
MATEMATIQKI VESNIK

68, 2 (2016), 100–118
June 2016

originalni nauqni rad
research paper

COARSE TOPOLOGIES ON THE REAL LINE

Gerald Kuba

Abstract. Let c = |R| denote the cardinality of the continuum and let η denote the
Euclidean topology on R. Let L denote the family of all Hausdorff topologies τ on R with
τ ⊂ η. Let L1 resp. L2 resp. L3 denote the family of all τ ∈ L where (R, τ) is completely
normal resp. second countable resp. not regular. Trivially, L1 ∩ L3 = ∅ and |Li| ≤ |L| ≤ 2c and
|L2| ≤ c. For τ ∈ L the space (R, τ) is metrizable if and only if τ ∈ L1 ∩ L2. We show that, up
to homeomorphism, both L1 and L3 contain precisely 2c topologies and L2 contains precisely c
completely metrizable topologies. For 2c non-homeomorphic topologies τ ∈ L1 the space (R, τ)
is Baire, but there are also 2c non-homeomorphic topologies τ ∈ L1 and c non-homeomorphic
topologies τ ∈ L1 ∩L2 where (R, τ) is of first category. Furthermore, we investigate the complete
lattice L0 of all topologies τ ∈ L such that τ and η coincide on R \ {0}. In the lattice L0 we find
2c (non-homeomorphic) immediate predecessors of the maximum η, whereas the minimum of L0

is a compact topology without immediate successors in L0. We construct chains of homeomorphic
topologies in L0 ∩ L1 ∩ L2 and in L0 ∩ L2 ∩ L3 and in L0 ∩ (L1 \ L2) and in L0 ∩ (L3 \ L2) such
that the length of each chain is c (and hence maximal). We also track down a chain in L0 of
length 2λ where λ is the smallest cardinal number κ with 2κ > c.

1. Introduction

Write |S| for the cardinality (the size) of a the set S and let c = |R| denote
the cardinality of the continuum. Let η denote the Euclidean topology on R and
let L denote the family of all topologies τ on R where τ is coarser than η (i.e. τ is a
subset of η) and (R, τ) is a Hausdorff space. If τ ∈ L and B is a nonempty bounded
subset of R then the relative topologies of τ and η coincide on B. (Because they
coincide on the interval [inf B, sup B] due to the well-known fact that a topology
cannot be T2 if it is strictly coarser than a T2-compact topology.) Nevertheless,
on the whole space R the two topologies τ and η need not coincide. In fact, as we
will see, |L| = 2c. (Note that |L| ≤ 2c is trivial because |η| = c.) Moreover, as
we will prove in Section 4, L contains 2c mutually non-homeomorphic topologies
τ such that (R, τ) is a completely normal Baire space. In Section 8 we will prove
that L also contains 2c mutually non-homeomorphic topologies τ such that (R, τ)
is a completely normal space of first category.
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For every τ ∈ L the space (R, τ) is separable and arcwise connected and σ-
compact. Separability is trivial since Q is clearly a dense set in (R, τ). Arcwise
connectedness and σ-compactness follow immediately from the coincidence of η and
τ on each Euclidean compact interval. Whereas the Euclidean space R is second
countable, for arbitrary τ ∈ L the space (R, τ) need not be second countable. In
fact, there cannot be more than c second countable topologies in the family L since
|η| = c and a set of size c has precisely c countable subsets. Due to separability, for
τ ∈ L the space (R, τ) is metrizable if and only if it is regular and second countable.
In particular, there are at most c metrizable topologies in the family L. In Section 7
we will prove that there exist c mutually non-homeomorphic topologies τ ∈ L such
that (R, τ) is completely metrizable. In Section 9 we will prove that there exist
c mutually non-homeomorphic topologies τ ∈ L such that (R, τ) is a metrizable
space of first category.

Let us call the image g(R) of any continuous one-to-one mapping g from the
Euclidean space R into a Hausdorff space X a real arc. There is a natural corre-
spondence between topologies in the family L and real arcs. Because, with g and
X as above, evidently the family τg of all sets g−1(U) where U is an open subset of
X is a topology in the family L and g defines a homeomorphism between the space
(R, τg) and the subspace g(R) of X. Conversely, for each τ ∈ L the space (R, τ) is
a real arc since the identity is a continuous mapping from (R, η) onto (R, τ). As
a consequence of our enumeration results mentioned above and proved in Sections
4 and 7, up to homeomorphism there are precisely 2c completely normal real arcs
and precisely c completely metrizable real arcs.

2. Locally and globally coarse topologies

If τ is a topology on the set R and a ∈ R then let Nτ (a) denote the filter of
the neighborhoods of the point a in the space (R, τ). Trivially, Nτ (a) ⊂ Nη(a) for
every τ ∈ L. Let us call a topology τ in our family L coarse at the point a ∈ R if
and only if Nτ (a) 6= Nη(a). A proof of the following lemma is straightforward.

Lemma 1. If an injective mapping g with domain R defines a real arc g(R)
then the topology τg in L corresponding with g is coarse at a ∈ R if and only if the
bijection g−1 from g(R) onto R is not continuous at g(a).

The following proposition makes it easy to detect whether a topology τ ∈ L is
coarse at a point a ∈ R.

Proposition 1. A topology τ ∈ L is coarse at a point a ∈ R if and only if
every set in the filter Nτ (a) is an unbounded subset of R.

Proof. Let τ ∈ L and a ∈ R and assume that some U ∈ Nτ (a) is bounded.
Fix δ > 0 so that [a− δ, a + δ] ⊂ U and let 0 < ε ≤ δ be arbitrary. The Euclidean
compact set A = [inf U, a − ε] ∪ [a + ε, supU ] is compact and hence closed in the
space (R, τ). Consequently, ]a− ε, a + ε[= U \A is τ -open whenever 0 < ε ≤ δ and
hence Nτ (a) = Nη(a).
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The following proposition provides a nice and very useful characterization of
the first-category topologies in the family L.

Proposition 2. For τ ∈ L the space (R, τ) is of first category if and only if
every nonempty open set in the space (R, τ) is an unbounded subset of R.

Proof. Assume firstly that τ ∈ L and every nonempty τ -open set is unbounded.
Then for each n ∈ N the set [−n, n] is nowhere dense in the space (R, τ). (Note
that the Euclidean compact set [−n, n] is τ -compact and hence τ -closed.) Thus the
space (R, τ) is of first category since R =

⋃∞
n=1[−n, n]. Assume secondly that τ ∈ L

and that (R, τ) is a space of first category and suppose indirectly that there exists
a nonempty τ -open set U which is bounded. As an open subspace of a space of
first category, the set U equipped with the relative topology of τ is a space of first
category. But this space is identical with U equipped with the relative topology of
η (since U is bounded) and, naturally, the Euclidean space U is of second category.
This is a contradiction.

Remark. As a trivial consequence of Propositions 1 and 2, for τ ∈ L the space
(R, τ) is of first category if and only if τ is everywhere coarse. In [5] we construct
22c

non-homeomorphic connected topologies τ on R with certain properties where
τ is finer than η. In [5] it is not explicitly stated that all these topologies τ are
actually everywhere finer than η, i.e. Nη(a) is a proper subset of Nτ (a) for every
a ∈ R. However, some of these 22c

topologies are of first category, but some of
them are of second category.

For τ ∈ L let C(τ) denote the set of all points a such that τ is coarse at a.
Clearly, if C(τ) 6= R then the subspace topologies of τ and η coincide on the set
R \ C(τ). The following proposition shows that the set C(τ) is always of a very
special form.

Proposition 3. Let τ ∈ L. Then C(τ) is a closed subset of the Euclidean
space R. Moreover, the set C(τ) is closed and meager in the space (R, τ).

Proof. Let τ ∈ L. Firstly we verify that C(τ) is closed in the space (R, τ).
(Then, of course, C(τ) is closed in the Euclidean space automatically.) Assume
that x ∈ R is a limit point of the set C(τ) in the space (R, τ). Then U ∩ C(τ) 6= ∅
for every τ -open set U in the filter Nτ (x) and hence every set in the filter Nτ (x)
lies in the filter Nτ (a) for some a ∈ C(τ). Thus every set in Nτ (x) is unbounded by
Proposition 1. Hence x ∈ C(τ) by Proposition 1. Therefore the set C(τ) is τ -closed.
Since [−n, n] is compact and hence closed in the space (R, τ) for every n ∈ N, all
sets C(τ) ∩ [−n, n] are closed in the space (R, τ). No point in C(τ) ∩ [−n, n] is an
τ -interior point of C(τ) ∩ [−n, n] because if a ∈ C(τ) then S 6⊂ [−n, n] for every
S ∈ Nτ (a) by Proposition 1. Consequently, C(τ) ∩ [−n, n] is nowhere dense in the
space (R, τ) for every n ∈ N and hence the set C(τ) =

⋃∞
n=1(C(τ) ∩ [−n, n]) is

meager in the space (R, τ).
The following proposition generalizes the special fact that (R, η) is a Baire

space with C(η) = ∅ and will be useful for the proof of the enumeration results in
Sections 4 and 5.
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Proposition 4. If τ ∈ L such that C(τ) is a meager set in the space (R, η)
then (R, τ) is a Baire space.

Proof. For τ ∈ L assume that C(τ) is a meager subset of Euclidean space
R. Then C(τ) 6= R and hence U := R \ C(τ) is nonempty. By Proposition 3 the
set U is Euclidean open (even τ -open). As an open subspace of the Baire space
(R, η), the space (U, η) is Baire. The spaces (U, η) and (U, τ) are identical in view
of U ∩C(τ) = ∅ and the definition of the set C(τ). In particular, the space (U, τ) is
Baire. As the complement of a meager set, U is dense in the Euclidean space R and
hence dense in the space (R, τ) a fortiori. This is enough in view of the well-known
fact (cf. [2] 3.9.J.b) that a Hausdorff space must be Baire if some dense subspace
is Baire.

The following proposition, which implies that L contains c completely metriz-
able topologies, demonstrates that the converse of Proposition 4 would be far from
being true.

Proposition 5. For every z ∈ R there exists a topology τz ∈ L with C(τz) =
]−∞, z] such that all spaces (R, τz) are completely metrizable and homeomorphic.

Proof. We work with real arcs and define for every z ∈ R an injective and
continuous mapping gz from the Euclidean space R into the Euclidean plane R2

by putting gz(t) = (t, 0) for t ≤ z and gz(t) = (z + (t − z)(z + 1 − t), t − z) for
z ≤ t ≤ z+1 and gz(t) = (z+(z+1−t)| sin(z+1−t)|, ez+1−t) for t ≥ z+1. Clearly,
gz(R) is a closed subset of the complete metric space R2. We observe that g−1

z is
continuous at gz(a) if and only if a ∈]z,∞[. (Hence C(τz) =]−∞, z] for τz ∈ L
corresponding with gz.) Finally, for every z ∈ R the space gz(R) is homeomorphic
to the space g0(R) since the translation (x, y) 7→ (x − z, y) of the vector space R2

maps gz(R) onto g0(R).

3. Selecting non-homeomorphic topologies

Lemma 2. If H ⊂ L and all topologies in H are homeomorphic then |H| ≤ c.

Proof. Firstly, if τ1, τ2 ∈ L then each continuous function from the space
(R, τ1) into the space (R, τ2) is completely determined by its values at the points
in the τ1-dense set Q. Secondly, there are precisely c functions from Q into R.

The following lemma makes it very easy to provide mutually non-homeomor-
phic topologies in certain situations.

Lemma 3. If the size of a family K ⊂ L is greater than c then K contains a fam-
ily K′ equipollent to K such that all topologies in K are mutually non-homeomorphic.

Proof. Define an equivalence relation ∼ on K by putting τ1 ∼ τ2 for τi ∈ K
when the spaces (R, τ1) and (R, τ2) are homeomorphic. By Lemma 2 the size of an
equivalence class cannot exceed c. Consequently, from |K| > c we derive that the
total number of the equivalence classes must be |K|. So we are done by choosing
for K′ a set of representatives with respect to the equivalence relation ∼.
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4. Completely normal Baire topologies

The following lemma is very useful in order to avoid a lengthy verification of
complete normality by verifying regularity only.

Lemma 4. Let z ∈ R and τ ∈ L with C(τ) = {z}. Then the space (R, τ) is
second countable if and only if some local basis at the point z is countable. And the
space (R, τ) is completely normal if and only if it is regular.

Proof. Clearly, z /∈ V ∈ η implies V ∈ τ . This settles the first statement and
has also the consequence that U ∪ V ∈ τ whenever z ∈ U ∈ τ and V ∈ η. Assume
that (R, τ) is regular and that in the space (R, τ) we have A ∩ B = A ∩ B = ∅
for A, B ⊂ R. If z /∈ A ∪ B then A and B can be separated by η-open subsets of
R \ {z} which must be τ -open. So assume z ∈ A∪B and, say, z ∈ A. Then we can
find disjoint sets U1, V1 ∈ η with z /∈ U1 ∪ V1 such that A \ {z} ⊂ U1 and B ⊂ V1.
Furthermore, since the space (R, τ) is regular, we can find disjoint sets U2, V2 ∈ τ
with z ∈ U2 and B ⊂ V2. Then U1 ∪ U2 and V1 ∩ V2 are disjoint τ -open sets and
A ⊂ U1 ∪ U2 and B ⊂ V1 ∩ V2.

Our first main result is the following theorem.

Theorem 1. There exists a family T ⊂ L with |T | = 2c such that (R, τ) is
a completely normal Baire space for each τ ∈ T and two spaces (R, τ) and (R, τ ′)
are never homeomorphic for distinct topologies τ, τ ′ ∈ T .

Proof. The cardinal number 2c indicates that the natural way to define T is to
use ultrafilters on a countably infinite set. It is well-known (see [1]) that an infinite
set of size κ carries precisely 22κ

free ultrafilters. In particular, there are 2c free
ultrafilters on Z. Note that no free ultrafilter contains a finite set.

For each free ultrafilter F on Z define a topology τ = τ [F ] on R by declaring
U ⊂ R open if and only if U is Euclidean open and satisfies 0 /∈ U or U ∩Z ∈ F . It
is plain that τ is a well-defined topology on R coarser than η. Further, (R, τ) is a
Hausdorff space, whence τ ∈ L, because if u < v then the intersection Z \ [u, v] of
Z and the Euclidean open set R \ [u, v] must lie in F (since Z ∩ [u, v] is a finite set
and the ultrafilter F is free). By Proposition 1 we have 0 ∈ C(τ) since M ∩ Z ∈ F
for every M ∈ Nτ (0) and every S ∈ F is an infinite set. Moreover, C(τ) = {0}
since τ and η coincide on the Euclidean open set R \ {0}. Hence (R, τ) is a Baire
space by Proposition 4.

We claim that (R, τ) is completely normal. By Lemma 4 it is enough to check
the T3-separation property. Let A ⊂ R be τ -closed (and hence η-closed) and let
b ∈ R \A. If b 6= 0 then we can find ε > 0 and U ∈ η disjoint from V :=]b− ε, b + ε[
with 0 /∈ V and A ⊂ U . Then V is τ -open and Uε := U ∪ (R\ [b− ε, b+ ε]) is τ -open
and b ∈ V and A ⊂ Uε and Uε ∩V = ∅. (The set Uε ∩Z lies in the free ultrafilter F
since Z \Uε is finite.) If b = 0 then B := {0}∪ (Z \A) is η-closed and disjoint from
A and hence we can choose disjoint η-open sets U, V with A ⊂ U and b ∈ B ⊂ V .
The set U is τ -open because 0 /∈ U since 0 ∈ V and U ∩V = ∅. The set V is τ -open
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because Z \A ∈ F (since A is τ -closed) and hence from V ∩Z ⊃ B ∩Z ⊃ Z \A we
derive V ∩ Z ∈ F .

Finally we observe that τ [F1] 6⊂ τ [F2] (and hence τ [F1] 6= τ [F2]) whenever F1

and F2 are distinct free ultrafilters on Z. Indeed, if F1 and F2 are free ultrafilters
on Z and τ [F1] ⊂ τ [F2] and S ∈ F1 then the τ [F1]-open set W :=

]− 1
3 , 1

3

[ ∪⋃
s∈S

]
s− 1

3 , s + 1
3

[
is a τ [F2]-open neighborhood of 0 and hence S ∪ {0} = W ∩ Z

lies in F2, whence S ∈ F2. (Note that Z \ {0} ∈ F2 since the ultrafilter F2 is free.)
Thus F1 ⊂ F2 and hence F1 = F2 since F1 and F2 are ultrafilters.

Remark. Since L contains only c second countable topologies, there are 2c

free ultrafilters F on Z such that the space (R, τ [F ]) is not second countable or,
equivalently, that any local basis at 0 is uncountable. In fact, this is true for
every free ultrafilter F on Z. Indeed, assume indirectly that the countable family
{B1, B2, B3, . . . } is a local basis at 0 in the space (R, τ [F ]). Then we may choose
a sequence a1, a2, a3, . . . of distinct integers and 0 < εn < 1

3 (n ∈ N) such that
an ∈ Bn \ {ak|k < n} and [an − εn, an + εn] ⊂ Bn for every n ∈ N. Then with
S = Z \ {a1, a2, a3, . . . } the set

U :=
∞⋃

n=1

]an − εn, an + εn[ ∪
⋃

s∈S

]s− 1
3 , s + 1

3 [

is a τ [F ]-open τ [F ]-neighborhood of 0 (since U ∩Z = Z ∈ F) with an + εn ∈ Bn \U
and hence Bn 6⊂ U for every n ∈ N. Thus {B1, B2, B3, . . . } is not a local basis at 0.

5. Non-regular Baire topologies

In view of Theorem 1 and Lemma 4 there arises the question whether L con-
tains also 2c topologies τ which are Baire because of C(τ) = {0} and where (R, τ)
is not regular. This is indeed true.

Theorem 2. There exist 2c mutually non-homeomorphic topologies τ ∈ L
such that (R, τ) is a Baire space which is not regular.

Proof. It is enough to modify the proof of Theorem 1 in the following way.
For any free ultrafilter F on Z define a topology σ[F ] on R by declaring U ⊂ R
open if and only if U is Euclidean open and 0 /∈ U or U ⊃ ⋃

s∈S

]
s− 1

3 , s + 1
3

[
for

some S ∈ F . Certainly, σ[F ] is well-defined and Hausdorff. The space (R, σ[F ])
is not regular since, for example, the point 0 and the obviously σ[F ]-closed set⋃k=∞

k=−∞
[
k + 1

3 , k + 2
3

]
cannot be separated by σ[F ]-open sets. Finally, similarly

as in the proof of Theorem 1, σ[F ] 6= σ[F ′] whenever F and F ′ are distinct free
ultrafilters on Z.

Remark. In the proof of Theorem 1 or Theorem 2 one cannot avoid an
application of Lemma 3 (or a similar transfinite counting argument). Actually, for
every free ultrafilter F0 on Z there is an infinite family U of free ultrafilters on Z with
F0 ∈ U such that all topologies τ [F ](F ∈ U) are homeomorphic and all topologies
σ[F ](F ∈ U) are homeomorphic. Indeed, put U := {Fk|k = 0, 1, 2, . . . } where
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Fk := {k+S|S ∈ F0} for every integer k ≥ 0. Clearly, Fm = {(m−n)+S|S ∈ Fn}
whenever n,m ≥ 0 and each family Fk is a free ultrafilter on Z. We have Fn 6= Fm

whenever 0 ≤ n < m because firstly precisely one of the congruence classes modulo
2m lies in Fn. (Note that a union of finitely many sets lies in an ultrafilter only
if one of these sets lies in the ultrafilter.) And secondly, if a congruence class A
modulo 2m lies in Fn then the congruence class (m − n) + A lies in Fm but not
in Fn. (For A and (m − n) + A are disjoint.) Finally, for each k ∈ N define an
increasing bijection ϕk from R onto R so that ϕk(0) = 0 and ϕk(n) = n + k for
every n ∈ Z \ [−k, 0]. Since ϕk is a homeomorphism from the Euclidean space
R\{0} onto itself, by considering the open neighborhoods of 0 it is evident that ϕk

is a homeomorphism from the space (R, τ [F0]) onto the space (R, τ [Fk]) and also
a homeomorphism from the space (R, σ[F0]) onto the space (R, σ[Fk]).

6. Counting Polish spaces

For the proof of our second main result in Section 7 we need the following
enumeration theorem.

Theorem 3. There is a family H of countably infinite Gδ-sets in the Euclidean
space R such that the size of H is c and distinct members of H are always non-
homeomorphic subspaces of R.

Proof. We work with Cantor derivatives and is enough to consider finite deriva-
tives. (Note in the following that we regard N to be defined in the classical way, i.e.
0 /∈ N.) If X is a Hausdorff space and A ⊂ X then the first derivative A′ of A is the
set of all limit points of A. Further, with A(1) := A′, for every k = 2, 3, 4, . . . the
k-th derivative A(k) of A is given by A(k) = (Ak−1))′. Naturally, the first derivative
of any set is closed. Consequently, A(m) ⊃ A(n) whenever m ≤ n.

Now, define for each n ∈ N a compact and countably infinite subset Kn of the
interval [2n, 2n + 1] with min Kn = 2n and max Kn = 2n + 1 such that K

(n)
n =

{2n + 1}. (Simply take for Kn an appropriate order-isomorphic copy of the well-
ordered set of all ordinal numbers α ≤ ωn.) Thus for m,n ∈ N the derived set
K

(m)
n contains the point 2n+1 if and only if m ≤ n. Furthermore, define a discrete

subset En of ]2n + 1, 2n + 7
4 ] via En :=

{
2n + 1 + 2−m + 2−m−k

∣∣m, k ∈ N}
. For

every nonempty S ⊂ N put GS :=
⋃

n∈S(Kn ∪ En). Since GS is the union of the
closed set

⋃
n∈S Kn and the discrete set

⋃
n∈S En, the set GS is a countably infinite

Gδ-set in R. Obviously, G
(m)
S =

⋃
n∈S K

(m)
n for every m ∈ N.

If ∅ 6= S ⊂ N then let NS denote the set of all x ∈ GS such that no neighbor-
hood of the point x in the space GS is compact. By construction, x ∈ NS if and
only if x = 2n + 1 for some n ∈ S. Hence a moment’s reflection suffices to see that

{
m ∈ N

∣∣ (
G

(m)
S \G

(m+1)
S

) ∩NS 6= ∅} = S,

for each nonempty set S ⊂ N. Thus the set S can always be recovered from the space
GS purely topologically and hence two spaces GS1 and GS2 are never homeomorphic
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for distinct nonempty sets S1, S2 ⊂ N. Thus the family H = {GS |∅ 6= S ⊂ N} is as
desired and this concludes the proof of Theorem 3.

Remark. Every Polish space is homeomorphic to a closed subspace of the
product of countably infinitely many copies of the real line (cf. [3] 4.3.25). As a
consequence, every uncountable Polish space is of size c and the size of a family of
mutually non-homeomorphic Polish spaces cannot exceed c. Therefore, by virtue
of Theorem 3, there exist precisely c countably infinite Polish spaces up to homeo-
morphism. In comparison, by [4] Theorem 1.3 there exist precisely c uncountable
Polish spaces up to homeomorphism.

7. Completely metrizable topologies

Theorem 4. There exist c mutually non-homeomorphic topologies τ on R
coarser than the Euclidean topology such that (R, τ) is completely metrizable (and
hence Polish).

Proof. Let H be a family as in Theorem 3. Our goal is to construct for each
H ∈ H a real arc AH which is a Gδ-subset of the Euclidean space R3 (and hence
completely metrizable) so that H × {0} × {0} ⊂ AH and AH and AH′ are never
homeomorphic for distinct H,H ′ ∈ H.

For two points P, Q in the vector space R3 let [P, Q] denote the closed straight
segment which connects the points P and Q, [P,Q] = {λP + (1−λ)Q|0 ≤ λ ≤ 1}.
Furthermore, for abbreviation, put y(n) := 2−n cos 2−n and z(n) := 2−n sin 2−n for
n ∈ N.

For every set H = {a1, a2, a3, . . . } in the family H with ai 6= aj for i 6= j we
define an injective and continuous mapping g = gH from R into R3 by

g(t) = (t sin t,−et, 0) for every real t ≤ 0

and so that g([k, k + 1]) = [g(k), g(k + 1)] for every integer k ≥ 0 where

g(0) = (0,−1, 0) and g((1) = (0,−1, 1) and

g(2m) = (am, 0, 0) and g(2m + 1) = (am, y(m), z(m)) for every m ∈ N.

The injectivity of g is feasible because if Em is the plane through the three points
g(2m), g(2m+1), g(2m+2) then Em 6= R × R × {0} and Em ∩ En = R×{0}×{0}
whenever m,n ∈ N and m 6= n.

Let H ∈ H and put AH := gH(R) and let AH denote the closure of AH in
the Euclidean space R3. Trivially, H × {0} × {0} is a Gδ-set in the space R3 and
a subspace of R3 homeomorphic with H. Obviously, AH = B×{0}×{0} ∪ AH for
some B ⊂ R. Hence AH = H×{0}×{0}∪ (AH ∩ (R3 \R×{0}×{0})) is the union of
a Gδ-set and a set which is the intersection of a closed set with an open set. Thus
AH is a Gδ-set in the space R3 and hence the Euclidean space AH is completely
metrizable.

A moment’s reflection is sufficient to see that H×{0}×{0} equals the set of all
points a in the space AH where no local basis at a contains only arcwise connected
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sets. Therefore, the space H can essentially be recovered from the space AH and
this finishes the proof.

Remark. In the previous proof one cannot replace H with a family H′ of mu-
tually non-homeomorphic countably infinite and closed subspaces of the Euclidean
space R. Because in view of [4] Theorem 8.1 we have |H′| ≤ ℵ1 for any such family
H′ and it is widely known (cf. [3]) that ℵ1 < c (i.e. the negation of the Continuum
Hypothesis) is irrefutable. However, by applying a theorem not proved in this paper
and with a bit greater effort concerning the notations it is not difficult to modify
the previous proof starting with a family H∗ of mutually non-homeomorphic closed
subspaces of R such that |H∗| = c and every member of H∗ is the union of infinitely
many mutually exclusive intervals [a, b] with a < b. (Such a family H∗ exists by [6]
Theorem 1.)

8. Completely normal spaces of first category

Theorem 5. There exist 2c mutually non-homeomorphic topologies τ ∈ L
such that (R, τ) is a completely normal space of first category.

Proof. Let B be an injective mapping from Z into the power set of R3 such
that B(k) is always a nonempty open ball in the Euclidean metric space R3 and
that {B(k)|k ∈ Z} is a basis of the Euclidean topology of R3. We define a double
sequence of distinct points

. . . , P−3, P−2, P−1, P0, P1, P2, P3, . . .

in R3 by induction. Start with three distinct points P−1, P0, P1 where P−1 does
not lie in the straight line through P0 and P1. Suppose that for n ∈ N we have
already chosen 2n+1 distinct points Pk with k ∈ Z and |k| ≤ n. Then choose
Pn+1 ∈ B(n + 1) and P−n−1 ∈ B(−n− 1) so that:

(i) three distinct points in {Pk||k| ≤ n+1} never lie in one straight line,
(ii) four distinct points in {Pk||k| ≤ n+1} never lie in one plane.
Such a choice is always possible since neither finitely many straight lines nor

finitely many planes can cover any ball B(k).
In this way we obtain a countable, dense subset {Pk|k ∈ Z} of the Euclidean

space R3 (with Pk 6= Pk′ whenever k 6= k′) such that [Pm, Pm+1] and [Pn, Pn+1] \
{Pn, Pn+1} are disjoint whenever m,n ∈ Z and m 6= n.

Now define a mapping g from R into R3 so that g(k) = Pk and g is a continuous
bijection from [k, k+1] into R3 with g([k, k+1]) = [Pk, Pk+1] for every k ∈ Z. Then
g : R→ R3 is injective and continuous and hence g(R) is a real arc within R3 such
that g(Z) is dense in R3. Therefore the Euclidean compact spaces [Pk, Pk+1] are
closed subsets of the space g(R) whose interior in the space g(R) is empty and hence
the space g(R) is of first category. By construction, for any nonempty open set U
in the Euclidean space R3 the set g−1(U) is an unbounded subset of R. Thus the
topology in L corresponding with g(R) is one that satisfies the desired properties
of Theorem 5. (Moreover, the topology is metrizable.)
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The first step is done and now we are going to track down 2c topologies as
desired. Since g(Z) is dense in R3 we may fix an infinite set Z ⊂ g(Z) such that
g(0) ∈ Z and the Euclidean distance between any two points in Z is always greater
than 1. (In particular, Z is an unbounded, countable subset of R3.) Similarly as in
the proof of Theorem 1, for each of the 2c free ultrafilters F on Z define a topology
τ̃ [F ] on R3 such that U ⊂ R3 lies in the family τ̃ [F ] if and only if U is Euclidean
open and satisfies g(0) /∈ U or U ∩ Z ∈ F .

Of course, by exactly the same arguments as in the proof of Theorem 1, for
every free ultrafilter F on Z the topology τ̃ [F ] is completely normal and coarser
than the Euclidean topology on R3 (and strictly coarser precisely at the point g(0)).

Now let τ = τ̃ [F ] be any such topology on R3. Then the set g(R) equipped with
the subspace topology of (R3, τ) is completely normal. (Here it is essential that the
property completely normal is, other than the property normal, hereditary.) Since
g is a continuous one-to-one mapping from (R, η) into (R3, τ) a fortiori, the family
g−1(τ) := {g−1(V )|V ∈ τ} is a topology in the family L and g is a homeomor-
phism from the space (R, g−1(τ)) onto the space (g(R), τ). In particular, the space
(R, g−1(τ)) is completely normal. Furthermore, every nonempty open set in the
space (R, g−1(τ)) is unbounded in R, whence (R, g−1(τ)) is a space of first category
by Proposition 2.

Trivially, U ∩Z = (U ∩g(R))∩Z for every Euclidean open set U ⊂ R3. There-
fore, by a similar argument as in the proof of Theorem 1, for distinct free ultrafilters
F1,F2 on Z the relative topologies of τ̃ [F1] and τ̃ [F2] on the set g(R) must be dis-
tinct. (We even have τ1 6⊂ τ2 for such distinct relative topologies τ1, τ2 on g(R).)
Thus by Lemma 3 we can track down a family U of free ultrafilters on Z such that
|U| = 2c and two spaces (g(R), τ̃ [F1]) and (g(R), τ̃ [F2]) are never homeomorphic for
distinct F1,F2 ∈ U . Hence the topologies g−1(τ̃ [F1]) and g−1(τ̃ [F2]) in the family
L are never homeomorphic for distinct F1,F2 ∈ U since g is a homeomorphism
from the space (R, g−1(τ̃ [F ])) onto the space (g(R), τ̃ [F ]) for every F ∈ U . This
concludes the proof.

9. Metrizable spaces of first category

Theorem 6. There exist c mutually non-homeomorphic topologies τ ∈ L such
that (R, τ) is a metrizable space of first category.

Proof. Let η3 denote the Euclidean topology on R3 and for any continuous one-
to-one mapping g : R → R3 let g−1(η3) := {g−1(V )|V ∈ η3} denote the topology
in L corresponding with the real arc g(R). Let H be a family as in Theorem 3.
Our goal is to construct a real arc hH(R) within the metrizable space (R3, η3) for
every H ∈ H such that firstly hH(Z) is dense in R3, whence every nonempty open
set in the space (R, h−1

H (η3)) is unbounded, and secondly two real arcs hH1(R) and
hH2(R) are never homeomorphic for distinct sets H1,H2 ∈ H.

Let H = {a1, a3, a5, . . . } be a set in the family H where ai 6= aj for distinct
(and always odd) indices i, j. Again let y(n) := 2−n cos 2−n and z(n) := 2−n sin 2−n

for n ∈ N. We firstly define h = hH on the domain [0,∞[. Choose an injective and
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continuous mapping h from [0,∞[ into R3 so that h([k, k + 1]) = [h(k), h(k + 1)]
for every integer k ≥ 0 where h(k) = ((−2)k/2, y(k), z(k)) when k is even and
h(k) = (ak, 0, 0) when k is odd. (Such a choice is clearly possible because if Em is
the plane through the three points h(m − 1), h(m), h(m + 1) for any even m ≥ 2
then Em ∩En = R×{0}×{0} whenever 2 ≤ m < n.) Clearly, H × {0} × {0} is the
intersection of h([0,∞[) with the x-axis R×{0}×{0}, and h([0,∞[) ∪R×{0}×{0}
is the closure of h([0,∞[) in R3.

For any Hausdorff space X let W (X) denote the set of all points x in X such
that no local basis at x contains only arcwise connected sets. By construction we
have

W (h([0,∞[)) = H × {0} × {0}.
In view of the definition of g in the proof of Theorem 5 it is plain to expand h to
a continuous and injective mapping from R into R3 such that h(Z \ N) is a dense
subset of the Euclidean space R3. As a consequence we have W (h(R)) = h(R) and
(R, h−1(η3)) is a space of first category. Moreover, W (h([t,∞[)) = H × {0} × {0}
for every real t ≤ 0 and W (h([t,∞[)) ⊂ H × {0} × {0} and W (h(]−∞, t])) =
h(]−∞, t]) for every t ∈ R. In particular, for every t ∈ R the set W (h([t,∞[)) is
countable and the set W (h(]−∞, t])) is uncountable and we have H×{0}×{0} =⋃{W (h([t,∞[))|t ∈ R}.

We finish the proof by verifying that H×{0}×{0} can be recovered from the
space h(R). (Note, again, that H×{0}×{0} and H are homeomorphic.)

For any arcwise connected metrizable space X let Y(X) be the family of all
sets Y ⊂ X such that Y and X \ Y are arcwise connected and Y \ {y} is arcwise
connected for some y ∈ Y . For the Euclidean space R we clearly have Y ∈ Y(R)
if and only if Y =]−∞, t] or Y = [t,∞[ for some t ∈ R. While for an arbitrary
real arc g(R) it is not necessary that Y(g(R)) = {g(Y )|Y ∈ Y(R)} (see the remark
below), we observe that Y ∈ Y(h(R)) if and only if Y = h(]−∞, t]) or Y = h([t,∞[)
for some t ∈ R. Therefore, H×{0}×{0} equals the union of all sets W (Y ) where
Y ∈ Y(h(R)) and W (Y ) is countable.

Remark. If g(R) ⊂ R3 is a real arc and a ∈ R such that g(xn) converges to
g(a) whenever (xn) is an unbounded and increasing sequence of reals then g(R) \
{g(x)} is arcwise connected for every x > a and g([u, v]) ∈ Y(g(R)) whenever
a < u < v.

10. A complete lattice of topologies

As any family of topologies on a fixed set, the family L is partially ordered
by the relation ⊂. A family K ⊂ L is a chain if and only if τ1 ⊂ τ2 or τ2 ⊂ τ1

whenever τ1, τ2 ∈ K. The extreme opposite of chains of topologies are families of
mutually incomparable topologies. (Two topologies τ1, τ2 are incomparable if and
only if neither τ1 ⊂ τ2 nor τ2 ⊂ τ1.)

In order to prove Theorem 1 we considered topologies in L which are coarse
at precisely one point a ∈ R (with a = 0). Let L0 := {τ ∈ L|C(τ) ⊂ {0}} be
the family of all topologies in L which are either coarse precisely at the point 0
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or equal to the Euclidean topology η. We have |L0| = |L| = 2c by the proof of
Theorem 1. Whereas, naturally, the family of all topologies on the set R coarser
than η is a lattice with respect to the partial ordering ⊂, the partially ordered
family (L,⊂) is not a lattice. (See the remark below.) However, the partially
ordered family (L0,⊂) is a lattice. Moreover, (L0,⊂) is a complete lattice (with η
as its maximum) in view of the following proposition which also shows that for the
minimum θ of the complete lattice L0 the space (R, θ) has interesting properties.
(Recall that a partially ordered set L is a complete lattice if and only if every
nonempty subset of L has an infimum and a supremum.)

Proposition 6. If ∅ 6= S ⊂ L0 then
⋂S ∈ L0. If K 6= ∅ is a chain in L0 then⋃K is a topology in L0, and

⋃K 6= η when η /∈ K. If θ =
⋂L0 then the Hausdorff

space (R, θ) is compact and any locally connected, compact real arc with precisely
one cut point is homeomorphic to the space (R, θ).

Proof. Let ∅ 6= S ⊂ L0. The family σ :=
⋂S is a topology on R coarser than

η since, generally, the lattice of all topologies on any set is closed under arbitrary
intersections. The topology σ is Hausdorff because σ and η coincide on R \ {0}
and if, say, x > 0 then 0 and x can be separated by the σ-open sets R \ [x

3 , 3x] and
]x
2 , 2x[. (Since [x

3 , 3x] is τ -compact for every τ ∈ L, the set R \ [x
3 , 3x] is τ -open for

every τ ∈ S.) If S 6= {η} then C(σ) = {0} by Proposition 1. Hence, σ ∈ L0. Recall
that if τ ∈ L0 and 0 ∈ U ∈ τ and V ∈ η then U ∪ V ∈ τ . And, by Proposition 1,
]−1, 1[∈ τ for τ ∈ L0 only if τ = η. Consequently, the family

⋃S is closed under
arbitrary unions and we have

⋃S 6= η when η /∈ S. And if S is a chain then
⋃S

is closed under finite intersections and hence
⋃S is a topology on R coarser than

η and finer than the Hausdorff topology
⋂S, whence

⋃S ∈ L0.
Define a topology τ0 ∈ L by declaring a set U ⊂ R τ0-open if and only if the

set U is η-open and either 0 /∈ U or U ⊃ {0} ∪ (R \ [−t, t]) for some t > 0. Then
C(τ0) = {0} and hence τ0 ∈ L0. Let K be the union of two congruent circles in the
plane R2 which meet in precisely one point. Then K (which looks like the digit 8
or the symbol ∞) is an arcwise connected and locally arcwise connected compact
subspace of the Euclidean plane R2 with precisely one cut point. (Recall that x
is a cut point of a connected space X if and only if X \ {x} is not connected.) It
is immediately obvious that K is a real arc which is homeomorphic to the space
(R, τ0). (Of course, 0 is the unique cut point in the arcwise connected space (R, τ0).)
It is well-known that any locally connected, compact real arc with precisely one
cut point is homeomorphic to K (cf. [7]). Finally, the topologies τ0 and

⋂L0 must
be identical because τ0 ∈ L0 and τ0 ⊂ τ for every τ ∈ L0 since if 0 ∈ U ∈ τ0 then
R \ U is Euclidean compact and hence τ -closed for every τ ∈ L0.

Remark. If a ∈ R and ϕa(x) = x + a for every x ∈ R and τ0 ∈ L0 is compact
then τa := {ϕa(U)|U ∈ τ0} is a topology in L with C(τa) = {a} and hence τa 6= τa′

whenever a 6= a′. Each topology τa is compact since ϕa is a homeomorphism from
(R, τ0) onto (R, τa). Thus by Proposition 6, L contains c (homeomorphic) compact
topologies. Therefore, the partially ordered family (L,⊂) is not a lattice because
if τ, τ ′ are distinct compact topologies in L then {τ, τ ′} has no infimum in (L,⊂)



112 G. Kuba

since a topology cannot be T2 if it is strictly coarser than a T2-compact topology.
(In particular, every nonempty chain of compact topologies in L is a singleton.) It
is also worth mentioning that if for τ ∈ L the space (R, τ) is compact then it must
be second countable. Because, naturally, the sets ]r1, r2[ with r1, r2 ∈ Q form a
network of τ and (cf. [2] 3.3.5.) any compact Hausdorff space has a countable basis
if it has a countable network.

11. Long chains of homeomorphic topologies

The topologies in the family T ⊂ L constructed in the proof of Theorem 1
are mutually non-homeomorphic and mutually incomparable. If τz ∈ L are the
completely metrizable topologies defined by the real arcs gz(R) in the proof of
Proposition 5 then {τz|z ∈ R} is a family of homeomorphic and mutually incom-
parable topologies. (They are mutually incomparable because if r, s ∈ R and r 6= s
then the sequence (1 + r + πn) converges to r in the space (R, τr), whereas in the
space (R, τs) the same sequence converges to s when r−s

π ∈ Z and diverges when
r−s
π /∈ Z.) However, a simple modification of the real arc gz(R) makes it possible

to track down a chain of homeomorphic topologies in L.

Proposition 7. There exists a chain J ⊂ L such that |J | = c and all spaces
(R, τ) with τ ∈ J are completely metrizable and homeomorphic.

Proof. For z ∈ R consider the mapping gz : R → R2 from the proof of
Proposition 5 and for −1 < a < 0 put g̃a(t) = g0(t) when t ≥ 0 and g̃a(t) = (0,−t)
when a ≤ t ≤ 0 and g̃a(t) = (t − a,−a) when t ≤ a. For −1 < a < 0 let τ̃a be
the topology in L corresponding with the Euclidean continuous injective mapping
g̃a : R→ R2. Then C(τ̃a) = [a, 0] and (R, τ̃a) is completely metrizable since g̃a(R) is
a Gδ-subset of R2. Obviously, τ̃r is a proper subset of τ̃s whenever −1 < r < s < 0.
All spaces (R, τ̃a) with −1 < a < 0 are homeomorphic because a moment’s reflection
suffices to see that if −1 < r < s < 0 then there is a homeomorphism from the
Euclidean plane R2 onto itself which maps g̃r(R) onto g̃s(R).

The chain J of homeomorphic topologies constructed in the previous proof is
disjoint from the lattice L0. If T is a family as in Theorem 1 then T ⊂ L0 but
there is no chain K ⊂ T with |K| > 1. Nevertheless, the following theorem shows
that the lattice L0 contains very long chains of homeomorphic topologies. (In the
following, as usual, if K2 is a ⊂-chain and K1 ⊂ K2 then K1 is dense in K2 if and
only if for every pair X, Y ∈ K2 with X ⊂ Y and X 6= Y there exists a set Z in
K1 \ {X,Y } such that X ⊂ Z ⊂ Y .)

Theorem 7. The lattice L0 contains four chains K0,K1,K2,K3 of (the max-
imal possible) size c such that for i ∈ {0, 1, 2, 3} all spaces (R, τ) with τ ∈ Ki are
homeomorphic, and
(i) if τ ∈ K0 then the space (R, τ) is second countable but not regular,
(ii) if τ ∈ K1 then the space (R, τ) is neither regular nor first countable,
(iii) if τ ∈ K2 then the space (R, τ) is completely normal but not first countable,
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(iv) if τ ∈ K3 then the space (R, τ) is completely metrizable,
(v) K0 ∪K1 ∪K2 is a chain and Ki is dense in K0 ∪K1 ∪K2 for every i ∈ {0, 1, 2},
(vi) every topology in K0 ∪ K1 ∪ K2 is coarser than every topology in K3.

Proof. The size of Ki cannot exceed c by Lemma 2. In order to obtain a chain
K3 as desired, for real α ≥ 0 define an injective and Euclidean continuous mapping
hα from R into R2 by hα(t) = (t,−t) for t ≤ 1 and hα(t) = (1, t− 2) for 1 ≤ t ≤ 2
and hα(t) = (2t−1, tα| sin(πt)|) for t ≥ 2.

Obviously hα(R) is a Gδ-subset of R2 for every α ≥ 0. All sets hα(R) with
α ≥ 0 are homeomorphic subspaces of R2 because for every α ≥ 0 the mapping
(t, h0(t)) 7→ (t, hα(t)) with t running through R is clearly a homeomorphism from
the real arc h0(R) onto the real arc hα(R). Let µ[α] be the topology in L correspond-
ing with hα. Thus µ[α] ∈ L0 and in the space (R, µ[α]) the family {B(α, ε)|ε > 0}
is a local basis at the point 0 where

B(α, ε) :=]−ε, ε[ ∪ {t ∈ R | t > 2
ε ∧ tα| sin(πt)| < ε}.

(Obviously, h−1
α (]−ε, ε[2∩hα(R)) = B(α, ε) for every positive ε < 1.) If 0 ≤ α1 ≤ α2

then B(α1, ε) ⊃ B(α2, ε) for every ε > 0 and hence µ[α1] ⊂ µ[α2]. If 0 ≤ α1 < α2

then µ[α1] 6= µ[α2] because the µ[α2]-open set B(α2, 1) cannot be µ[α1]-open since it
is plain that B(α1, ε) 6⊂ B(α2, 1) for every ε > 0. So we define K3 := {µ[α]|α ≥ 0}.

In order to find appropriate chains K0,K1,K2 we define a family D ⊂ L0

so that the partially ordered set (D,⊂) is a Boolean algebra isomorphic with the
power set of R. Write x + Y := {x + y|y ∈ Y } for x ∈ R and Y ⊂ R. For any set
D ⊂ [− 1

2 , 1
2 [ define a topology τ(D) ∈ L by declaring U ⊂ R open if and only if U

is Euclidean open and either 0 /∈ U or U ⊃ {0} ∪⋃∞
k=n k + D for some n ∈ N. It is

plain that τ(D) is a well-defined topology on R and that τ(D) ∈ L0.
Obviously, τ(∅) = η and τ(B) ⊂ τ(A) whenever A ⊂ B ⊂ [− 1

2 , 1
2 [. Further-

more τ(A) 6= τ(B) when A,B are distinct subsets of [− 1
2 , 1

2 [. Moreover, if B 6⊂ A
then τ(A) 6⊂ τ(B). Because if z ∈ B \ A then it is clear that the Euclidean open
set R \ (z + N) lies in τ(A) but not in τ(B). Therefore, if

D := {τ(D)|D ⊂ [− 1
2 , 1

2 [}
and g is a bijection from R onto [− 1

2 , 1
2 [ then X 7→ τ([− 1

2 , 1
2 [\g(X)) is an isomor-

phism from the Boolean algebra of all subsets of R onto the partially ordered set
(D,⊂).

A moment’s reflection suffices to see that τ(D) ⊂ µ[α] for every α ≥ 0 if
D ⊂ [− 1

2 , 1
2 [ and 0 is an interior point of D in the Euclidean space R. There-

fore, in order to achieve (vi) we choose mutually disjoint sets Λ0, Λ1, Λ2 ⊂]0, 1
3 [

of size c which are dense in ]0, 1
3 [ and define K0 := {τ([−λ, λ])|λ ∈ Λ0} and

K1 := {τ([−λ, λ[)|λ ∈ Λ1} and K2 := {τ(]−λ, λ[)|λ ∈ Λ2}. The specific choice of
Λ0, Λ1,Λ2 is made for saving the density condition (v) because if A ⊂ B ⊂ [− 1

2 , 1
2 [

and |B\A| = 1 then no topology from D lies strictly between τ(B) and τ(A). Clear-
ly, if 0 < λ, λ′ < 1

3 and f is any strictly increasing function from R onto R with
f(0) = 0 and f(n± λ) = n± λ′ for every n ∈ N then f is a homeomorphism from
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(R, τ([−λ, λ])) onto (R, τ([−λ′, λ′])) and from (R, τ([−λ, λ[)) onto (R, τ([−λ′, λ′[))
and from (R, τ(]−λ, λ[)) onto (R, τ(]−λ′, λ′[)). So the definitions of the four chains
Ki do the job provided that (i) and (ii) and (iii) hold.

For T ⊂ R put Γ(T ) := {e2πit|t ∈ T}. So Γ(R) = Γ([− 1
2 , 1

2 [) is the unit circle
x2 + y2 = 1 in R2 and Γ(D) ⊂ Γ(R) for D ⊂ [− 1

2 , 1
2 [. We finish the proof by

verifying the nice observation that for every D ⊂ [− 1
2 , 1

2 [,

(1) (R, τ(D)) is second countable if and only if Γ(D) is open in Γ(R),

(2) (R, τ(D)) is regular if and only if Γ(D) is closed in Γ(R).

Note that by Lemma 4 the space (R, τ(D)) is regular if and only if (R, τ(D))
is completely normal.

If Γ(D) is open in Γ(R) then {]−n−1, n−1[∪⋃∞
k=n k+D|n ∈ N} is clearly a local

basis at 0 in the space (R, τ(D)), whence (R, τ(D)) is second countable by Lemma
4. If Γ(D) is not closed in Γ(R) then for some b ∈ [− 1

2 , 1
2 [\D the point e2πib is a

limit point of Γ(D) in Γ(R). So the Euclidean closed set b +N is τ(D)-closed and,
obviously, the point 0 and the set b + N can not be separated by τ(D)-open sets,
whence τ(D) is not regular. If Γ(D) is closed in Γ(R) then, by the same arguments
as in the proof of Theorem 1, the space (R, τ(D)) is regular. (One can adopt the
proof line by line with the only modification that the set B = {0} ∪ (Z \ A) is
replaced by B = {0} ∪⋃∞

n=k n + D where k ∈ N is chosen so that A ∩ (n + D) = ∅
whenever n ≥ k.)

Finally, assume that Γ(D) is not open in Γ(R) and choose d ∈ D so that
e2πid is not an interior point of Γ(D) in Γ(R). Suppose that a countable family
{B1, B2, B3, . . . } of Euclidean open sets is a local basis at 0 in the space (R, τ(D)).
Let k1 be the least positive integer n such that B1 ⊃ n + D. If km is already
defined then let km+1 be the least integer n > km such that Bm+1 ⊃ n + D.
For every m ∈ N choose a small εm > 0 such that Γ(]d− εm, d + εm[) 6⊂ Γ(D) and
]km +d−εm, km +d+εm[⊂ Bm. Then for every m ∈ N we can choose a point xm in
]km+d−εm, km+d+εm[\(km+D). Then the set V := R\{xm|m ∈ N} is τ(D)-open
and hence V ⊃ Bn for some n ∈ N. So we obtain the contradiction that xn ∈ Bn ⊂
V and xn /∈ V for some n ∈ N. Thus the assumption on {B1, B2, B3, . . . } is false
and hence τ(D) is not first countable. This concludes the proof of Theorem 7.

Remark. The maximum of the Boolean algebra (D,⊂) is τ(∅) = η. The
topology τ([− 1

2 , 1
2 [) is the minimum of D and it is plain that (R, τ([− 1

2 , 1
2 [)) is

homeomorphic to the subspace Γ∗ := Γ(R) ∪ {0} × [1,∞[ of the Euclidean plane
R2. It is well-known that any locally connected, locally compact but not compact
real arc is homeomorphic either to Γ∗ or to the real line (cf. [7]). In view of (1)
and (2), the maximum and the minimum of the Boolean algebra D are the only
metrizable topologies in D. In view of (2) and Lemma 4 and |η| = c, precisely
c topologies in D are completely normal, whence the proof of Theorem 1 is not
dispensable. On the contrary, in view of Lemma 3 and Proposition 4 and the
well-known fact that R2 has only c Euclidean closed subsets (and the trivial fact
that Γ(R) has 2c subsets), an alternative proof of Theorem 2 (which does not use
ultrafilters) is provided by (2).
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12. Countably generated topologies

Only c topologies in the Boolean algebra D are first countable. But all topolo-
gies in D satisfy an interesting countability condition weaker than first countability.
Let L∗0 denote the family of all topologies in L0 such that Nτ (0) = Nη(0) ∩ F for
some filter F on R which is generated by a countable filter base. In other words,
there is a countable filter base B of subsets of R such that η∩Nτ (0) = {U ∈ η|∃B ∈
B : U ⊃ {0} ∪B}. So if τ ∈ L0 is first countable then τ ∈ L∗0. The converse is not
true since D ⊂ L∗0. In particular, |L∗0| = |D| = 2c. Whereas for A ⊂ B ⊂ [− 1

2 , 1
2 [

with |B \ A| = 1 there is no topology τ ∈ D strictly between τ(B) and τ(A), the
following theorem implies that between τ(B) and τ(A) there lie c comparable and c
incomparable topologies from L∗0 and also 2c incomparable topologies from L0 \L∗0.

Theorem 8. If τ1 ∈ L∗0 is strictly coarser than τ2 ∈ L0 then there are a
chain R ⊂ L0 with |R| = c and two families S ⊂ L0 and T ⊂ L0 \ L∗0 of mutually
incomparable topologies with |S| = c and |T | = 2c such that τ1 ⊂ τ ⊂ τ2 for every
τ ∈ R ∪ S ∪ T . Additionally R,S ⊂ L∗0 can be achieved if τ2 ∈ L∗0. For τ2 = η it
can be achieved that R,S ⊂ L∗0 and all topologies in R∪ S are homeomorphic.

Proof. First of all, if η ∩ Nτ (0) = {U ∈ η|∃B ∈ B : U ⊃ {0} ∪ B} for τ ∈ L0

and a filter base B then η ∩ Nτ (0) = {U ∈ η|∃B ∈ B : U ⊃ {0} ∪ (B \ [−1, 1])}.
Indeed, if U ∈ η contains {0} ∪ (B1 \ [−1, 1]) for some B1 ∈ B then U contains
]−k−1, k−1[∪(B1 \ [−1, 1]) for some k > 1. Since Vk := R \ ([−k,−k−1] ∪ [k−1, k])
lies in η ∩ Nτ (0), we have B2 ⊂ Vk for some B2 ∈ B and hence U ⊃ B1 ∩ B2.
Thus, since B is a filter base, we have B ⊂ B1 ∩B2 ⊂ U for some B ∈ B. There is
an important consequence of the two representations of η ∩ Nτ (0). If η 6= τ ∈ L0

and a filter base B generates a filter F with Nτ (0) = Nη(0) ∩ F then the family
B′ := {B \ [−1, 1]|B ∈ B} does not contain ∅ and hence B′ is a filter base which
generates a filter F ′ with Nτ (0) = Nη(0) ∩ F ′.

Let τ1 ∈ L∗0 be a proper subset of τ2 ∈ L0. Let B1 and B2 be families of subsets
of R \ [−1, 1] such that B1 is a countable filter base and B2 is a filter base when
τ2 6= η and B2 = {∅} when τ2 = η and η∩Nτi(0) = {U ∈ η|∃B ∈ Bi : U ⊃ {0}∪B}
for i ∈ {1, 2}. We may assume that B1 = {A1, A2, A3, . . . } where An is a proper
subset of Am whenever m < n. Since τ1 is strictly coarser than τ2, we can fix
D ∈ B2 such that An 6⊂ D for every n ∈ N. Since for every k ∈ N we have An ⊂ Vk

and hence An ⊂ R \ [−k, k] for some n ∈ N, we can choose a sequence a1, a2, a3, . . .
of distinct reals such that always an ∈ An \D and either an > n for every n ∈ N
or an < −n for every n ∈ N. Then {a1, a2, a3, . . . } is disjoint from D ∪ [−1, 1]
and Euclidean closed and discrete. Consequently, every subset of {a1, a2, a3, . . . }
is τ2-closed.

For every infinite set S ⊂ N define a topology ρ[S] ∈ L0 with ρ[S] ⊂ τ2 so that
an τ2-open neighborhood U of 0 is ρ[S]-open if and only if U ⊃ {an|k ≤ n ∈ S}
for some k ∈ N. We have τ1 ⊂ ρ[S] since {an|n ≥ k} ⊂ Ak for every k ∈ N.
Obviously, ρ[S1] ⊂ ρ[S2] when S1 ⊃ S2. Furthermore, if S2 \ S1 is an infinite set
then ρ[S1] 6⊂ ρ[S2] because the τ2-open set R \ {an|n /∈ S1} is ρ[S1]-open but not
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ρ[S2]-open. Therefore, we define R := {ρ[Rz]|z ∈ R} and S := {ρ[Sz]|z ∈ R}
where for every z ∈ R infinite sets Rz, Sz ⊂ N are defined so that if x < y then
on the one hand Rx ⊃ Ry and Rx \ Ry is an infinite set, and on the other hand
Sx ∩ Sy is a finite set. (For example, choose a bijection ϕ from N onto Q and
put Rx := {n ∈ N|x ≤ ϕ(n)} for every x ∈ R. Furthermore, for every x ∈ R
choose a set Tx ⊂ Q ∩ [x − 1, x] with T ′x = {x} and put Sx := ϕ−1(Tx).) Clearly,
for every infinite set S ⊂ N the family {B ∪ {an|k ≤ n ∈ S}|B ∈ B2 ∧ k ∈ N}
is a filter base which generates a filter F such that Nη(0) ∩ F = Nρ[S](0). Thus
R,S ⊂ L∗0 if B2 is countable. (So R,S ⊂ L∗0 can be achieved if τ2 ∈ L∗0.) If τ2 = η
(and hence B2 = {∅}) then the topologies in R∪ S are homeomorphic. Because if
S ⊂ N is infinite then any increasing bijection from R onto R which maps 0 to 0
and {a1, a2, a3, . . . } onto {an|n ∈ S} is clearly a homeomorphism from the space
(R, ρ[N]) onto (R, ρ[S]). So in order to conclude the proof it remains to define a
family T as desired.

For every free ultrafilter F on N put ρ[F ] :=
⋃

S∈F ρ[S]. Clearly, τ1 ⊂ ρ[F ] ⊂
τ2. We claim that ρ[F ] is a topology in the lattice L0. Firstly, let U1, U2 ∈ ρ[F ].
Then Ui ∈ ρ[Si] for Si ∈ F . Since S1 ∩ S2 is an infinite set in the ultrafilter F and
ρ[S1 ∩ S2] is a topology containing ρ[S1] and ρ[S2], the intersection U1 ∩ U2 lies in
ρ[S1 ∩ S2] and hence in ρ[F ]. Since U ∈ ρ[S] whenever 0 /∈ U ∈ η and S ∈ F , it
is plain that the family ρ[F ] is closed under arbitrary unions and furthermore that
ρ[F ] ∈ L0. We also observe that for U ∈ η ∩Nη(0) we have U ∈ ρ[F ] if and only if
U ⊃ B for some B ∈ B2 and {n ∈ N|an ∈ U} ∈ F . Let F1,F2 be free ultrafilters on
N and S ∈ F1 and assume ρ[F1] ⊂ ρ[F2]. The set V := R \ {an|n /∈ S} is τ2-open
and {n ∈ N|an ∈ V } = S. Thus V is ρ[F1]-open and hence ρ[F2]-open and this
implies S ∈ F2. So we derive F1 ⊂ F2 and hence F1 = F2. Thus the topologies
ρ[F ] are mutually incomparable and hence a family T as desired exists provided
that we always have ρ[F ] /∈ L∗0.

Assume indirectly that ρ[F ] ∈ L∗0 for a free ultrafilter F on N. Then we can
choose a countable filter base {B1, B2, B3, . . . } of subsets of R \ [−1, 1] such that
Bn ⊃ Bn+1 for every n ∈ N and η ∩ Nρ[F ](0) = {U ∈ η|∃n ∈ N : U ⊃ {0} ∪ Bn}.
Put Sm := {n ∈ N|an ∈ Bm} for every m ∈ N. Trivially, Sm ⊃ Sm+1 for every
m ∈ N. Let S be any set in the ultrafilter F . Then the set R \ {an|n /∈ S} is
ρ[F ]-open and hence it contains Bm for some m ∈ N. So for some m ∈ N we have
Bm ∩ {an|n /∈ S} = ∅ and hence Sm ⊂ S. Therefore, {Sm|m ∈ N} is a filter base
for the filter F . But this is impossible because a filter base for a free ultrafilter on
N must be uncountable (cf. [1] 7.8.a). This concludes the proof of Theorem 8.

Remark. For achieving R,S ⊂ L∗0, the additional assumption τ2 ∈ L∗0 is
essential in view of the following counterexample (τ1, τ2). Consider the topologies
τ1 := τ({0}) and τ ′1 := τ(]0, 1

2 [) in the Boolean algebra D ⊂ L∗0. Let τ2 be the
supremum of {τ1, τ

′
1} in the lattice L0. We observe that if τ1 6= τ ∈ L0 and

τ1 ⊂ τ ⊂ τ2 then τ /∈ L∗0. (Because for every k ∈ N and every sequence (un)
with 0 < un ≤ 1

2 the set ]−1, 1[∪⋃∞
n=k]n, n + un[ lies in τ \ τ1.) In particular,

τ2 /∈ L∗0. Furthermore, this counterexample demonstrates that neither D nor L∗0 is
a sublattice of L0.
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The minimum θ =
⋂L0 of the complete lattice L0 lies in L∗0. Thus by Theorem

8 and since it is clear that L0 = {τ ∈ L|τ ⊃ θ}, the topology θ has no immediate
successor in the lattice L0 or in the partially ordered set (L,⊂). On the other hand,
the following proposition shows that the maximum η =

⋃L0 of the lattice L0 has
2c immediate predecessors in the lattice L0 which are also immediate predecessors
of η in the partially ordered family (L,⊂).

Proposition 8. There exist 2c (mutually non-homeomorphic) topologies ϑ ∈
L0 such that no topology from L lies strictly between ϑ and η.

Proof. For a free ultrafilter F on Z let τ [F ] denote the topology as defined
in the proof of Theorem 1. If K ⊂ L0 \ {η} is a chain with τ [F ] ∈ K then η 6=⋃K ∈ L0 by Proposition 6. Therefore, by applying Zorn’s lemma, for every free
ultrafilter F on Z we can choose a maximal element ϑ[F ] in the partially ordered
set (L0 \ {η},⊂) such that τ [F ] ⊂ ϑ[F ]. For distinct free ultrafilters F1,F2 we
have ϑ[F1] 6= ϑ[F2] because τ [F1] 6= τ [F2] and η is the supremum of {τ [F1], τ [F2]}
in the lattice L0 in view of Proposition 1 since there are sets Ui ∈ τ [Fi] with
U1 ∩ U2 =]−1, 1[. (For example, choose S1 ∈ F1 \ F2 and with S2 := Z \ S1 put
Ui =]−1, 1[∪⋃

n∈Si
]n− 1

2 , n + 1
2 [ for i ∈ {1, 2}.) Finally, if η 6= τ ∈ L and τ ⊃ ϑ[F ]

then τ = ϑ[F ] since L0 = {τ ∈ L|τ ⊃ θ} and ϑ[F ] is maximal in L0 \ {η}.
Remark. By virtue of Theorem 8 every immediate predecessor of η in L0

must lie in L0\L∗0. This observation has two consequences in view of Proposition 8.
Firstly we can be sure that |L0 \L∗0| = |L∗0| = 2c. Secondly, the central assumption
τ1 ∈ L∗0 in Theorem 8 cannot be replaced with the weaker assumption τ1 ∈ L0.

13. Extremely long chains of topologies

Since both the existence of free ultrafilters and the existence of the topologies
ϑ[F ] in the proof of Proposition 8 are based on a maximality principle equivalent
with the Axiom of Choice, one might ask whether in the proof of Proposition 8 the
topology τ [F ] is maximal in L0 \ {η} already, whence ϑ[F ] = τ [F ]. This would be
far from being true in view of the following theorem which affirmatively answers
the interesting question whether the lattice L0 contains chains of size greater than
c. Define λ := log(c+), i.e. λ is the smallest cardinal number κ satisfying 2κ > c,
whence ℵ1 ≤ λ ≤ c and 2λ > c.

Theorem 9. For every free ultrafilter F on Z there is a chain K ⊂ L0 such
that |K| = 2λ and τ ⊃ τ [F ] for every τ ∈ K.

Proof. For n ∈ N define a strictly increasing real function ϕn by ϕn(x) =
3−n(x+1), whence ϕn maps [0, 1] onto [3−n, 2 ·3−n]. For every set A ⊂ [0, 1] define

Φ(A) := {0} ∪
⋃

k∈Z

(
k +

∞⋃
n=1

ϕn(A)
)
.

Let F be a free ultrafilter F on Z. For A ⊂ [0, 1] let τ [F , A] denote the coarsest
topology in the lattice L0 which is finer than τ [F ] and contains all Euclidean open
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sets U ⊃ Φ(A). (In particular, τ [F , ∅] = η.) Since τ [F , A] ∈ L0, it is plain
that W ∈ η is an open neighborhood of 0 in the space (R, τ [F , A]) if and only if
W = U ∩ V for some U, V ∈ η with U ⊃ Φ(A) and 0 ∈ V and V ∩ Z ∈ F .

Obviously, τ [F , B] ⊂ τ [F , A] if ∅ 6= A ⊂ B ⊂ [0, 1]. Moreover, τ [F , B] is
strictly coarser than τ [F , A] if ∅ 6= A ⊂ B ⊂ [0, 1] and A 6= B. Because if b ∈ B \A
then the Euclidean open set Y :=]−1, 1[∪(R \ (Z ∪ Φ({b}))) is τ [F , A]-open since
Y ⊃ Φ(A). But Y is not τ [F , B]-open because if k ∈ Z and |k| ≥ 2 and ε > 0 then
Y does not contain ]k, k + ε[∩Φ(B).

Therefore, K = {τ [F , A]|A ∈ A} is a chain as desired if A is a chain of subsets
of [0, 1] with |A| = 2λ.

Such a chain A can easily be defined as follows. Choose a linearly ordered
set (L,¹) such that |L| = 2λ and L has a dense subset D with |D| = c. (This
choice is possible in view of [1] Theorems 5.7.c and 5.8.b.) Define a bijection g
from D onto [0, 1] and put Ax := {g(y)|x ≺ y ∈ D} for every x ∈ L. Finally define
A := {Ax|x ∈ L}.

Remark. One does not need Theorem 9 to track down chains in L0 of size 2λ,
it is enough to define A as above and to take into consideration that our Boolean
algebra D ⊂ L∗0 is isomorphic with the power set of [0, 1]. The lattice L0 contains
chains of the maximal possible size 2c provided that 2λ = 2c. Of course, 2λ = 2c

trivially follows from the irrefutable hypothesis λ = c. (Conversely, 2λ = 2c does
not imply λ = c.) The hypothesis λ = c is irrefutable because λ = c is obviously a
consequence of the Continuum Hypothesis ℵ1 = c. However, the hypothesis λ = c
is much weaker than the very restrictive hypothesis ℵ1 = c because it is consistent
with ZFC set theory that λ = c and ℵ1 < µ < c for infinitely many cardinal
numbers µ. Even more, roughly speaking, λ = c cannot prevent an arbitrarily
large deviation of c from ℵ1. (Precisely, in view of [3] 16.13 and 16.20, if κ > ℵ1 is
an arbitrary regular cardinal in Gödel’s Universe L then there is a generic extension
Eκ of L preserving all cardinals such that λ = c = κ holds in the ZFC-model Eκ.)
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