.

Upon simplification, we obtain

0 = {c1p + (p + 1)ap+1} zp + {c2p + c1(p + 1)ap+1 + (p + 2)ap+2} zp+1+

{c3p + c2(p + 1)ap+1 + c1(p + 2)ap+2 + (p + 3)ap+3} zp+2 + · · · .

Equating the coefficients of like powers of zp, zp+1 and zp+2 respectively in (3.2),
we can now write

ap+1 =
−c1p

p + 1
; ap+2 =

p(c2
1 − c2)
p + 2

; ap+3 =
−p(c3 − 2c1c2 + c3

1)
p + 3

. (3.3)

Substituting the values of ap+1, ap+2 and ap+3 from (3.3) in the functional
|ap+1ap+3 − a2

p+2| for the function f ∈ R̃T p, upon simplification, we obtain

|ap+1ap+3 − a2
p+2| =

p2
∣∣(p + 2)2c1c3 − 2c2

1c2 − (p + 1)(p + 3)c2
2 + c4

1

∣∣
(p + 1)(p + 2)2(p + 3)

, (3.4)
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which is equivalent to

|ap+1ap+3 − a2
p+2| =

p2
∣∣d1c1c3 + d2c

2
1c2 + d3c

2
2 + d4c

4
1

∣∣
(p + 1)(p + 2)2(p + 3)

, (3.5)

where
d1 = (p + 2)2; d2 = −2; d3 = −(p + 1)(p + 3); d4 = 1. (3.6)

Substituting the values of c2 and c3 given in (2.2) and (2.3) respectively from
Lemma 2.2 on the right-hand side of (3.5), we have

|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1|

= |d1c1 × 1
4
{c3

1 + 2c1(4− c2
1)x− c1(4− c2

1)x
2 + 2(4− c2

1)(1− |x|2)z}+

d2c
2
1 ×

1
2
{c2

1 + x(4− c2
1)}+ d3 × 1

4
{c2

1 + x(4− c2
1)}2 + d4c

4
1|.

Using the triangle inequality and the fact |z| < 1, which simplifies to

4|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤ |(d1 + 2d2 + d3 + 4d4)c4

1 + 2d1c1(4− c2
1)+

2(d1 + d2 + d3)c2
1(4− c2

1)|x| −
{
(d1 + d3)c2

1 + 2d1c1 − 4d3

}
(4− c2

1)|x|2|. (3.7)

From (3.6), we can now write

d1 + 2d2 + d3 + 4d4 = 1; d1 = (p + 2)2; d1 + d2 + d3 = −1; (3.8)

(d1 + d3)c2
1 + 2d1c1 − 4d3 = c2

1 + 2(p + 2)2c1 + 4(p + 1)(p + 3). (3.9)

Consider

c2
1 + 2(p + 2)2c1 + 4(p + 1)(p + 3)

=
[{

c1 + (p + 2)2
}2 − (p + 2)4 + 4(p + 1)(p + 3)

]

=
[{

c1 + (p + 2)2
}2 −

(√
p4 + 8p3 + 20p2 + 16p + 4

)2
]

=
[
c1 +

{
(p + 2)2 +

(√
p4 + 8p3 + 20p2 + 16p + 4

)}]
×

[
c1 +

{
(p + 2)2 −

(√
p4 + 8p3 + 20p2 + 16p + 4

)}]
.

Since c1 ∈ [0, 2], noting that (c1 + a)(c1 + b) ≥ (c1 − a)(c1 − b), where a, b ≥ 0, on
the right-hand side of the above expression, we get

− {
c2
1 + 2(p + 2)2c1 + 4(p + 1)(p + 3)

} ≤
− {

c2
1 − 2(p + 2)2c1 + 4(p + 1)(p + 3)

}
. (3.10)

From the relations (3.9) and (3.10), we have

−{
(d1 + d3)c2

1 + 2d1c1 − 4d3

} ≤ −{
c2
1 − 2(p + 2)2c1 + 4(p + 1)(p + 3)

}
. (3.11)

Substituting the calculated values from (3.8) and (3.11) on the right-hand side of
(3.7), we have

4|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤ |c4

1 + 2(p + 2)2c1(4− c2
1)−

2c2
1(4− c2

1)|x| −
{
c2
1 − 2(p + 2)2c1 + 4(p + 1)(p + 3)

}
(4− c2

1)|x|2|.
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Choosing c1 = c ∈ [0, 2], applying triangle inequality and replacing |x| by µ on the
right-hand side of the above inequality, we obtain

4|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤

[
c4 + 2(p + 2)2c(4− c2)+

2c2(4− c2)µ +
{
c2 − 2(p + 2)2c + 4(p + 1)(p + 3)

}
(4− c2)µ2

]

= F (c, µ) , 0 ≤ µ = |x| ≤ 1 and 0 ≤ c ≤ 2, (3.12)

where

F (c, µ) =
[
c4 + 2(p + 2)2c(4− c2) + 2c2(4− c2)µ+

{
c2 − 2(p + 2)2c + 4(p + 1)(p + 3)

}
(4− c2)µ2

]
. (3.13)

We next maximize the function F (c, µ) on the closed region [0, 2]× [0, 1]. Differen-
tiating F (c, µ) given in (3.13) partially with respect to µ, we obtain

∂F

∂µ
= 2

[
c2 +

{
c2 − 2(p + 2)2c + 4(p + 1)(p + 3)

}
µ
]
(4− c2). (3.14)

For 0 < µ < 1, for fixed c with 0 < c < 2 and p ∈ N , from (3.14), we observe
that ∂F

∂µ > 0. Therefore, F (c, µ) becomes an increasing function of µ and hence
it cannot have a maximum value at any point in the interior of the closed region
[0, 2]× [0, 1]. Moreover, for fixed c ∈ [0, 2], we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c). (3.15)

Therefore, replacing µ by 1 in F (c, µ), which simplifies to give

G(c) = −2c4 − 4p(p + 4)c2 + 16(p + 1)(p + 3), (3.16)

G′(c) = −8c
{
c2 + p(p + 4)

}
. (3.17)

From (3.17), we observe that G′(c) ≤ 0, for every c ∈ [0, 2] with p ∈ N . Therefore,
G(c) is a decreasing function of c in the interval [0, 2], whose maximum value occurs
at c = 0 only, from (3.16), it is given by

Gmax = G(0) = 16(p + 1)(p + 3). (3.18)

Simplifying the expressions (3.7) and (3.18), we get

|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤ 4(p + 1)(p + 3). (3.19)

From the relations (3.5) and (3.19), we obtain

|ap+1ap+3 − a2
p+2| ≤

[
2p

p + 2

]2

. (3.20)

By setting c1 = c = 0 and selecting x = 1 in the expressions (2.2) and (2.3), we find
that c2 = 2 and c3 = 0 respectively. Substituting these values in (3.19) together
with the values in (3.6), we observe that equality is attained, which shows that our
result is sharp. For these values, from (2.1), we can derive the extremal function,
given by

pzp−1

f ′(z)
= 1 + 2z2 + 2z4 + · · · = 1 + z2

1− z2
.

This completes the proof of our theorem.
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Remark 3.2. It is observed that the sharp upper bound to the second Hankel
determinant of a function whose derivative has a positive real part and a function
whose reciprocal derivative has a positive real part for a p-valent function is the
same.

Remark 3.3. Choosing p = 1 in (3.20), we get |a2a4 − a2
3| ≤ 4

9 , it coincides
with that of Janteng et al. [7]. From this, we conclude that the sharp upper bound
to the second Hankel determinant of a function whose derivative has a positive real
part and a function whose reciprocal derivative has a positive real part is the same.
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REFERENCES

[1] P. L. Duren, Univalent functions, Vol. 259, Grundlehren der Mathematischen Wissenschaften,
Springer, New York, USA, 1983.

[2] R. Ehrenborg, The Hankel determinant of exponential polynomials, Amer. Math. Monthly,
107 (6) (2000), 557–560.
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