COARSE TOPOLOGIES ON THE REAL LINE

Gerald Kuba

Abstract

Let $c=|\mathbb{R}|$ denote the cardinality of the continuum and let η denote the Euclidean topology on \mathbb{R}. Let \mathcal{L} denote the family of all Hausdorff topologies τ on \mathbb{R} with $\tau \subset \eta$. Let \mathcal{L}_{1} resp. \mathcal{L}_{2} resp. \mathcal{L}_{3} denote the family of all $\tau \in \mathcal{L}$ where (\mathbb{R}, τ) is completely normal resp. second countable resp. not regular. Trivially, $\mathcal{L}_{1} \cap \mathcal{L}_{3}=\emptyset$ and $\left|\mathcal{L}_{i}\right| \leq|\mathcal{L}| \leq 2^{c}$ and $\left|\mathcal{L}_{2}\right| \leq c$. For $\tau \in \mathcal{L}$ the space (\mathbb{R}, τ) is metrizable if and only if $\tau \in \mathcal{L}_{1} \cap \mathcal{L}_{2}$. We show that, up to homeomorphism, both \mathcal{L}_{1} and \mathcal{L}_{3} contain precisely 2^{c} topologies and \mathcal{L}_{2} contains precisely c completely metrizable topologies. For 2^{c} non-homeomorphic topologies $\tau \in \mathcal{L}_{1}$ the space (\mathbb{R}, τ) is Baire, but there are also 2^{c} non-homeomorphic topologies $\tau \in \mathcal{L}_{1}$ and c non-homeomorphic topologies $\tau \in \mathcal{L}_{1} \cap \mathcal{L}_{2}$ where (\mathbb{R}, τ) is of first category. Furthermore, we investigate the complete lattice \mathcal{L}_{0} of all topologies $\tau \in \mathcal{L}$ such that τ and η coincide on $\mathbb{R} \backslash\{0\}$. In the lattice \mathcal{L}_{0} we find 2^{c} (non-homeomorphic) immediate predecessors of the maximum η, whereas the minimum of \mathcal{L}_{0} is a compact topology without immediate successors in \mathcal{L}_{0}. We construct chains of homeomorphic topologies in $\mathcal{L}_{0} \cap \mathcal{L}_{1} \cap \mathcal{L}_{2}$ and in $\mathcal{L}_{0} \cap \mathcal{L}_{2} \cap \mathcal{L}_{3}$ and in $\mathcal{L}_{0} \cap\left(\mathcal{L}_{1} \backslash \mathcal{L}_{2}\right)$ and in $\mathcal{L}_{0} \cap\left(\mathcal{L}_{3} \backslash \mathcal{L}_{2}\right)$ such that the length of each chain is c (and hence maximal). We also track down a chain in \mathcal{L}_{0} of length 2^{λ} where λ is the smallest cardinal number κ with $2^{\kappa}>c$.

1. Introduction

Write $|S|$ for the cardinality (the size) of a the set S and let $c=|\mathbb{R}|$ denote the cardinality of the continuum. Let η denote the Euclidean topology on \mathbb{R} and let \mathcal{L} denote the family of all topologies τ on \mathbb{R} where τ is coarser than η (i.e. τ is a subset of η) and (\mathbb{R}, τ) is a Hausdorff space. If $\tau \in \mathcal{L}$ and B is a nonempty bounded subset of \mathbb{R} then the relative topologies of τ and η coincide on B. (Because they coincide on the interval $[\inf B, \sup B]$ due to the well-known fact that a topology cannot be T_{2} if it is strictly coarser than a T_{2}-compact topology.) Nevertheless, on the whole space \mathbb{R} the two topologies τ and η need not coincide. In fact, as we will see, $|\mathcal{L}|=2^{c}$. (Note that $|\mathcal{L}| \leq 2^{c}$ is trivial because $|\eta|=c$.) Moreover, as we will prove in Section 4, \mathcal{L} contains 2^{c} mutually non-homeomorphic topologies τ such that (\mathbb{R}, τ) is a completely normal Baire space. In Section 8 we will prove that \mathcal{L} also contains 2^{c} mutually non-homeomorphic topologies τ such that (\mathbb{R}, τ) is a completely normal space of first category.

[^0]For every $\tau \in \mathcal{L}$ the space (\mathbb{R}, τ) is separable and arcwise connected and σ compact. Separability is trivial since \mathbb{Q} is clearly a dense set in (\mathbb{R}, τ). Arcwise connectedness and σ-compactness follow immediately from the coincidence of η and τ on each Euclidean compact interval. Whereas the Euclidean space \mathbb{R} is second countable, for arbitrary $\tau \in \mathcal{L}$ the space (\mathbb{R}, τ) need not be second countable. In fact, there cannot be more than c second countable topologies in the family \mathcal{L} since $|\eta|=c$ and a set of size c has precisely c countable subsets. Due to separability, for $\tau \in \mathcal{L}$ the space (\mathbb{R}, τ) is metrizable if and only if it is regular and second countable. In particular, there are at most c metrizable topologies in the family \mathcal{L}. In Section 7 we will prove that there exist c mutually non-homeomorphic topologies $\tau \in \mathcal{L}$ such that (\mathbb{R}, τ) is completely metrizable. In Section 9 we will prove that there exist c mutually non-homeomorphic topologies $\tau \in \mathcal{L}$ such that (\mathbb{R}, τ) is a metrizable space of first category.

Let us call the image $g(\mathbb{R})$ of any continuous one-to-one mapping g from the Euclidean space \mathbb{R} into a Hausdorff space X a real arc. There is a natural correspondence between topologies in the family \mathcal{L} and real arcs. Because, with g and X as above, evidently the family τ_{g} of all sets $g^{-1}(U)$ where U is an open subset of X is a topology in the family \mathcal{L} and g defines a homeomorphism between the space $\left(\mathbb{R}, \tau_{g}\right)$ and the subspace $g(\mathbb{R})$ of X. Conversely, for each $\tau \in \mathcal{L}$ the space (\mathbb{R}, τ) is a real arc since the identity is a continuous mapping from (\mathbb{R}, η) onto (\mathbb{R}, τ). As a consequence of our enumeration results mentioned above and proved in Sections 4 and 7 , up to homeomorphism there are precisely 2^{c} completely normal real arcs and precisely c completely metrizable real arcs.

2. Locally and globally coarse topologies

If τ is a topology on the set \mathbb{R} and $a \in \mathbb{R}$ then let $\mathcal{N}_{\tau}(a)$ denote the filter of the neighborhoods of the point a in the space (\mathbb{R}, τ). Trivially, $\mathcal{N}_{\tau}(a) \subset \mathcal{N}_{\eta}(a)$ for every $\tau \in \mathcal{L}$. Let us call a topology τ in our family \mathcal{L} coarse at the point $a \in \mathbb{R}$ if and only if $\mathcal{N}_{\tau}(a) \neq \mathcal{N}_{\eta}(a)$. A proof of the following lemma is straightforward.

Lemma 1. If an injective mapping g with domain \mathbb{R} defines a real arc $g(\mathbb{R})$ then the topology τ_{g} in \mathcal{L} corresponding with g is coarse at $a \in \mathbb{R}$ if and only if the bijection g^{-1} from $g(\mathbb{R})$ onto \mathbb{R} is not continuous at $g(a)$.

The following proposition makes it easy to detect whether a topology $\tau \in \mathcal{L}$ is coarse at a point $a \in \mathbb{R}$.

Proposition 1. A topology $\tau \in \mathcal{L}$ is coarse at a point $a \in \mathbb{R}$ if and only if every set in the filter $\mathcal{N}_{\tau}(a)$ is an unbounded subset of \mathbb{R}.

Proof. Let $\tau \in \mathcal{L}$ and $a \in \mathbb{R}$ and assume that some $U \in \mathcal{N}_{\tau}(a)$ is bounded. Fix $\delta>0$ so that $[a-\delta, a+\delta] \subset U$ and let $0<\varepsilon \leq \delta$ be arbitrary. The Euclidean compact set $A=[\inf U, a-\varepsilon] \cup[a+\varepsilon, \sup U]$ is compact and hence closed in the space (\mathbb{R}, τ). Consequently, $] a-\varepsilon, a+\varepsilon[=U \backslash A$ is τ-open whenever $0<\varepsilon \leq \delta$ and hence $\mathcal{N}_{\tau}(a)=\mathcal{N}_{\eta}(a)$.

The following proposition provides a nice and very useful characterization of the first-category topologies in the family \mathcal{L}.

Proposition 2. For $\tau \in \mathcal{L}$ the space (\mathbb{R}, τ) is of first category if and only if every nonempty open set in the space (\mathbb{R}, τ) is an unbounded subset of \mathbb{R}.

Proof. Assume firstly that $\tau \in \mathcal{L}$ and every nonempty τ-open set is unbounded. Then for each $n \in \mathbb{N}$ the set $[-n, n]$ is nowhere dense in the space (\mathbb{R}, τ). (Note that the Euclidean compact set $[-n, n]$ is τ-compact and hence τ-closed.) Thus the space (\mathbb{R}, τ) is of first category since $\mathbb{R}=\bigcup_{n=1}^{\infty}[-n, n]$. Assume secondly that $\tau \in \mathcal{L}$ and that (\mathbb{R}, τ) is a space of first category and suppose indirectly that there exists a nonempty τ-open set U which is bounded. As an open subspace of a space of first category, the set U equipped with the relative topology of τ is a space of first category. But this space is identical with U equipped with the relative topology of η (since U is bounded) and, naturally, the Euclidean space U is of second category. This is a contradiction.

Remark. As a trivial consequence of Propositions 1 and 2 , for $\tau \in \mathcal{L}$ the space (\mathbb{R}, τ) is of first category if and only if τ is everywhere coarse. In [5] we construct $2^{2^{c}}$ non-homeomorphic connected topologies τ on \mathbb{R} with certain properties where τ is finer than η. In [5] it is not explicitly stated that all these topologies τ are actually everywhere finer than η, i.e. $\mathcal{N}_{\eta}(a)$ is a proper subset of $\mathcal{N}_{\tau}(a)$ for every $a \in \mathbb{R}$. However, some of these $2^{2^{c}}$ topologies are of first category, but some of them are of second category.

For $\tau \in \mathcal{L}$ let $C(\tau)$ denote the set of all points a such that τ is coarse at a. Clearly, if $C(\tau) \neq \mathbb{R}$ then the subspace topologies of τ and η coincide on the set $\mathbb{R} \backslash C(\tau)$. The following proposition shows that the set $C(\tau)$ is always of a very special form.

Proposition 3. Let $\tau \in \mathcal{L}$. Then $C(\tau)$ is a closed subset of the Euclidean space \mathbb{R}. Moreover, the set $C(\tau)$ is closed and meager in the space (\mathbb{R}, τ).

Proof. Let $\tau \in \mathcal{L}$. Firstly we verify that $C(\tau)$ is closed in the space (\mathbb{R}, τ). (Then, of course, $C(\tau)$ is closed in the Euclidean space automatically.) Assume that $x \in \mathbb{R}$ is a limit point of the set $C(\tau)$ in the space (\mathbb{R}, τ). Then $U \cap C(\tau) \neq \emptyset$ for every τ-open set U in the filter $\mathcal{N}_{\tau}(x)$ and hence every set in the filter $\mathcal{N}_{\tau}(x)$ lies in the filter $\mathcal{N}_{\tau}(a)$ for some $a \in C(\tau)$. Thus every set in $\mathcal{N}_{\tau}(x)$ is unbounded by Proposition 1. Hence $x \in C(\tau)$ by Proposition 1. Therefore the set $C(\tau)$ is τ-closed. Since $[-n, n]$ is compact and hence closed in the space (\mathbb{R}, τ) for every $n \in \mathbb{N}$, all sets $C(\tau) \cap[-n, n]$ are closed in the space (\mathbb{R}, τ). No point in $C(\tau) \cap[-n, n]$ is an τ-interior point of $C(\tau) \cap[-n, n]$ because if $a \in C(\tau)$ then $S \not \subset[-n, n]$ for every $S \in \mathcal{N}_{\tau}(a)$ by Proposition 1. Consequently, $C(\tau) \cap[-n, n]$ is nowhere dense in the space (\mathbb{R}, τ) for every $n \in \mathbb{N}$ and hence the set $C(\tau)=\bigcup_{n=1}^{\infty}(C(\tau) \cap[-n, n])$ is meager in the space (\mathbb{R}, τ).

The following proposition generalizes the special fact that (\mathbb{R}, η) is a Baire space with $C(\eta)=\emptyset$ and will be useful for the proof of the enumeration results in Sections 4 and 5.

Proposition 4. If $\tau \in \mathcal{L}$ such that $C(\tau)$ is a meager set in the space (\mathbb{R}, η) then (\mathbb{R}, τ) is a Baire space.

Proof. For $\tau \in \mathcal{L}$ assume that $C(\tau)$ is a meager subset of Euclidean space \mathbb{R}. Then $C(\tau) \neq \mathbb{R}$ and hence $U:=\mathbb{R} \backslash C(\tau)$ is nonempty. By Proposition 3 the set U is Euclidean open (even τ-open). As an open subspace of the Baire space (\mathbb{R}, η), the space (U, η) is Baire. The spaces (U, η) and (U, τ) are identical in view of $U \cap C(\tau)=\emptyset$ and the definition of the set $C(\tau)$. In particular, the space (U, τ) is Baire. As the complement of a meager set, U is dense in the Euclidean space \mathbb{R} and hence dense in the space (\mathbb{R}, τ) a fortiori. This is enough in view of the well-known fact (cf. [2] 3.9.J.b) that a Hausdorff space must be Baire if some dense subspace is Baire.

The following proposition, which implies that \mathcal{L} contains c completely metrizable topologies, demonstrates that the converse of Proposition 4 would be far from being true.

Proposition 5. For every $z \in \mathbb{R}$ there exists a topology $\tau_{z} \in \mathcal{L}$ with $C\left(\tau_{z}\right)=$ $]-\infty, z]$ such that all spaces $\left(\mathbb{R}, \tau_{z}\right)$ are completely metrizable and homeomorphic.

Proof. We work with real arcs and define for every $z \in \mathbb{R}$ an injective and continuous mapping g_{z} from the Euclidean space \mathbb{R} into the Euclidean plane \mathbb{R}^{2} by putting $g_{z}(t)=(t, 0)$ for $t \leq z$ and $g_{z}(t)=(z+(t-z)(z+1-t), t-z)$ for $z \leq t \leq z+1$ and $g_{z}(t)=\left(z+(z+1-t)|\sin (z+1-t)|, e^{z+1-t}\right)$ for $t \geq z+1$. Clearly, $g_{z}(\mathbb{R})$ is a closed subset of the complete metric space \mathbb{R}^{2}. We observe that g_{z}^{-1} is continuous at $g_{z}(a)$ if and only if $\left.a \in\right] z, \infty\left[\right.$. (Hence $\left.\left.C\left(\tau_{z}\right)=\right]-\infty, z\right]$ for $\tau_{z} \in \mathcal{L}$ corresponding with g_{z}.) Finally, for every $z \in \mathbb{R}$ the space $g_{z}(\mathbb{R})$ is homeomorphic to the space $g_{0}(\mathbb{R})$ since the translation $(x, y) \mapsto(x-z, y)$ of the vector space \mathbb{R}^{2} $\operatorname{maps} g_{z}(\mathbb{R})$ onto $g_{0}(\mathbb{R})$.

3. Selecting non-homeomorphic topologies

Lemma 2. If $\mathcal{H} \subset \mathcal{L}$ and all topologies in \mathcal{H} are homeomorphic then $|\mathcal{H}| \leq c$.
Proof. Firstly, if $\tau_{1}, \tau_{2} \in \mathcal{L}$ then each continuous function from the space $\left(\mathbb{R}, \tau_{1}\right)$ into the space $\left(\mathbb{R}, \tau_{2}\right)$ is completely determined by its values at the points in the τ_{1}-dense set \mathbb{Q}. Secondly, there are precisely c functions from \mathbb{Q} into \mathbb{R}.

The following lemma makes it very easy to provide mutually non-homeomorphic topologies in certain situations.

Lemma 3. If the size of a family $\mathcal{K} \subset \mathcal{L}$ is greater than c then \mathcal{K} contains a family \mathcal{K}^{\prime} equipollent to \mathcal{K} such that all topologies in \mathcal{K} are mutually non-homeomorphic.

Proof. Define an equivalence relation \sim on \mathcal{K} by putting $\tau_{1} \sim \tau_{2}$ for $\tau_{i} \in \mathcal{K}$ when the spaces $\left(\mathbb{R}, \tau_{1}\right)$ and $\left(\mathbb{R}, \tau_{2}\right)$ are homeomorphic. By Lemma 2 the size of an equivalence class cannot exceed c. Consequently, from $|\mathcal{K}|>c$ we derive that the total number of the equivalence classes must be $|\mathcal{K}|$. So we are done by choosing for \mathcal{K}^{\prime} a set of representatives with respect to the equivalence relation \sim.

4. Completely normal Baire topologies

The following lemma is very useful in order to avoid a lengthy verification of complete normality by verifying regularity only.

Lemma 4. Let $z \in \mathbb{R}$ and $\tau \in \mathcal{L}$ with $C(\tau)=\{z\}$. Then the space (\mathbb{R}, τ) is second countable if and only if some local basis at the point z is countable. And the space (\mathbb{R}, τ) is completely normal if and only if it is regular.

Proof. Clearly, $z \notin V \in \eta$ implies $V \in \tau$. This settles the first statement and has also the consequence that $U \cup V \in \tau$ whenever $z \in U \in \tau$ and $V \in \eta$. Assume that (\mathbb{R}, τ) is regular and that in the space (\mathbb{R}, τ) we have $\bar{A} \cap B=A \cap \bar{B}=\emptyset$ for $A, B \subset \mathbb{R}$. If $z \notin A \cup B$ then A and B can be separated by η-open subsets of $\mathbb{R} \backslash\{z\}$ which must be τ-open. So assume $z \in A \cup B$ and, say, $z \in A$. Then we can find disjoint sets $U_{1}, V_{1} \in \eta$ with $z \notin U_{1} \cup V_{1}$ such that $A \backslash\{z\} \subset U_{1}$ and $B \subset V_{1}$. Furthermore, since the space (\mathbb{R}, τ) is regular, we can find disjoint sets $U_{2}, V_{2} \in \tau$ with $z \in U_{2}$ and $\bar{B} \subset V_{2}$. Then $U_{1} \cup U_{2}$ and $V_{1} \cap V_{2}$ are disjoint τ-open sets and $A \subset U_{1} \cup U_{2}$ and $B \subset V_{1} \cap V_{2}$.

Our first main result is the following theorem.
THEOREM 1. There exists a family $\mathcal{T} \subset \mathcal{L}$ with $|\mathcal{T}|=2^{c}$ such that (\mathbb{R}, τ) is a completely normal Baire space for each $\tau \in \mathcal{T}$ and two spaces (\mathbb{R}, τ) and $\left(\mathbb{R}, \tau^{\prime}\right)$ are never homeomorphic for distinct topologies $\tau, \tau^{\prime} \in \mathcal{T}$.

Proof. The cardinal number 2^{c} indicates that the natural way to define \mathcal{T} is to use ultrafilters on a countably infinite set. It is well-known (see [1]) that an infinite set of size κ carries precisely $2^{2^{\kappa}}$ free ultrafilters. In particular, there are 2^{c} free ultrafilters on \mathbb{Z}. Note that no free ultrafilter contains a finite set.

For each free ultrafilter \mathcal{F} on \mathbb{Z} define a topology $\tau=\tau[\mathcal{F}]$ on \mathbb{R} by declaring $U \subset \mathbb{R}$ open if and only if U is Euclidean open and satisfies $0 \notin U$ or $U \cap \mathbb{Z} \in \mathcal{F}$. It is plain that τ is a well-defined topology on \mathbb{R} coarser than η. Further, (\mathbb{R}, τ) is a Hausdorff space, whence $\tau \in \mathcal{L}$, because if $u<v$ then the intersection $\mathbb{Z} \backslash[u, v]$ of \mathbb{Z} and the Euclidean open set $\mathbb{R} \backslash[u, v]$ must lie in \mathcal{F} (since $\mathbb{Z} \cap[u, v]$ is a finite set and the ultrafilter \mathcal{F} is free). By Proposition 1 we have $0 \in C(\tau)$ since $M \cap \mathbb{Z} \in \mathcal{F}$ for every $M \in \mathcal{N}_{\tau}(0)$ and every $S \in \mathcal{F}$ is an infinite set. Moreover, $C(\tau)=\{0\}$ since τ and η coincide on the Euclidean open set $\mathbb{R} \backslash\{0\}$. Hence (\mathbb{R}, τ) is a Baire space by Proposition 4.

We claim that (\mathbb{R}, τ) is completely normal. By Lemma 4 it is enough to check the T_{3}-separation property. Let $A \subset \mathbb{R}$ be τ-closed (and hence η-closed) and let $b \in \mathbb{R} \backslash A$. If $b \neq 0$ then we can find $\epsilon>0$ and $U \in \eta$ disjoint from $V:=] b-\epsilon, b+\epsilon[$ with $0 \notin V$ and $A \subset U$. Then V is τ-open and $U_{\epsilon}:=U \cup(\mathbb{R} \backslash[b-\epsilon, b+\epsilon])$ is τ-open and $b \in V$ and $A \subset U_{\epsilon}$ and $U_{\epsilon} \cap V=\emptyset$. (The set $U_{\epsilon} \cap \mathbb{Z}$ lies in the free ultrafilter \mathcal{F} since $\mathbb{Z} \backslash U_{\epsilon}$ is finite.) If $b=0$ then $B:=\{0\} \cup(\mathbb{Z} \backslash A)$ is η-closed and disjoint from A and hence we can choose disjoint η-open sets U, V with $A \subset U$ and $b \in B \subset V$. The set U is τ-open because $0 \notin U$ since $0 \in V$ and $U \cap V=\emptyset$. The set V is τ-open
because $\mathbb{Z} \backslash A \in \mathcal{F}$ (since A is τ-closed) and hence from $V \cap \mathbb{Z} \supset B \cap \mathbb{Z} \supset \mathbb{Z} \backslash A$ we derive $V \cap \mathbb{Z} \in \mathcal{F}$.

Finally we observe that $\tau\left[\mathcal{F}_{1}\right] \not \subset \tau\left[\mathcal{F}_{2}\right]$ (and hence $\tau\left[\mathcal{F}_{1}\right] \neq \tau\left[\mathcal{F}_{2}\right]$) whenever \mathcal{F}_{1} and \mathcal{F}_{2} are distinct free ultrafilters on \mathbb{Z}. Indeed, if \mathcal{F}_{1} and \mathcal{F}_{2} are free ultrafilters on \mathbb{Z} and $\tau\left[\mathcal{F}_{1}\right] \subset \tau\left[\mathcal{F}_{2}\right]$ and $S \in \mathcal{F}_{1}$ then the $\tau\left[\mathcal{F}_{1}\right]$-open set $\left.W:=\right]-\frac{1}{3}, \frac{1}{3}[\cup$ $\left.\bigcup_{s \in S}\right] s-\frac{1}{3}, s+\frac{1}{3}\left[\right.$ is a $\tau\left[\mathcal{F}_{2}\right]$-open neighborhood of 0 and hence $S \cup\{0\}=W \cap \mathbb{Z}$ lies in \mathcal{F}_{2}, whence $S \in \mathcal{F}_{2}$. (Note that $\mathbb{Z} \backslash\{0\} \in \mathcal{F}_{2}$ since the ultrafilter \mathcal{F}_{2} is free.) Thus $\mathcal{F}_{1} \subset \mathcal{F}_{2}$ and hence $\mathcal{F}_{1}=\mathcal{F}_{2}$ since \mathcal{F}_{1} and \mathcal{F}_{2} are ultrafilters.

REmark. Since \mathcal{L} contains only c second countable topologies, there are 2^{c} free ultrafilters \mathcal{F} on \mathbb{Z} such that the space $(\mathbb{R}, \tau[\mathcal{F}])$ is not second countable or, equivalently, that any local basis at 0 is uncountable. In fact, this is true for every free ultrafilter \mathcal{F} on \mathbb{Z}. Indeed, assume indirectly that the countable family $\left\{B_{1}, B_{2}, B_{3}, \ldots\right\}$ is a local basis at 0 in the space $(\mathbb{R}, \tau[\mathcal{F}])$. Then we may choose a sequence $a_{1}, a_{2}, a_{3}, \ldots$ of distinct integers and $0<\epsilon_{n}<\frac{1}{3}(n \in \mathbb{N})$ such that $a_{n} \in B_{n} \backslash\left\{a_{k} \mid k<n\right\}$ and $\left[a_{n}-\epsilon_{n}, a_{n}+\epsilon_{n}\right] \subset B_{n}$ for every $n \in \mathbb{N}$. Then with $S=\mathbb{Z} \backslash\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ the set

$$
\left.U:=\bigcup_{n=1}^{\infty}\right] a_{n}-\epsilon_{n}, a_{n}+\epsilon_{n}\left[\cup \bigcup_{s \in S}\right] s-\frac{1}{3}, s+\frac{1}{3}[
$$

is a $\tau[\mathcal{F}]$-open $\tau[\mathcal{F}]$-neighborhood of 0 (since $U \cap \mathbb{Z}=\mathbb{Z} \in \mathcal{F})$ with $a_{n}+\epsilon_{n} \in B_{n} \backslash U$ and hence $B_{n} \not \subset U$ for every $n \in \mathbb{N}$. Thus $\left\{B_{1}, B_{2}, B_{3}, \ldots\right\}$ is not a local basis at 0 .

5. Non-regular Baire topologies

In view of Theorem 1 and Lemma 4 there arises the question whether \mathcal{L} contains also 2^{c} topologies τ which are Baire because of $C(\tau)=\{0\}$ and where (\mathbb{R}, τ) is not regular. This is indeed true.

Theorem 2. There exist 2^{c} mutually non-homeomorphic topologies $\tau \in \mathcal{L}$ such that (\mathbb{R}, τ) is a Baire space which is not regular.

Proof. It is enough to modify the proof of Theorem 1 in the following way. For any free ultrafilter \mathcal{F} on \mathbb{Z} define a topology $\sigma[\mathcal{F}]$ on \mathbb{R} by declaring $U \subset \mathbb{R}$ open if and only if U is Euclidean open and $0 \notin U$ or $\left.U \supset \bigcup_{s \in S}\right] s-\frac{1}{3}, s+\frac{1}{3}$ [for some $S \in \mathcal{F}$. Certainly, $\sigma[\mathcal{F}]$ is well-defined and Hausdorff. The space ($\mathbb{R}, \sigma[\mathcal{F}]$) is not regular since, for example, the point 0 and the obviously $\sigma[\mathcal{F}]$-closed set $\bigcup_{k=-\infty}^{k=\infty}\left[k+\frac{1}{3}, k+\frac{2}{3}\right]$ cannot be separated by $\sigma[\mathcal{F}]$-open sets. Finally, similarly as in the proof of Theorem $1, \sigma[\mathcal{F}] \neq \sigma\left[\mathcal{F}^{\prime}\right]$ whenever \mathcal{F} and \mathcal{F}^{\prime} are distinct free ultrafilters on \mathbb{Z}.

REmARK. In the proof of Theorem 1 or Theorem 2 one cannot avoid an application of Lemma 3 (or a similar transfinite counting argument). Actually, for every free ultrafilter \mathcal{F}_{0} on \mathbb{Z} there is an infinite family \mathcal{U} of free ultrafilters on \mathbb{Z} with $\mathcal{F}_{0} \in \mathcal{U}$ such that all topologies $\tau[\mathcal{F}](\mathcal{F} \in \mathcal{U})$ are homeomorphic and all topologies $\sigma[\mathcal{F}](\mathcal{F} \in \mathcal{U})$ are homeomorphic. Indeed, put $\mathcal{U}:=\left\{\mathcal{F}_{k} \mid k=0,1,2, \ldots\right\}$ where
$\mathcal{F}_{k}:=\left\{k+S \mid S \in \mathcal{F}_{0}\right\}$ for every integer $k \geq 0$. Clearly, $\mathcal{F}_{m}=\left\{(m-n)+S \mid S \in \mathcal{F}_{n}\right\}$ whenever $n, m \geq 0$ and each family \mathcal{F}_{k} is a free ultrafilter on \mathbb{Z}. We have $\mathcal{F}_{n} \neq \mathcal{F}_{m}$ whenever $0 \leq n<m$ because firstly precisely one of the congruence classes modulo $2 m$ lies in \mathcal{F}_{n}. (Note that a union of finitely many sets lies in an ultrafilter only if one of these sets lies in the ultrafilter.) And secondly, if a congruence class A modulo $2 m$ lies in \mathcal{F}_{n} then the congruence class $(m-n)+A$ lies in \mathcal{F}_{m} but not in \mathcal{F}_{n}. (For A and $(m-n)+A$ are disjoint.) Finally, for each $k \in \mathbb{N}$ define an increasing bijection φ_{k} from \mathbb{R} onto \mathbb{R} so that $\varphi_{k}(0)=0$ and $\varphi_{k}(n)=n+k$ for every $n \in \mathbb{Z} \backslash[-k, 0]$. Since φ_{k} is a homeomorphism from the Euclidean space $\mathbb{R} \backslash\{0\}$ onto itself, by considering the open neighborhoods of 0 it is evident that φ_{k} is a homeomorphism from the space $\left(\mathbb{R}, \tau\left[\mathcal{F}_{0}\right]\right)$ onto the space $\left(\mathbb{R}, \tau\left[\mathcal{F}_{k}\right]\right)$ and also a homeomorphism from the space $\left(\mathbb{R}, \sigma\left[\mathcal{F}_{0}\right]\right)$ onto the space $\left(\mathbb{R}, \sigma\left[\mathcal{F}_{k}\right]\right)$.

6. Counting Polish spaces

For the proof of our second main result in Section 7 we need the following enumeration theorem.

Theorem 3. There is a family \mathcal{H} of countably infinite G_{δ}-sets in the Euclidean space \mathbb{R} such that the size of \mathcal{H} is c and distinct members of \mathcal{H} are always nonhomeomorphic subspaces of \mathbb{R}.

Proof. We work with Cantor derivatives and is enough to consider finite derivatives. (Note in the following that we regard \mathbb{N} to be defined in the classical way, i.e. $0 \notin \mathbb{N}$.) If X is a Hausdorff space and $A \subset X$ then the first derivative A^{\prime} of A is the set of all limit points of A. Further, with $A^{(1)}:=A^{\prime}$, for every $k=2,3,4, \ldots$ the k-th derivative $A^{(k)}$ of A is given by $A^{(k)}=\left(A^{k-1)}\right)^{\prime}$. Naturally, the first derivative of any set is closed. Consequently, $A^{(m)} \supset A^{(n)}$ whenever $m \leq n$.

Now, define for each $n \in \mathbb{N}$ a compact and countably infinite subset K_{n} of the interval $[2 n, 2 n+1]$ with $\min K_{n}=2 n$ and $\max K_{n}=2 n+1$ such that $K_{n}^{(n)}=$ $\{2 n+1\}$. (Simply take for K_{n} an appropriate order-isomorphic copy of the wellordered set of all ordinal numbers $\alpha \leq \omega^{n}$.) Thus for $m, n \in \mathbb{N}$ the derived set $K_{n}^{(m)}$ contains the point $2 n+1$ if and only if $m \leq n$. Furthermore, define a discrete subset E_{n} of $\left.] 2 n+1,2 n+\frac{7}{4}\right]$ via $E_{n}:=\left\{2 n+1+2^{-m}+2^{-m-k} \mid m, k \in \mathbb{N}\right\}$. For every nonempty $S \subset \mathbb{N}$ put $G_{S}:=\bigcup_{n \in S}\left(K_{n} \cup E_{n}\right)$. Since G_{S} is the union of the closed set $\bigcup_{n \in S} K_{n}$ and the discrete set $\bigcup_{n \in S} E_{n}$, the set G_{S} is a countably infinite G_{δ}-set in \mathbb{R}. Obviously, $G_{S}^{(m)}=\bigcup_{n \in S} K_{n}^{(m)}$ for every $m \in \mathbb{N}$.

If $\emptyset \neq S \subset \mathbb{N}$ then let N_{S} denote the set of all $x \in G_{S}$ such that no neighborhood of the point x in the space G_{S} is compact. By construction, $x \in N_{S}$ if and only if $x=2 n+1$ for some $n \in S$. Hence a moment's reflection suffices to see that

$$
\left\{m \in \mathbb{N} \mid\left(G_{S}^{(m)} \backslash G_{S}^{(m+1)}\right) \cap N_{S} \neq \emptyset\right\}=S
$$

for each nonempty set $S \subset \mathbb{N}$. Thus the set S can always be recovered from the space G_{S} purely topologically and hence two spaces $G_{S_{1}}$ and $G_{S_{2}}$ are never homeomorphic
for distinct nonempty sets $S_{1}, S_{2} \subset \mathbb{N}$. Thus the family $\mathcal{H}=\left\{G_{S} \mid \emptyset \neq S \subset \mathbb{N}\right\}$ is as desired and this concludes the proof of Theorem 3.

Remark. Every Polish space is homeomorphic to a closed subspace of the product of countably infinitely many copies of the real line (cf. [3] 4.3.25). As a consequence, every uncountable Polish space is of size c and the size of a family of mutually non-homeomorphic Polish spaces cannot exceed c. Therefore, by virtue of Theorem 3, there exist precisely c countably infinite Polish spaces up to homeomorphism. In comparison, by [4] Theorem 1.3 there exist precisely c uncountable Polish spaces up to homeomorphism.

7. Completely metrizable topologies

THEOREM 4. There exist c mutually non-homeomorphic topologies τ on \mathbb{R} coarser than the Euclidean topology such that (\mathbb{R}, τ) is completely metrizable (and hence Polish).

Proof. Let \mathcal{H} be a family as in Theorem 3. Our goal is to construct for each $H \in \mathcal{H}$ a real arc A_{H} which is a G_{δ}-subset of the Euclidean space \mathbb{R}^{3} (and hence completely metrizable) so that $H \times\{0\} \times\{0\} \subset A_{H}$ and A_{H} and $A_{H^{\prime}}$ are never homeomorphic for distinct $H, H^{\prime} \in \mathcal{H}$.

For two points P, Q in the vector space \mathbb{R}^{3} let $[P, Q]$ denote the closed straight segment which connects the points P and $Q,[P, Q]=\{\lambda P+(1-\lambda) Q \mid 0 \leq \lambda \leq 1\}$. Furthermore, for abbreviation, put $y(n):=2^{-n} \cos 2^{-n}$ and $z(n):=2^{-n} \sin 2^{-n}$ for $n \in \mathbb{N}$.

For every set $H=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ in the family \mathcal{H} with $a_{i} \neq a_{j}$ for $i \neq j$ we define an injective and continuous mapping $g=g_{H}$ from \mathbb{R} into \mathbb{R}^{3} by

$$
g(t)=\left(t \sin t,-e^{t}, 0\right) \text { for every real } t \leq 0
$$

and so that $g([k, k+1])=[g(k), g(k+1)]$ for every integer $k \geq 0$ where

$$
\begin{gathered}
g(0)=(0,-1,0) \quad \text { and } \quad g((1)=(0,-1,1) \text { and } \\
g(2 m)=\left(a_{m}, 0,0\right) \text { and } g(2 m+1)=\left(a_{m}, y(m), z(m)\right) \text { for every } m \in \mathbb{N}
\end{gathered}
$$

The injectivity of g is feasible because if E_{m} is the plane through the three points $g(2 m), g(2 m+1), g(2 m+2)$ then $E_{m} \neq \mathbb{R} \times \mathbb{R} \times\{0\}$ and $E_{m} \cap E_{n}=\mathbb{R} \times\{0\} \times\{0\}$ whenever $m, n \in \mathbb{N}$ and $m \neq n$.

Let $H \in \mathcal{H}$ and put $A_{H}:=g_{H}(\mathbb{R})$ and let $\overline{A_{H}}$ denote the closure of A_{H} in the Euclidean space \mathbb{R}^{3}. Trivially, $H \times\{0\} \times\{0\}$ is a G_{δ}-set in the space \mathbb{R}^{3} and a subspace of \mathbb{R}^{3} homeomorphic with H. Obviously, $\overline{A_{H}}=B \times\{0\} \times\{0\} \cup A_{H}$ for some $B \subset \mathbb{R}$. Hence $A_{H}=H \times\{0\} \times\{0\} \cup\left(\overline{A_{H}} \cap\left(\mathbb{R}^{3} \backslash \mathbb{R} \times\{0\} \times\{0\}\right)\right)$ is the union of a G_{δ}-set and a set which is the intersection of a closed set with an open set. Thus A_{H} is a G_{δ}-set in the space \mathbb{R}^{3} and hence the Euclidean space A_{H} is completely metrizable.

A moment's reflection is sufficient to see that $H \times\{0\} \times\{0\}$ equals the set of all points a in the space A_{H} where no local basis at a contains only arcwise connected
sets. Therefore, the space H can essentially be recovered from the space A_{H} and this finishes the proof.

REmark. In the previous proof one cannot replace \mathcal{H} with a family \mathcal{H}^{\prime} of mutually non-homeomorphic countably infinite and closed subspaces of the Euclidean space \mathbb{R}. Because in view of [4] Theorem 8.1 we have $\left|\mathcal{H}^{\prime}\right| \leq \aleph_{1}$ for any such family \mathcal{H}^{\prime} and it is widely known (cf. [3]) that $\aleph_{1}<c$ (i.e. the negation of the Continuum Hypothesis) is irrefutable. However, by applying a theorem not proved in this paper and with a bit greater effort concerning the notations it is not difficult to modify the previous proof starting with a family \mathcal{H}^{*} of mutually non-homeomorphic closed subspaces of \mathbb{R} such that $\left|\mathcal{H}^{*}\right|=c$ and every member of \mathcal{H}^{*} is the union of infinitely many mutually exclusive intervals $[a, b]$ with $a<b$. (Such a family \mathcal{H}^{*} exists by [6] Theorem 1.)

8. Completely normal spaces of first category

ThEOREM 5. There exist 2^{c} mutually non-homeomorphic topologies $\tau \in \mathcal{L}$ such that (\mathbb{R}, τ) is a completely normal space of first category.

Proof. Let B be an injective mapping from \mathbb{Z} into the power set of \mathbb{R}^{3} such that $B(k)$ is always a nonempty open ball in the Euclidean metric space \mathbb{R}^{3} and that $\{B(k) \mid k \in \mathbb{Z}\}$ is a basis of the Euclidean topology of \mathbb{R}^{3}. We define a double sequence of distinct points

$$
\ldots, P_{-3}, P_{-2}, P_{-1}, P_{0}, P_{1}, P_{2}, P_{3}, \ldots
$$

in \mathbb{R}^{3} by induction. Start with three distinct points P_{-1}, P_{0}, P_{1} where P_{-1} does not lie in the straight line through P_{0} and P_{1}. Suppose that for $n \in \mathbb{N}$ we have already chosen $2 n+1$ distinct points P_{k} with $k \in \mathbb{Z}$ and $|k| \leq n$. Then choose $P_{n+1} \in B(n+1)$ and $P_{-n-1} \in B(-n-1)$ so that:
(i) three distinct points in $\left\{P_{k}| | k \mid \leq n+1\right\}$ never lie in one straight line,
(ii) four distinct points in $\left\{P_{k}| | k \mid \leq n+1\right\}$ never lie in one plane.

Such a choice is always possible since neither finitely many straight lines nor finitely many planes can cover any ball $B(k)$.

In this way we obtain a countable, dense subset $\left\{P_{k} \mid k \in \mathbb{Z}\right\}$ of the Euclidean space \mathbb{R}^{3} (with $P_{k} \neq P_{k^{\prime}}$ whenever $k \neq k^{\prime}$) such that $\left[P_{m}, P_{m+1}\right]$ and $\left[P_{n}, P_{n+1}\right] \backslash$ $\left\{P_{n}, P_{n+1}\right\}$ are disjoint whenever $m, n \in \mathbb{Z}$ and $m \neq n$.

Now define a mapping g from \mathbb{R} into \mathbb{R}^{3} so that $g(k)=P_{k}$ and g is a continuous bijection from $[k, k+1]$ into \mathbb{R}^{3} with $g([k, k+1])=\left[P_{k}, P_{k+1}\right]$ for every $k \in \mathbb{Z}$. Then $g: \mathbb{R} \rightarrow \mathbb{R}^{3}$ is injective and continuous and hence $g(\mathbb{R})$ is a real arc within \mathbb{R}^{3} such that $g(\mathbb{Z})$ is dense in \mathbb{R}^{3}. Therefore the Euclidean compact spaces $\left[P_{k}, P_{k+1}\right]$ are closed subsets of the space $g(\mathbb{R})$ whose interior in the space $g(\mathbb{R})$ is empty and hence the space $g(\mathbb{R})$ is of first category. By construction, for any nonempty open set U in the Euclidean space \mathbb{R}^{3} the set $g^{-1}(U)$ is an unbounded subset of \mathbb{R}. Thus the topology in \mathcal{L} corresponding with $g(\mathbb{R})$ is one that satisfies the desired properties of Theorem 5. (Moreover, the topology is metrizable.)

The first step is done and now we are going to track down 2^{c} topologies as desired. Since $g(\mathbb{Z})$ is dense in \mathbb{R}^{3} we may fix an infinite set $Z \subset g(\mathbb{Z})$ such that $g(0) \in Z$ and the Euclidean distance between any two points in Z is always greater than 1. (In particular, Z is an unbounded, countable subset of \mathbb{R}^{3}.) Similarly as in the proof of Theorem 1 , for each of the 2^{c} free ultrafilters \mathcal{F} on Z define a topology $\tilde{\tau}[\mathcal{F}]$ on \mathbb{R}^{3} such that $U \subset \mathbb{R}^{3}$ lies in the family $\tilde{\tau}[\mathcal{F}]$ if and only if U is Euclidean open and satisfies $g(0) \notin U$ or $U \cap Z \in \mathcal{F}$.

Of course, by exactly the same arguments as in the proof of Theorem 1, for every free ultrafilter \mathcal{F} on Z the topology $\tilde{\tau}[\mathcal{F}]$ is completely normal and coarser than the Euclidean topology on \mathbb{R}^{3} (and strictly coarser precisely at the point $g(0)$).

Now let $\tau=\tilde{\tau}[\mathcal{F}]$ be any such topology on \mathbb{R}^{3}. Then the set $g(\mathbb{R})$ equipped with the subspace topology of $\left(\mathbb{R}^{3}, \tau\right)$ is completely normal. (Here it is essential that the property completely normal is, other than the property normal, hereditary.) Since g is a continuous one-to-one mapping from (\mathbb{R}, η) into $\left(\mathbb{R}^{3}, \tau\right)$ a fortiori, the family $g^{-1}(\tau):=\left\{g^{-1}(V) \mid V \in \tau\right\}$ is a topology in the family \mathcal{L} and g is a homeomorphism from the space $\left(\mathbb{R}, g^{-1}(\tau)\right)$ onto the space $(g(\mathbb{R}), \tau)$. In particular, the space $\left(\mathbb{R}, g^{-1}(\tau)\right)$ is completely normal. Furthermore, every nonempty open set in the space $\left(\mathbb{R}, g^{-1}(\tau)\right)$ is unbounded in \mathbb{R}, whence $\left(\mathbb{R}, g^{-1}(\tau)\right)$ is a space of first category by Proposition 2.

Trivially, $U \cap Z=(U \cap g(\mathbb{R})) \cap Z$ for every Euclidean open set $U \subset \mathbb{R}^{3}$. Therefore, by a similar argument as in the proof of Theorem 1, for distinct free ultrafilters $\mathcal{F}_{1}, \mathcal{F}_{2}$ on Z the relative topologies of $\tilde{\tau}\left[\mathcal{F}_{1}\right]$ and $\tilde{\tau}\left[\mathcal{F}_{2}\right]$ on the set $g(\mathbb{R})$ must be distinct. (We even have $\tau_{1} \not \subset \tau_{2}$ for such distinct relative topologies τ_{1}, τ_{2} on $g(\mathbb{R})$.) Thus by Lemma 3 we can track down a family \mathcal{U} of free ultrafilters on Z such that $|\mathcal{U}|=2^{c}$ and two spaces $\left(g(\mathbb{R}), \tilde{\tau}\left[\mathcal{F}_{1}\right]\right)$ and $\left(g(\mathbb{R}), \tilde{\tau}\left[\mathcal{F}_{2}\right]\right)$ are never homeomorphic for distinct $\mathcal{F}_{1}, \mathcal{F}_{2} \in \mathcal{U}$. Hence the topologies $g^{-1}\left(\tilde{\tau}\left[\mathcal{F}_{1}\right]\right)$ and $g^{-1}\left(\tilde{\tau}\left[\mathcal{F}_{2}\right]\right)$ in the family \mathcal{L} are never homeomorphic for distinct $\mathcal{F}_{1}, \mathcal{F}_{2} \in \mathcal{U}$ since g is a homeomorphism from the space $\left(\mathbb{R}, g^{-1}(\tilde{\tau}[\mathcal{F}])\right)$ onto the space $(g(\mathbb{R}), \tilde{\tau}[\mathcal{F}])$ for every $\mathcal{F} \in \mathcal{U}$. This concludes the proof.

9. Metrizable spaces of first category

Theorem 6. There exist c mutually non-homeomorphic topologies $\tau \in \mathcal{L}$ such that (\mathbb{R}, τ) is a metrizable space of first category.

Proof. Let η_{3} denote the Euclidean topology on \mathbb{R}^{3} and for any continuous one-to-one mapping $g: \mathbb{R} \rightarrow \mathbb{R}^{3}$ let $g^{-1}\left(\eta_{3}\right):=\left\{g^{-1}(V) \mid V \in \eta_{3}\right\}$ denote the topology in \mathcal{L} corresponding with the real $\operatorname{arc} g(\mathbb{R})$. Let \mathcal{H} be a family as in Theorem 3. Our goal is to construct a real arc $h_{H}(\mathbb{R})$ within the metrizable space $\left(\mathbb{R}^{3}, \eta_{3}\right)$ for every $H \in \mathcal{H}$ such that firstly $h_{H}(\mathbb{Z})$ is dense in \mathbb{R}^{3}, whence every nonempty open set in the space $\left(\mathbb{R}, h_{H}^{-1}\left(\eta_{3}\right)\right)$ is unbounded, and secondly two real $\operatorname{arcs} h_{H_{1}}(\mathbb{R})$ and $h_{H_{2}}(\mathbb{R})$ are never homeomorphic for distinct sets $H_{1}, H_{2} \in \mathcal{H}$.

Let $H=\left\{a_{1}, a_{3}, a_{5}, \ldots\right\}$ be a set in the family \mathcal{H} where $a_{i} \neq a_{j}$ for distinct (and always odd) indices i, j. Again let $y(n):=2^{-n} \cos 2^{-n}$ and $z(n):=2^{-n} \sin 2^{-n}$ for $n \in \mathbb{N}$. We firstly define $h=h_{H}$ on the domain $[0, \infty[$. Choose an injective and
continuous mapping h from $\left[0, \infty\left[\right.\right.$ into \mathbb{R}^{3} so that $h([k, k+1])=[h(k), h(k+1)]$ for every integer $k \geq 0$ where $h(k)=\left((-2)^{k / 2}, y(k), z(k)\right)$ when k is even and $h(k)=\left(a_{k}, 0,0\right)$ when k is odd. (Such a choice is clearly possible because if E_{m} is the plane through the three points $h(m-1), h(m), h(m+1)$ for any even $m \geq 2$ then $E_{m} \cap E_{n}=\mathbb{R} \times\{0\} \times\{0\}$ whenever $2 \leq m<n$.) Clearly, $H \times\{0\} \times\{0\}$ is the intersection of $h([0, \infty[)$ with the x-axis $\mathbb{R} \times\{0\} \times\{0\}$, and $h([0, \infty[) \cup \mathbb{R} \times\{0\} \times\{0\}$ is the closure of $h\left(\left[0, \infty[)\right.\right.$ in \mathbb{R}^{3}.

For any Hausdorff space X let $W(X)$ denote the set of all points x in X such that no local basis at x contains only arcwise connected sets. By construction we have

$$
W(h([0, \infty[))=H \times\{0\} \times\{0\} .
$$

In view of the definition of g in the proof of Theorem 5 it is plain to expand h to a continuous and injective mapping from \mathbb{R} into \mathbb{R}^{3} such that $h(\mathbb{Z} \backslash \mathbb{N})$ is a dense subset of the Euclidean space \mathbb{R}^{3}. As a consequence we have $W(h(\mathbb{R}))=h(\mathbb{R})$ and $\left(\mathbb{R}, h^{-1}\left(\eta_{3}\right)\right)$ is a space of first category. Moreover, $W(h([t, \infty[))=H \times\{0\} \times\{0\}$ for every real $t \leq 0$ and $W(h([t, \infty[)) \subset H \times\{0\} \times\{0\}$ and $W(h(]-\infty, t]))=$ $h(]-\infty, t])$ for every $t \in \mathbb{R}$. In particular, for every $t \in \mathbb{R}$ the set $W(h([t, \infty[))$ is countable and the set $W(h(]-\infty, t]))$ is uncountable and we have $H \times\{0\} \times\{0\}=$ $\bigcup\{W(h([t, \infty[)) \mid t \in \mathbb{R}\}$.

We finish the proof by verifying that $H \times\{0\} \times\{0\}$ can be recovered from the space $h(\mathbb{R})$. (Note, again, that $H \times\{0\} \times\{0\}$ and H are homeomorphic.)

For any arcwise connected metrizable space X let $\mathcal{Y}(X)$ be the family of all sets $Y \subset X$ such that Y and $X \backslash Y$ are arcwise connected and $Y \backslash\{y\}$ is arcwise connected for some $y \in Y$. For the Euclidean space \mathbb{R} we clearly have $Y \in \mathcal{Y}(\mathbb{R})$ if and only if $Y=]-\infty, t]$ or $Y=[t, \infty[$ for some $t \in \mathbb{R}$. While for an arbitrary real arc $g(\mathbb{R})$ it is not necessary that $\mathcal{Y}(g(\mathbb{R}))=\{g(Y) \mid Y \in \mathcal{Y}(\mathbb{R})\}$ (see the remark below), we observe that $Y \in \mathcal{Y}(h(\mathbb{R}))$ if and only if $Y=h(]-\infty, t])$ or $Y=h([t, \infty[)$ for some $t \in \mathbb{R}$. Therefore, $H \times\{0\} \times\{0\}$ equals the union of all sets $W(Y)$ where $Y \in \mathcal{Y}(h(\mathbb{R}))$ and $W(Y)$ is countable.

REmark. If $g(\mathbb{R}) \subset \mathbb{R}^{3}$ is a real arc and $a \in \mathbb{R}$ such that $g\left(x_{n}\right)$ converges to $g(a)$ whenever $\left(x_{n}\right)$ is an unbounded and increasing sequence of reals then $g(\mathbb{R}) \backslash$ $\{g(x)\}$ is arcwise connected for every $x>a$ and $g([u, v]) \in \mathcal{Y}(g(\mathbb{R}))$ whenever $a<u<v$.

10. A complete lattice of topologies

As any family of topologies on a fixed set, the family \mathcal{L} is partially ordered by the relation \subset. A family $\mathcal{K} \subset \mathcal{L}$ is a chain if and only if $\tau_{1} \subset \tau_{2}$ or $\tau_{2} \subset \tau_{1}$ whenever $\tau_{1}, \tau_{2} \in \mathcal{K}$. The extreme opposite of chains of topologies are families of mutually incomparable topologies. (Two topologies τ_{1}, τ_{2} are incomparable if and only if neither $\tau_{1} \subset \tau_{2}$ nor $\tau_{2} \subset \tau_{1}$.)

In order to prove Theorem 1 we considered topologies in \mathcal{L} which are coarse at precisely one point $a \in \mathbb{R}$ (with $a=0$). Let $\mathcal{L}_{0}:=\{\tau \in \mathcal{L} \mid C(\tau) \subset\{0\}\}$ be the family of all topologies in \mathcal{L} which are either coarse precisely at the point 0
or equal to the Euclidean topology η. We have $\left|\mathcal{L}_{0}\right|=|\mathcal{L}|=2^{c}$ by the proof of Theorem 1. Whereas, naturally, the family of all topologies on the set \mathbb{R} coarser than η is a lattice with respect to the partial ordering \subset, the partially ordered family (\mathcal{L}, \subset) is not a lattice. (See the remark below.) However, the partially ordered family $\left(\mathcal{L}_{0}, \subset\right)$ is a lattice. Moreover, $\left(\mathcal{L}_{0}, \subset\right)$ is a complete lattice (with η as its maximum) in view of the following proposition which also shows that for the minimum θ of the complete lattice \mathcal{L}_{0} the space (\mathbb{R}, θ) has interesting properties. (Recall that a partially ordered set L is a complete lattice if and only if every nonempty subset of L has an infimum and a supremum.)

Proposition 6. If $\emptyset \neq \mathcal{S} \subset \mathcal{L}_{0}$ then $\bigcap \mathcal{S} \in \mathcal{L}_{0}$. If $\mathcal{K} \neq \emptyset$ is a chain in \mathcal{L}_{0} then $\bigcup \mathcal{K}$ is a topology in \mathcal{L}_{0}, and $\bigcup \mathcal{K} \neq \eta$ when $\eta \notin \mathcal{K}$. If $\theta=\bigcap \mathcal{L}_{0}$ then the Hausdorff space (\mathbb{R}, θ) is compact and any locally connected, compact real arc with precisely one cut point is homeomorphic to the space (\mathbb{R}, θ).

Proof. Let $\emptyset \neq \mathcal{S} \subset \mathcal{L}_{0}$. The family $\sigma:=\bigcap \mathcal{S}$ is a topology on \mathbb{R} coarser than η since, generally, the lattice of all topologies on any set is closed under arbitrary intersections. The topology σ is Hausdorff because σ and η coincide on $\mathbb{R} \backslash\{0\}$ and if, say, $x>0$ then 0 and x can be separated by the σ-open sets $\mathbb{R} \backslash\left[\frac{x}{3}, 3 x\right]$ and $] \frac{x}{2}, 2 x\left[\right.$. (Since $\left[\frac{x}{3}, 3 x\right]$ is τ-compact for every $\tau \in \mathcal{L}$, the set $\mathbb{R} \backslash\left[\frac{x}{3}, 3 x\right]$ is τ-open for every $\tau \in \mathcal{S}$.) If $\mathcal{S} \neq\{\eta\}$ then $C(\sigma)=\{0\}$ by Proposition 1. Hence, $\sigma \in \mathcal{L}_{0}$. Recall that if $\tau \in \mathcal{L}_{0}$ and $0 \in U \in \tau$ and $V \in \eta$ then $U \cup V \in \tau$. And, by Proposition 1, $]-1,1\left[\in \tau\right.$ for $\tau \in \mathcal{L}_{0}$ only if $\tau=\eta$. Consequently, the family $\bigcup \mathcal{S}$ is closed under arbitrary unions and we have $\bigcup \mathcal{S} \neq \eta$ when $\eta \notin \mathcal{S}$. And if \mathcal{S} is a chain then $\bigcup \mathcal{S}$ is closed under finite intersections and hence $\bigcup \mathcal{S}$ is a topology on \mathbb{R} coarser than η and finer than the Hausdorff topology $\bigcap \mathcal{S}$, whence $\bigcup \mathcal{S} \in \mathcal{L}_{0}$.

Define a topology $\tau_{0} \in \mathcal{L}$ by declaring a set $U \subset \mathbb{R} \tau_{0}$-open if and only if the set U is η-open and either $0 \notin U$ or $U \supset\{0\} \cup(\mathbb{R} \backslash[-t, t])$ for some $t>0$. Then $C\left(\tau_{0}\right)=\{0\}$ and hence $\tau_{0} \in \mathcal{L}_{0}$. Let K be the union of two congruent circles in the plane \mathbb{R}^{2} which meet in precisely one point. Then K (which looks like the digit 8 or the symbol ∞) is an arcwise connected and locally arcwise connected compact subspace of the Euclidean plane \mathbb{R}^{2} with precisely one cut point. (Recall that x is a cut point of a connected space X if and only if $X \backslash\{x\}$ is not connected.) It is immediately obvious that K is a real arc which is homeomorphic to the space $\left(\mathbb{R}, \tau_{0}\right)$. (Of course, 0 is the unique cut point in the arcwise connected space $\left(\mathbb{R}, \tau_{0}\right)$.) It is well-known that any locally connected, compact real arc with precisely one cut point is homeomorphic to K (cf. [7]). Finally, the topologies τ_{0} and $\bigcap \mathcal{L}_{0}$ must be identical because $\tau_{0} \in \mathcal{L}_{0}$ and $\tau_{0} \subset \tau$ for every $\tau \in \mathcal{L}_{0}$ since if $0 \in U \in \tau_{0}$ then $\mathbb{R} \backslash U$ is Euclidean compact and hence τ-closed for every $\tau \in \mathcal{L}_{0}$.

REmark. If $a \in \mathbb{R}$ and $\varphi_{a}(x)=x+a$ for every $x \in \mathbb{R}$ and $\tau_{0} \in \mathcal{L}_{0}$ is compact then $\tau_{a}:=\left\{\varphi_{a}(U) \mid U \in \tau_{0}\right\}$ is a topology in \mathcal{L} with $C\left(\tau_{a}\right)=\{a\}$ and hence $\tau_{a} \neq \tau_{a^{\prime}}$ whenever $a \neq a^{\prime}$. Each topology τ_{a} is compact since φ_{a} is a homeomorphism from $\left(\mathbb{R}, \tau_{0}\right)$ onto (\mathbb{R}, τ_{a}). Thus by Proposition $6, \mathcal{L}$ contains c (homeomorphic) compact topologies. Therefore, the partially ordered family (\mathcal{L}, \subset) is not a lattice because if τ, τ^{\prime} are distinct compact topologies in \mathcal{L} then $\left\{\tau, \tau^{\prime}\right\}$ has no infimum in (\mathcal{L}, \subset)
since a topology cannot be T_{2} if it is strictly coarser than a T_{2}-compact topology. (In particular, every nonempty chain of compact topologies in \mathcal{L} is a singleton.) It is also worth mentioning that if for $\tau \in \mathcal{L}$ the space (\mathbb{R}, τ) is compact then it must be second countable. Because, naturally, the sets] r_{1}, r_{2} [with $r_{1}, r_{2} \in \mathbb{Q}$ form a network of τ and (cf. [2] 3.3.5.) any compact Hausdorff space has a countable basis if it has a countable network.

11. Long chains of homeomorphic topologies

The topologies in the family $\mathcal{T} \subset \mathcal{L}$ constructed in the proof of Theorem 1 are mutually non-homeomorphic and mutually incomparable. If $\tau_{z} \in \mathcal{L}$ are the completely metrizable topologies defined by the real $\operatorname{arcs} g_{z}(\mathbb{R})$ in the proof of Proposition 5 then $\left\{\tau_{z} \mid z \in \mathbb{R}\right\}$ is a family of homeomorphic and mutually incomparable topologies. (They are mutually incomparable because if $r, s \in \mathbb{R}$ and $r \neq s$ then the sequence $(1+r+\pi n)$ converges to r in the space $\left(\mathbb{R}, \tau_{r}\right)$, whereas in the space $\left(\mathbb{R}, \tau_{s}\right)$ the same sequence converges to s when $\frac{r-s}{\pi} \in \mathbb{Z}$ and diverges when $\frac{r-s}{\pi} \notin \mathbb{Z}$.) However, a simple modification of the real arc $g_{z}(\mathbb{R})$ makes it possible to track down a chain of homeomorphic topologies in \mathcal{L}.

Proposition 7. There exists a chain $\mathcal{J} \subset \mathcal{L}$ such that $|\mathcal{J}|=c$ and all spaces (\mathbb{R}, τ) with $\tau \in \mathcal{J}$ are completely metrizable and homeomorphic.

Proof. For $z \in \mathbb{R}$ consider the mapping $g_{z}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ from the proof of Proposition 5 and for $-1<a<0$ put $\tilde{g}_{a}(t)=g_{0}(t)$ when $t \geq 0$ and $\tilde{g}_{a}(t)=(0,-t)$ when $a \leq t \leq 0$ and $\tilde{g}_{a}(t)=(t-a,-a)$ when $t \leq a$. For $-1<a<0$ let $\tilde{\tau}_{a}$ be the topology in \mathcal{L} corresponding with the Euclidean continuous injective mapping $\tilde{g}_{a}: \mathbb{R} \rightarrow \mathbb{R}^{2}$. Then $C\left(\tilde{\tau}_{a}\right)=[a, 0]$ and $\left(\mathbb{R}, \tilde{\tau}_{a}\right)$ is completely metrizable since $\tilde{g}_{a}(\mathbb{R})$ is a G_{δ}-subset of \mathbb{R}^{2}. Obviously, $\tilde{\tau}_{r}$ is a proper subset of $\tilde{\tau}_{s}$ whenever $-1<r<s<0$. All spaces $\left(\mathbb{R}, \tilde{\tau}_{a}\right)$ with $-1<a<0$ are homeomorphic because a moment's reflection suffices to see that if $-1<r<s<0$ then there is a homeomorphism from the Euclidean plane \mathbb{R}^{2} onto itself which maps $\tilde{g}_{r}(\mathbb{R})$ onto $\tilde{g}_{s}(\mathbb{R})$.

The chain \mathcal{J} of homeomorphic topologies constructed in the previous proof is disjoint from the lattice \mathcal{L}_{0}. If \mathcal{T} is a family as in Theorem 1 then $\mathcal{T} \subset \mathcal{L}_{0}$ but there is no chain $\mathcal{K} \subset \mathcal{T}$ with $|\mathcal{K}|>1$. Nevertheless, the following theorem shows that the lattice \mathcal{L}_{0} contains very long chains of homeomorphic topologies. (In the following, as usual, if \mathcal{K}_{2} is a \subset-chain and $\mathcal{K}_{1} \subset \mathcal{K}_{2}$ then \mathcal{K}_{1} is dense in \mathcal{K}_{2} if and only if for every pair $X, Y \in \mathcal{K}_{2}$ with $X \subset Y$ and $X \neq Y$ there exists a set Z in $\mathcal{K}_{1} \backslash\{X, Y\}$ such that $X \subset Z \subset Y$.)

Theorem 7 . The lattice \mathcal{L}_{0} contains four chains $\mathcal{K}_{0}, \mathcal{K}_{1}, \mathcal{K}_{2}, \mathcal{K}_{3}$ of (the maximal possible) size c such that for $i \in\{0,1,2,3\}$ all spaces (\mathbb{R}, τ) with $\tau \in \mathcal{K}_{i}$ are homeomorphic, and
(i) if $\tau \in \mathcal{K}_{0}$ then the space (R, τ) is second countable but not regular,
(ii) if $\tau \in \mathcal{K}_{1}$ then the space (R, τ) is neither regular nor first countable,
(iii) if $\tau \in \mathcal{K}_{2}$ then the space (R, τ) is completely normal but not first countable,
(iv) if $\tau \in \mathcal{K}_{3}$ then the space (R, τ) is completely metrizable,
(v) $\mathcal{K}_{0} \cup \mathcal{K}_{1} \cup \mathcal{K}_{2}$ is a chain and \mathcal{K}_{i} is dense in $\mathcal{K}_{0} \cup \mathcal{K}_{1} \cup \mathcal{K}_{2}$ for every $i \in\{0,1,2\}$,
(vi) every topology in $\mathcal{K}_{0} \cup \mathcal{K}_{1} \cup \mathcal{K}_{2}$ is coarser than every topology in \mathcal{K}_{3}.

Proof. The size of \mathcal{K}_{i} cannot exceed c by Lemma 2. In order to obtain a chain \mathcal{K}_{3} as desired, for real $\alpha \geq 0$ define an injective and Euclidean continuous mapping h_{α} from \mathbb{R} into \mathbb{R}^{2} by $h_{\alpha}(t)=(t,-t)$ for $t \leq 1$ and $h_{\alpha}(t)=(1, t-2)$ for $1 \leq t \leq 2$ and $h_{\alpha}(t)=\left(2 t^{-1}, t^{\alpha}|\sin (\pi t)|\right)$ for $t \geq 2$.

Obviously $h_{\alpha}(\mathbb{R})$ is a G_{δ}-subset of \mathbb{R}^{2} for every $\alpha \geq 0$. All sets $h_{\alpha}(\mathbb{R})$ with $\alpha \geq 0$ are homeomorphic subspaces of \mathbb{R}^{2} because for every $\alpha \geq 0$ the mapping $\left(t, h_{0}(t)\right) \mapsto\left(t, h_{\alpha}(t)\right)$ with t running through \mathbb{R} is clearly a homeomorphism from the real arc $h_{0}(\mathbb{R})$ onto the real arc $h_{\alpha}(\mathbb{R})$. Let $\mu[\alpha]$ be the topology in \mathcal{L} corresponding with h_{α}. Thus $\mu[\alpha] \in \mathcal{L}_{0}$ and in the space $(\mathbb{R}, \mu[\alpha])$ the family $\{B(\alpha, \varepsilon) \mid \varepsilon>0\}$ is a local basis at the point 0 where

$$
B(\alpha, \varepsilon):=]-\varepsilon, \varepsilon\left[\cup\left\{\left.t \in \mathbb{R}\left|t>\frac{2}{\varepsilon} \wedge t^{\alpha}\right| \sin (\pi t) \right\rvert\,<\varepsilon\right\}\right.
$$

(Obviously, $h_{\alpha}^{-1}(]-\varepsilon, \varepsilon\left[{ }^{2} \cap h_{\alpha}(\mathbb{R})\right)=B(\alpha, \varepsilon)$ for every positive $\varepsilon<1$.) If $0 \leq \alpha_{1} \leq \alpha_{2}$ then $B\left(\alpha_{1}, \varepsilon\right) \supset B\left(\alpha_{2}, \varepsilon\right)$ for every $\varepsilon>0$ and hence $\mu\left[\alpha_{1}\right] \subset \mu\left[\alpha_{2}\right]$. If $0 \leq \alpha_{1}<\alpha_{2}$ then $\mu\left[\alpha_{1}\right] \neq \mu\left[\alpha_{2}\right]$ because the $\mu\left[\alpha_{2}\right]$-open set $B\left(\alpha_{2}, 1\right)$ cannot be $\mu\left[\alpha_{1}\right]$-open since it is plain that $B\left(\alpha_{1}, \varepsilon\right) \not \subset B\left(\alpha_{2}, 1\right)$ for every $\varepsilon>0$. So we define $\mathcal{K}_{3}:=\{\mu[\alpha] \mid \alpha \geq 0\}$.

In order to find appropriate chains $\mathcal{K}_{0}, \mathcal{K}_{1}, \mathcal{K}_{2}$ we define a family $\mathcal{D} \subset \mathcal{L}_{0}$ so that the partially ordered set (\mathcal{D}, \subset) is a Boolean algebra isomorphic with the power set of \mathbb{R}. Write $x+Y:=\{x+y \mid y \in Y\}$ for $x \in \mathbb{R}$ and $Y \subset \mathbb{R}$. For any set $D \subset\left[-\frac{1}{2}, \frac{1}{2}[\right.$ define a topology $\tau(D) \in \mathcal{L}$ by declaring $U \subset \mathbb{R}$ open if and only if U is Euclidean open and either $0 \notin U$ or $U \supset\{0\} \cup \bigcup_{k=n}^{\infty} k+D$ for some $n \in \mathbb{N}$. It is plain that $\tau(D)$ is a well-defined topology on \mathbb{R} and that $\tau(D) \in \mathcal{L}_{0}$.

Obviously, $\tau(\emptyset)=\eta$ and $\tau(B) \subset \tau(A)$ whenever $A \subset B \subset\left[-\frac{1}{2}, \frac{1}{2}[\right.$. Furthermore $\tau(A) \neq \tau(B)$ when A, B are distinct subsets of $\left[-\frac{1}{2}, \frac{1}{2}[\right.$. Moreover, if $B \not \subset A$ then $\tau(A) \not \subset \tau(B)$. Because if $z \in B \backslash A$ then it is clear that the Euclidean open set $\mathbb{R} \backslash(z+\mathbb{N})$ lies in $\tau(A)$ but not in $\tau(B)$. Therefore, if

$$
\mathcal{D}:=\left\{\tau(D) \left\lvert\, D \subset\left[-\frac{1}{2}, \frac{1}{2}[\}\right.\right.\right.
$$

and g is a bijection from \mathbb{R} onto $\left[-\frac{1}{2}, \frac{1}{2}\left[\right.\right.$ then $X \mapsto \tau\left(\left[-\frac{1}{2}, \frac{1}{2}[\backslash g(X))\right.\right.$ is an isomorphism from the Boolean algebra of all subsets of \mathbb{R} onto the partially ordered set (\mathcal{D}, \subset).

A moment's reflection suffices to see that $\tau(D) \subset \mu[\alpha]$ for every $\alpha \geq 0$ if $D \subset\left[-\frac{1}{2}, \frac{1}{2}[\right.$ and 0 is an interior point of D in the Euclidean space \mathbb{R}. Therefore, in order to achieve (vi) we choose mutually disjoint sets $\left.\Lambda_{0}, \Lambda_{1}, \Lambda_{2} \subset\right] 0, \frac{1}{3}[$ of size c which are dense in $] 0, \frac{1}{3}\left[\right.$ and define $\mathcal{K}_{0}:=\left\{\tau([-\lambda, \lambda]) \mid \lambda \in \Lambda_{0}\right\}$ and $\mathcal{K}_{1}:=\left\{\tau\left(\left[-\lambda, \lambda[) \mid \lambda \in \Lambda_{1}\right\}\right.\right.$ and $\mathcal{K}_{2}:=\left\{\tau(]-\lambda, \lambda[) \mid \lambda \in \Lambda_{2}\right\}$. The specific choice of $\Lambda_{0}, \Lambda_{1}, \Lambda_{2}$ is made for saving the density condition (v) because if $A \subset B \subset\left[-\frac{1}{2}, \frac{1}{2}[\right.$ and $|B \backslash A|=1$ then no topology from \mathcal{D} lies strictly between $\tau(B)$ and $\tau(A)$. Clearly, if $0<\lambda, \lambda^{\prime}<\frac{1}{3}$ and f is any strictly increasing function from \mathbb{R} onto \mathbb{R} with $f(0)=0$ and $f(n \pm \lambda)=n \pm \lambda^{\prime}$ for every $n \in \mathbb{N}$ then f is a homeomorphism from
$(\mathbb{R}, \tau([-\lambda, \lambda]))$ onto $\left(\mathbb{R}, \tau\left(\left[-\lambda^{\prime}, \lambda^{\prime}\right]\right)\right)$ and from $\left(\mathbb{R}, \tau\left([-\lambda, \lambda[))\right.\right.$ onto $\left(\mathbb{R}, \tau\left(\left[-\lambda^{\prime}, \lambda^{\prime}[)\right)\right.\right.$ and from $(\mathbb{R}, \tau(]-\lambda, \lambda[))$ onto $\left(\mathbb{R}, \tau(]-\lambda^{\prime}, \lambda^{\prime}[)\right)$. So the definitions of the four chains \mathcal{K}_{i} do the job provided that (i) and (ii) and (iii) hold.

For $T \subset \mathbb{R}$ put $\Gamma(T):=\left\{e^{2 \pi i t} \mid t \in T\right\}$. So $\Gamma(\mathbb{R})=\Gamma\left(\left[-\frac{1}{2}, \frac{1}{2}[)\right.\right.$ is the unit circle $x^{2}+y^{2}=1$ in \mathbb{R}^{2} and $\Gamma(D) \subset \Gamma(\mathbb{R})$ for $D \subset\left[-\frac{1}{2}, \frac{1}{2}[\right.$. We finish the proof by verifying the nice observation that for every $D \subset\left[-\frac{1}{2}, \frac{1}{2}[\right.$,
(1) $(\mathbb{R}, \tau(D))$ is second countable if and only if $\Gamma(D)$ is open in $\Gamma(\mathbb{R})$,
(2) $\quad(\mathbb{R}, \tau(D))$ is regular if and only if $\Gamma(D)$ is closed in $\Gamma(\mathbb{R})$.

Note that by Lemma 4 the space $(\mathbb{R}, \tau(D))$ is regular if and only if $(\mathbb{R}, \tau(D))$ is completely normal.

If $\Gamma(D)$ is open in $\Gamma(\mathbb{R})$ then $\left]-n^{-1}, n^{-1}\left[\cup \bigcup_{k=n}^{\infty} k+D \mid n \in \mathbb{N}\right\}\right.$ is clearly a local basis at 0 in the space $(\mathbb{R}, \tau(D))$, whence $(\mathbb{R}, \tau(D))$ is second countable by Lemma 4. If $\Gamma(D)$ is not closed in $\Gamma(\mathbb{R})$ then for some $b \in\left[-\frac{1}{2}, \frac{1}{2}\left[\backslash D\right.\right.$ the point $e^{2 \pi i b}$ is a limit point of $\Gamma(D)$ in $\Gamma(\mathbb{R})$. So the Euclidean closed set $b+\mathbb{N}$ is $\tau(D)$-closed and, obviously, the point 0 and the set $b+\mathbb{N}$ can not be separated by $\tau(D)$-open sets, whence $\tau(D)$ is not regular. If $\Gamma(D)$ is closed in $\Gamma(\mathbb{R})$ then, by the same arguments as in the proof of Theorem 1 , the space $(\mathbb{R}, \tau(D))$ is regular. (One can adopt the proof line by line with the only modification that the set $B=\{0\} \cup(\mathbb{Z} \backslash A)$ is replaced by $B=\{0\} \cup \bigcup_{n=k}^{\infty} n+D$ where $k \in \mathbb{N}$ is chosen so that $A \cap(n+D)=\emptyset$ whenever $n \geq k$.)

Finally, assume that $\Gamma(D)$ is not open in $\Gamma(\mathbb{R})$ and choose $d \in D$ so that $e^{2 \pi i d}$ is not an interior point of $\Gamma(D)$ in $\Gamma(\mathbb{R})$. Suppose that a countable family $\left\{B_{1}, B_{2}, B_{3}, \ldots\right\}$ of Euclidean open sets is a local basis at 0 in the space $(\mathbb{R}, \tau(D))$. Let k_{1} be the least positive integer n such that $B_{1} \supset n+D$. If k_{m} is already defined then let k_{m+1} be the least integer $n>k_{m}$ such that $B_{m+1} \supset n+D$. For every $m \in \mathbb{N}$ choose a small $\epsilon_{m}>0$ such that $\Gamma(] d-\epsilon_{m}, d+\epsilon_{m}[) \not \subset \Gamma(D)$ and $] k_{m}+d-\epsilon_{m}, k_{m}+d+\epsilon_{m}\left[\subset B_{m}\right.$. Then for every $m \in \mathbb{N}$ we can choose a point x_{m} in $] k_{m}+d-\epsilon_{m}, k_{m}+d+\epsilon_{m}\left[\backslash\left(k_{m}+D\right)\right.$. Then the set $V:=\mathbb{R} \backslash\left\{x_{m} \mid m \in \mathbb{N}\right\}$ is $\tau(D)$-open and hence $V \supset B_{n}$ for some $n \in \mathbb{N}$. So we obtain the contradiction that $x_{n} \in B_{n} \subset$ V and $x_{n} \notin V$ for some $n \in \mathbb{N}$. Thus the assumption on $\left\{B_{1}, B_{2}, B_{3}, \ldots\right\}$ is false and hence $\tau(D)$ is not first countable. This concludes the proof of Theorem 7 .

REmark. The maximum of the Boolean algebra (\mathcal{D}, \subset) is $\tau(\emptyset)=\eta$. The topology $\tau\left(\left[-\frac{1}{2}, \frac{1}{2}[)\right.\right.$ is the minimum of \mathcal{D} and it is plain that $\left(\mathbb{R}, \tau\left(\left[-\frac{1}{2}, \frac{1}{2}[)\right)\right.\right.$ is homeomorphic to the subspace $\Gamma^{*}:=\Gamma(\mathbb{R}) \cup\{0\} \times[1, \infty[$ of the Euclidean plane \mathbb{R}^{2}. It is well-known that any locally connected, locally compact but not compact real arc is homeomorphic either to Γ^{*} or to the real line (cf. [7]). In view of (1) and (2), the maximum and the minimum of the Boolean algebra \mathcal{D} are the only metrizable topologies in \mathcal{D}. In view of (2) and Lemma 4 and $|\eta|=c$, precisely c topologies in \mathcal{D} are completely normal, whence the proof of Theorem 1 is not dispensable. On the contrary, in view of Lemma 3 and Proposition 4 and the well-known fact that \mathbb{R}^{2} has only c Euclidean closed subsets (and the trivial fact that $\Gamma(\mathbb{R})$ has 2^{c} subsets), an alternative proof of Theorem 2 (which does not use ultrafilters) is provided by (2).

12. Countably generated topologies

Only c topologies in the Boolean algebra \mathcal{D} are first countable. But all topologies in \mathcal{D} satisfy an interesting countability condition weaker than first countability. Let \mathcal{L}_{0}^{*} denote the family of all topologies in \mathcal{L}_{0} such that $\mathcal{N}_{\tau}(0)=\mathcal{N}_{\eta}(0) \cap \mathcal{F}$ for some filter \mathcal{F} on \mathbb{R} which is generated by a countable filter base. In other words, there is a countable filter base \mathcal{B} of subsets of \mathbb{R} such that $\eta \cap \mathcal{N}_{\tau}(0)=\{U \in \eta \mid \exists B \in$ $\mathcal{B}: U \supset\{0\} \cup B\}$. So if $\tau \in \mathcal{L}_{0}$ is first countable then $\tau \in \mathcal{L}_{0}^{*}$. The converse is not true since $\mathcal{D} \subset \mathcal{L}_{0}^{*}$. In particular, $\left|\mathcal{L}_{0}^{*}\right|=|\mathcal{D}|=2^{c}$. Whereas for $A \subset B \subset\left[-\frac{1}{2}, \frac{1}{2}[\right.$ with $|B \backslash A|=1$ there is no topology $\tau \in \mathcal{D}$ strictly between $\tau(B)$ and $\tau(A)$, the following theorem implies that between $\tau(B)$ and $\tau(A)$ there lie c comparable and c incomparable topologies from \mathcal{L}_{0}^{*} and also 2^{c} incomparable topologies from $\mathcal{L}_{0} \backslash \mathcal{L}_{0}^{*}$.

THEOREM 8. If $\tau_{1} \in \mathcal{L}_{0}^{*}$ is strictly coarser than $\tau_{2} \in \mathcal{L}_{0}$ then there are a chain $\mathcal{R} \subset \mathcal{L}_{0}$ with $|\mathcal{R}|=c$ and two families $\mathcal{S} \subset \mathcal{L}_{0}$ and $\mathcal{T} \subset \mathcal{L}_{0} \backslash \mathcal{L}_{0}^{*}$ of mutually incomparable topologies with $|\mathcal{S}|=c$ and $|\mathcal{T}|=2^{c}$ such that $\tau_{1} \subset \tau \subset \tau_{2}$ for every $\tau \in \mathcal{R} \cup \mathcal{S} \cup \mathcal{T}$. Additionally $\mathcal{R}, \mathcal{S} \subset \mathcal{L}_{0}^{*}$ can be achieved if $\tau_{2} \in \mathcal{L}_{0}^{*}$. For $\tau_{2}=\eta$ it can be achieved that $\mathcal{R}, \mathcal{S} \subset \mathcal{L}_{0}^{*}$ and all topologies in $\mathcal{R} \cup \mathcal{S}$ are homeomorphic.

Proof. First of all, if $\eta \cap \mathcal{N}_{\tau}(0)=\{U \in \eta \mid \exists B \in \mathcal{B}: U \supset\{0\} \cup B\}$ for $\tau \in \mathcal{L}_{0}$ and a filter base \mathcal{B} then $\eta \cap \mathcal{N}_{\tau}(0)=\{U \in \eta \mid \exists B \in \mathcal{B}: U \supset\{0\} \cup(B \backslash[-1,1])\}$. Indeed, if $U \in \eta$ contains $\{0\} \cup\left(B_{1} \backslash[-1,1]\right)$ for some $B_{1} \in \mathcal{B}$ then U contains $]-k^{-1}, k^{-1}\left[\cup\left(B_{1} \backslash[-1,1]\right)\right.$ for some $k>1$. Since $V_{k}:=\mathbb{R} \backslash\left(\left[-k,-k^{-1}\right] \cup\left[k^{-1}, k\right]\right)$ lies in $\eta \cap \mathcal{N}_{\tau}(0)$, we have $B_{2} \subset V_{k}$ for some $B_{2} \in \mathcal{B}$ and hence $U \supset B_{1} \cap B_{2}$. Thus, since \mathcal{B} is a filter base, we have $B \subset B_{1} \cap B_{2} \subset U$ for some $B \in \mathcal{B}$. There is an important consequence of the two representations of $\eta \cap \mathcal{N}_{\tau}(0)$. If $\eta \neq \tau \in \mathcal{L}_{0}$ and a filter base \mathcal{B} generates a filter \mathcal{F} with $\mathcal{N}_{\tau}(0)=\mathcal{N}_{\eta}(0) \cap \mathcal{F}$ then the family $\mathcal{B}^{\prime}:=\{B \backslash[-1,1] \mid B \in \mathcal{B}\}$ does not contain \emptyset and hence \mathcal{B}^{\prime} is a filter base which generates a filter \mathcal{F}^{\prime} with $\mathcal{N}_{\tau}(0)=\mathcal{N}_{\eta}(0) \cap \mathcal{F}^{\prime}$.

Let $\tau_{1} \in \mathcal{L}_{0}^{*}$ be a proper subset of $\tau_{2} \in \mathcal{L}_{0}$. Let \mathcal{B}_{1} and \mathcal{B}_{2} be families of subsets of $\mathbb{R} \backslash[-1,1]$ such that \mathcal{B}_{1} is a countable filter base and \mathcal{B}_{2} is a filter base when $\tau_{2} \neq \eta$ and $\mathcal{B}_{2}=\{\emptyset\}$ when $\tau_{2}=\eta$ and $\eta \cap \mathcal{N}_{\tau_{i}}(0)=\left\{U \in \eta \mid \exists B \in \mathcal{B}_{i}: U \supset\{0\} \cup B\right\}$ for $i \in\{1,2\}$. We may assume that $\mathcal{B}_{1}=\left\{A_{1}, A_{2}, A_{3}, \ldots\right\}$ where A_{n} is a proper subset of A_{m} whenever $m<n$. Since τ_{1} is strictly coarser than τ_{2}, we can fix $D \in \mathcal{B}_{2}$ such that $A_{n} \not \subset D$ for every $n \in \mathbb{N}$. Since for every $k \in \mathbb{N}$ we have $A_{n} \subset V_{k}$ and hence $A_{n} \subset \mathbb{R} \backslash[-k, k]$ for some $n \in \mathbb{N}$, we can choose a sequence $a_{1}, a_{2}, a_{3}, \ldots$ of distinct reals such that always $a_{n} \in A_{n} \backslash D$ and either $a_{n}>n$ for every $n \in \mathbb{N}$ or $a_{n}<-n$ for every $n \in \mathbb{N}$. Then $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ is disjoint from $D \cup[-1,1]$ and Euclidean closed and discrete. Consequently, every subset of $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ is τ_{2}-closed.

For every infinite set $S \subset \mathbb{N}$ define a topology $\rho[S] \in \mathcal{L}_{0}$ with $\rho[S] \subset \tau_{2}$ so that an τ_{2}-open neighborhood U of 0 is $\rho[S]$-open if and only if $U \supset\left\{a_{n} \mid k \leq n \in S\right\}$ for some $k \in \mathbb{N}$. We have $\tau_{1} \subset \rho[S]$ since $\left\{a_{n} \mid n \geq k\right\} \subset A_{k}$ for every $k \in \mathbb{N}$. Obviously, $\rho\left[S_{1}\right] \subset \rho\left[S_{2}\right]$ when $S_{1} \supset S_{2}$. Furthermore, if $S_{2} \backslash S_{1}$ is an infinite set then $\rho\left[S_{1}\right] \not \subset \rho\left[S_{2}\right]$ because the τ_{2}-open set $\mathbb{R} \backslash\left\{a_{n} \mid n \notin S_{1}\right\}$ is $\rho\left[S_{1}\right]$-open but not
$\rho\left[S_{2}\right]$-open. Therefore, we define $\mathcal{R}:=\left\{\rho\left[R_{z}\right] \mid z \in \mathbb{R}\right\}$ and $\mathcal{S}:=\left\{\rho\left[S_{z}\right] \mid z \in \mathbb{R}\right\}$ where for every $z \in \mathbb{R}$ infinite sets $R_{z}, S_{z} \subset \mathbb{N}$ are defined so that if $x<y$ then on the one hand $R_{x} \supset R_{y}$ and $R_{x} \backslash R_{y}$ is an infinite set, and on the other hand $S_{x} \cap S_{y}$ is a finite set. (For example, choose a bijection φ from \mathbb{N} onto \mathbb{Q} and put $R_{x}:=\{n \in \mathbb{N} \mid x \leq \varphi(n)\}$ for every $x \in \mathbb{R}$. Furthermore, for every $x \in \mathbb{R}$ choose a set $T_{x} \subset \mathbb{Q} \cap[x-1, x]$ with $T_{x}^{\prime}=\{x\}$ and put $S_{x}:=\varphi^{-1}\left(T_{x}\right)$.) Clearly, for every infinite set $S \subset \mathbb{N}$ the family $\left\{B \cup\left\{a_{n} \mid k \leq n \in S\right\} \mid B \in \mathcal{B}_{2} \wedge k \in \mathbb{N}\right\}$ is a filter base which generates a filter \mathcal{F} such that $\mathcal{N}_{\eta}(0) \cap \mathcal{F}=\mathcal{N}_{\rho[S]}(0)$. Thus $\mathcal{R}, \mathcal{S} \subset \mathcal{L}_{0}^{*}$ if \mathcal{B}_{2} is countable. (So $\mathcal{R}, \mathcal{S} \subset \mathcal{L}_{0}^{*}$ can be achieved if $\tau_{2} \in \mathcal{L}_{0}^{*}$.) If $\tau_{2}=\eta$ (and hence $\mathcal{B}_{2}=\{\emptyset\}$) then the topologies in $\mathcal{R} \cup \mathcal{S}$ are homeomorphic. Because if $S \subset \mathbb{N}$ is infinite then any increasing bijection from \mathbb{R} onto \mathbb{R} which maps 0 to 0 and $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ onto $\left\{a_{n} \mid n \in S\right\}$ is clearly a homeomorphism from the space $(\mathbb{R}, \rho[\mathbb{N}])$ onto $(\mathbb{R}, \rho[S])$. So in order to conclude the proof it remains to define a family \mathcal{T} as desired.

For every free ultrafilter \mathcal{F} on \mathbb{N} put $\rho[\mathcal{F}]:=\bigcup_{S \in \mathcal{F}} \rho[S]$. Clearly, $\tau_{1} \subset \rho[\mathcal{F}] \subset$ τ_{2}. We claim that $\rho[\mathcal{F}]$ is a topology in the lattice \mathcal{L}_{0}. Firstly, let $U_{1}, U_{2} \in \rho[\mathcal{F}]$. Then $U_{i} \in \rho\left[S_{i}\right]$ for $S_{i} \in \mathcal{F}$. Since $S_{1} \cap S_{2}$ is an infinite set in the ultrafilter \mathcal{F} and $\rho\left[S_{1} \cap S_{2}\right]$ is a topology containing $\rho\left[S_{1}\right]$ and $\rho\left[S_{2}\right]$, the intersection $U_{1} \cap U_{2}$ lies in $\rho\left[S_{1} \cap S_{2}\right]$ and hence in $\rho[\mathcal{F}]$. Since $U \in \rho[S]$ whenever $0 \notin U \in \eta$ and $S \in \mathcal{F}$, it is plain that the family $\rho[\mathcal{F}]$ is closed under arbitrary unions and furthermore that $\rho[\mathcal{F}] \in \mathcal{L}_{0}$. We also observe that for $U \in \eta \cap \mathcal{N}_{\eta}(0)$ we have $U \in \rho[\mathcal{F}]$ if and only if $U \supset B$ for some $B \in \mathcal{B}_{2}$ and $\left\{n \in \mathbb{N} \mid a_{n} \in U\right\} \in \mathcal{F}$. Let $\mathcal{F}_{1}, \mathcal{F}_{2}$ be free ultrafilters on \mathbb{N} and $S \in \mathcal{F}_{1}$ and assume $\rho\left[\mathcal{F}_{1}\right] \subset \rho\left[\mathcal{F}_{2}\right]$. The set $V:=\mathbb{R} \backslash\left\{a_{n} \mid n \notin S\right\}$ is τ_{2}-open and $\left\{n \in \mathbb{N} \mid a_{n} \in V\right\}=S$. Thus V is $\rho\left[\mathcal{F}_{1}\right]$-open and hence $\rho\left[\mathcal{F}_{2}\right]$-open and this implies $S \in \mathcal{F}_{2}$. So we derive $\mathcal{F}_{1} \subset \mathcal{F}_{2}$ and hence $\mathcal{F}_{1}=\mathcal{F}_{2}$. Thus the topologies $\rho[\mathcal{F}]$ are mutually incomparable and hence a family \mathcal{T} as desired exists provided that we always have $\rho[\mathcal{F}] \notin \mathcal{L}_{0}^{*}$.

Assume indirectly that $\rho[\mathcal{F}] \in \mathcal{L}_{0}^{*}$ for a free ultrafilter \mathcal{F} on \mathbb{N}. Then we can choose a countable filter base $\left\{B_{1}, B_{2}, B_{3}, \ldots\right\}$ of subsets of $\mathbb{R} \backslash[-1,1]$ such that $B_{n} \supset B_{n+1}$ for every $n \in \mathbb{N}$ and $\eta \cap \mathcal{N}_{\rho[\mathcal{F}]}(0)=\left\{U \in \eta \mid \exists n \in \mathbb{N}: U \supset\{0\} \cup B_{n}\right\}$. Put $S_{m}:=\left\{n \in \mathbb{N} \mid a_{n} \in B_{m}\right\}$ for every $m \in \mathbb{N}$. Trivially, $S_{m} \supset S_{m+1}$ for every $m \in \mathbb{N}$. Let S be any set in the ultrafilter \mathcal{F}. Then the set $\mathbb{R} \backslash\left\{a_{n} \mid n \notin S\right\}$ is $\rho[\mathcal{F}]$-open and hence it contains B_{m} for some $m \in \mathbb{N}$. So for some $m \in \mathbb{N}$ we have $B_{m} \cap\left\{a_{n} \mid n \notin S\right\}=\emptyset$ and hence $S_{m} \subset S$. Therefore, $\left\{S_{m} \mid m \in \mathbb{N}\right\}$ is a filter base for the filter \mathcal{F}. But this is impossible because a filter base for a free ultrafilter on \mathbb{N} must be uncountable (cf. [1] 7.8.a). This concludes the proof of Theorem 8.

REmark. For achieving $\mathcal{R}, \mathcal{S} \subset \mathcal{L}_{0}^{*}$, the additional assumption $\tau_{2} \in \mathcal{L}_{0}^{*}$ is essential in view of the following counterexample (τ_{1}, τ_{2}). Consider the topologies $\tau_{1}:=\tau(\{0\})$ and $\tau_{1}^{\prime}:=\tau(] 0, \frac{1}{2}[)$ in the Boolean algebra $\mathcal{D} \subset \mathcal{L}_{0}^{*}$. Let τ_{2} be the supremum of $\left\{\tau_{1}, \tau_{1}^{\prime}\right\}$ in the lattice \mathcal{L}_{0}. We observe that if $\tau_{1} \neq \tau \in \mathcal{L}_{0}$ and $\tau_{1} \subset \tau \subset \tau_{2}$ then $\tau \notin \mathcal{L}_{0}^{*}$. (Because for every $k \in \mathbb{N}$ and every sequence $\left(u_{n}\right)$ with $0<u_{n} \leq \frac{1}{2}$ the set $]-1,1\left[\cup \bigcup_{n=k}^{\infty}\right] n, n+u_{n}\left[\right.$ lies in $\tau \backslash \tau_{1}$.) In particular, $\tau_{2} \notin \mathcal{L}_{0}^{*}$. Furthermore, this counterexample demonstrates that neither \mathcal{D} nor \mathcal{L}_{0}^{*} is a sublattice of \mathcal{L}_{0}.

The minimum $\theta=\bigcap \mathcal{L}_{0}$ of the complete lattice \mathcal{L}_{0} lies in \mathcal{L}_{0}^{*}. Thus by Theorem 8 and since it is clear that $\mathcal{L}_{0}=\{\tau \in \mathcal{L} \mid \tau \supset \theta\}$, the topology θ has no immediate successor in the lattice \mathcal{L}_{0} or in the partially ordered set (\mathcal{L}, \subset). On the other hand, the following proposition shows that the maximum $\eta=\bigcup \mathcal{L}_{0}$ of the lattice \mathcal{L}_{0} has 2^{c} immediate predecessors in the lattice \mathcal{L}_{0} which are also immediate predecessors of η in the partially ordered family (\mathcal{L}, \subset).

Proposition 8. There exist 2^{c} (mutually non-homeomorphic) topologies $\vartheta \in$ \mathcal{L}_{0} such that no topology from \mathcal{L} lies strictly between ϑ and η.

Proof. For a free ultrafilter \mathcal{F} on \mathbb{Z} let $\tau[\mathcal{F}]$ denote the topology as defined in the proof of Theorem 1. If $\mathcal{K} \subset \mathcal{L}_{0} \backslash\{\eta\}$ is a chain with $\tau[\mathcal{F}] \in \mathcal{K}$ then $\eta \neq$ $\cup \mathcal{K} \in \mathcal{L}_{0}$ by Proposition 6. Therefore, by applying Zorn's lemma, for every free ultrafilter \mathcal{F} on \mathbb{Z} we can choose a maximal element $\vartheta[\mathcal{F}]$ in the partially ordered set $\left(\mathcal{L}_{0} \backslash\{\eta\}, \subset\right)$ such that $\tau[\mathcal{F}] \subset \vartheta[\mathcal{F}]$. For distinct free ultrafilters $\mathcal{F}_{1}, \mathcal{F}_{2}$ we have $\vartheta\left[\mathcal{F}_{1}\right] \neq \vartheta\left[\mathcal{F}_{2}\right]$ because $\tau\left[\mathcal{F}_{1}\right] \neq \tau\left[\mathcal{F}_{2}\right]$ and η is the supremum of $\left\{\tau\left[\mathcal{F}_{1}\right], \tau\left[\mathcal{F}_{2}\right]\right\}$ in the lattice \mathcal{L}_{0} in view of Proposition 1 since there are sets $U_{i} \in \tau\left[\mathcal{F}_{i}\right]$ with $\left.U_{1} \cap U_{2}=\right]-1,1\left[\right.$. (For example, choose $S_{1} \in \mathcal{F}_{1} \backslash \mathcal{F}_{2}$ and with $S_{2}:=\mathbb{Z} \backslash S_{1}$ put $\left.U_{i}=\right]-1,1\left[\cup \bigcup_{n \in S_{i}}\right] n-\frac{1}{2}, n+\frac{1}{2}[$ for $i \in\{1,2\}$.) Finally, if $\eta \neq \tau \in \mathcal{L}$ and $\tau \supset \vartheta[\mathcal{F}]$ then $\tau=\vartheta[\mathcal{F}]$ since $\mathcal{L}_{0}=\{\tau \in \mathcal{L} \mid \tau \supset \theta\}$ and $\vartheta[\mathcal{F}]$ is maximal in $\mathcal{L}_{0} \backslash\{\eta\}$.

Remark. By virtue of Theorem 8 every immediate predecessor of η in \mathcal{L}_{0} must lie in $\mathcal{L}_{0} \backslash \mathcal{L}_{0}^{*}$. This observation has two consequences in view of Proposition 8. Firstly we can be sure that $\left|\mathcal{L}_{0} \backslash \mathcal{L}_{0}^{*}\right|=\left|\mathcal{L}_{0}^{*}\right|=2^{c}$. Secondly, the central assumption $\tau_{1} \in \mathcal{L}_{0}^{*}$ in Theorem 8 cannot be replaced with the weaker assumption $\tau_{1} \in \mathcal{L}_{0}$.

13. Extremely long chains of topologies

Since both the existence of free ultrafilters and the existence of the topologies $\vartheta[\mathcal{F}]$ in the proof of Proposition 8 are based on a maximality principle equivalent with the Axiom of Choice, one might ask whether in the proof of Proposition 8 the topology $\tau[\mathcal{F}]$ is maximal in $\mathcal{L}_{0} \backslash\{\eta\}$ already, whence $\vartheta[\mathcal{F}]=\tau[\mathcal{F}]$. This would be far from being true in view of the following theorem which affirmatively answers the interesting question whether the lattice \mathcal{L}_{0} contains chains of size greater than c. Define $\lambda:=\log \left(c^{+}\right)$, i.e. λ is the smallest cardinal number κ satisfying $2^{\kappa}>c$, whence $\aleph_{1} \leq \lambda \leq c$ and $2^{\lambda}>c$.

Theorem 9. For every free ultrafilter \mathcal{F} on \mathbb{Z} there is a chain $\mathcal{K} \subset \mathcal{L}_{0}$ such that $|\mathcal{K}|=2^{\lambda}$ and $\tau \supset \tau[\mathcal{F}]$ for every $\tau \in \mathcal{K}$.

Proof. For $n \in \mathbb{N}$ define a strictly increasing real function φ_{n} by $\varphi_{n}(x)=$ $3^{-n}(x+1)$, whence φ_{n} maps $[0,1]$ onto $\left[3^{-n}, 2 \cdot 3^{-n}\right]$. For every set $A \subset[0,1]$ define

$$
\Phi(A):=\{0\} \cup \bigcup_{k \in \mathbb{Z}}\left(k+\bigcup_{n=1}^{\infty} \varphi_{n}(A)\right) .
$$

Let \mathcal{F} be a free ultrafilter \mathcal{F} on \mathbb{Z}. For $A \subset[0,1]$ let $\tau[\mathcal{F}, A]$ denote the coarsest topology in the lattice \mathcal{L}_{0} which is finer than $\tau[\mathcal{F}]$ and contains all Euclidean open
sets $U \supset \Phi(A)$. (In particular, $\tau[\mathcal{F}, \emptyset]=\eta$.) Since $\tau[\mathcal{F}, A] \in \mathcal{L}_{0}$, it is plain that $W \in \eta$ is an open neighborhood of 0 in the space $(\mathbb{R}, \tau[\mathcal{F}, A])$ if and only if $W=U \cap V$ for some $U, V \in \eta$ with $U \supset \Phi(A)$ and $0 \in V$ and $V \cap \mathbb{Z} \in \mathcal{F}$.

Obviously, $\tau[\mathcal{F}, B] \subset \tau[\mathcal{F}, A]$ if $\emptyset \neq A \subset B \subset[0,1]$. Moreover, $\tau[\mathcal{F}, B]$ is strictly coarser than $\tau[\mathcal{F}, A]$ if $\emptyset \neq A \subset B \subset[0,1]$ and $A \neq B$. Because if $b \in B \backslash A$ then the Euclidean open set $Y:=]-1,1[\cup(\mathbb{R} \backslash(\mathbb{Z} \cup \Phi(\{b\})))$ is $\tau[\mathcal{F}, A]$-open since $Y \supset \Phi(A)$. But Y is not $\tau[\mathcal{F}, B]$-open because if $k \in \mathbb{Z}$ and $|k| \geq 2$ and $\varepsilon>0$ then Y does not contain $] k, k+\varepsilon[\cap \Phi(B)$.

Therefore, $\mathcal{K}=\{\tau[\mathcal{F}, A] \mid A \in \mathcal{A}\}$ is a chain as desired if \mathcal{A} is a chain of subsets of $[0,1]$ with $|\mathcal{A}|=2^{\lambda}$.

Such a chain \mathcal{A} can easily be defined as follows. Choose a linearly ordered set (L, \preceq) such that $|L|=2^{\lambda}$ and L has a dense subset D with $|D|=c$. (This choice is possible in view of [1] Theorems 5.7.c and 5.8.b.) Define a bijection g from D onto $[0,1]$ and put $A_{x}:=\{g(y) \mid x \prec y \in D\}$ for every $x \in L$. Finally define $\mathcal{A}:=\left\{A_{x} \mid x \in L\right\}$.

Remark. One does not need Theorem 9 to track down chains in \mathcal{L}_{0} of size 2^{λ}, it is enough to define \mathcal{A} as above and to take into consideration that our Boolean algebra $\mathcal{D} \subset \mathcal{L}_{0}^{*}$ is isomorphic with the power set of $[0,1]$. The lattice \mathcal{L}_{0} contains chains of the maximal possible size 2^{c} provided that $2^{\lambda}=2^{c}$. Of course, $2^{\lambda}=2^{c}$ trivially follows from the irrefutable hypothesis $\lambda=c$. (Conversely, $2^{\lambda}=2^{c}$ does not imply $\lambda=c$.) The hypothesis $\lambda=c$ is irrefutable because $\lambda=c$ is obviously a consequence of the Continuum Hypothesis $\aleph_{1}=c$. However, the hypothesis $\lambda=c$ is much weaker than the very restrictive hypothesis $\aleph_{1}=c$ because it is consistent with ZFC set theory that $\lambda=c$ and $\aleph_{1}<\mu<c$ for infinitely many cardinal numbers μ. Even more, roughly speaking, $\lambda=c$ cannot prevent an arbitrarily large deviation of c from \aleph_{1}. (Precisely, in view of [3] 16.13 and 16.20 , if $\kappa>\aleph_{1}$ is an arbitrary regular cardinal in Gödel's Universe L then there is a generic extension E_{κ} of L preserving all cardinals such that $\lambda=c=\kappa$ holds in the ZFC-model E_{κ}.)

REFERENCES

[1] W.W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Springer 1974.
[2] R. Engelking, General Topology, revised and completed edition. Heldermann 1989.
[3] T. Jech, Set Theory, 3rd ed. Springer 2002.
[4] G. Kuba, Counting metric spaces, Arch. Math. 97 (2011), 569-578.
[5] G. Kuba, On certain separable and connected refinements of the Euclidean topology. Mat. Vesnik 64 (2012) (2), 125-137.
[6] G. Kuba, On the variety of Euclidean point sets, Internat. Math. News 228 (2015), 23-32.
[7] A. Lelek and L.F. McAuley, On hereditarily locally connected spaces and one-to-one continuous images of a line, Coll. Math. 17 (1967), 319-324.
(received 14.04.2015; in revised form 19.01.2016; available online 01.03.2016)
Institute of Mathematics, University of Natural Resources and Life Sciences, Vienna, Austria.
E-mail: gerald.kuba@boku.ac.at

[^0]: 2010 Mathematics Subject Classification: 54A10
 Keywords and phrases: nonmetrizable Baire spaces; metrizable spaces of first category.

