COMMON FIXED POINTS IN b-METRIC SPACES ENDOWED WITH A GRAPH

Sushanta Kumar Mohanta

Abstract

We discuss the existence and uniqueness of points of coincidence and common fixed points for a pair of self-mappings defined on a b-metric space endowed with a graph. Our results improve and supplement several recent results of metric fixed point theory.

1. Introduction

Fixed point theory plays a major role in mathematics and applied sciences such as variational and linear inequalities, mathematical models, optimization, mathematical economics and the like. Different generalizations of the usual notion of a metric space were proposed by several mathematicians. In 1989, Bakhtin [5] introduced b-metric spaces as a generalization of metric spaces and generalized the famous Banach contraction principle in metric spaces to b-metric spaces. Since then, a series of articles have been dedicated to the improvement of fixed point theory in b-metric spaces.

In [17], Jungck introduced the concept of weak compatibility. Several authors have obtained coincidence points and common fixed points for various classes of mappings on a metric space by using this concept.

In recent investigations, the study of fixed point theory endowed with a graph occupies a prominent place in many aspects. In 2005, Echenique [13] studied fixed point theory by using graphs. Espinola and Kirk [14] applied fixed point results in graph theory. Recently, Jachymski [16] proved a sufficient condition for a selfmap f of a metric space (X, d) to be a Picard operator and applied it to the Kelisky-Rivlin theorem on iterates of the Bernstein operators on the space $C[0,1]$.

Motivated by the idea given in some recent work on metric spaces with a graph (see $[3,4,6-8]$), we reformulate some important fixed point results in metric spaces to b-metric spaces endowed with a graph. As some consequences of our results, we obtain Banach contraction principle, Kannan fixed point theorem and Fisher fixed

[^0]point theorem in metric spaces. Finally, some examples are provided to illustrate our results.

2. Some basic concepts

We begin with some basic notations, definitions, and necessary results in b metric spaces.

Definition 2.1. [12] Let X be a nonempty set and $s \geq 1$ be a given real number. A function $d: X \times X \rightarrow \mathbb{R}^{+}$is said to be a b-metric on X if the following conditions hold:
(i) $d(x, y)=0$ if and only if $x=y$;
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(iii) $d(x, y) \leq s(d(x, z)+d(z, y))$ for all $x, y, z \in X$.

The pair (X, d) is called a b-metric space.
It seems important to note that if $s=1$, then the triangle inequality in a metric space is satisfied, however it does not hold true when $s>1$. Thus the class of b-metric spaces is effectively larger than that of the ordinary metric spaces. The following example illustrates the above remarks.

Example 2.2. [18] Let $X=\{-1,0,1\}$. Define $d: X \times X \rightarrow \mathbb{R}^{+}$by $d(x, y)=$ $d(y, x)$ for all $x, y \in X, d(x, x)=0, x \in X$ and $d(-1,0)=3, d(-1,1)=d(0,1)=1$. Then (X, d) is a b-metric space, but not a metric space since the triangle inequality is not satisfied. Indeed, we have that

$$
d(-1,1)+d(1,0)=1+1=2<3=d(-1,0)
$$

It is easy to verify that $s=\frac{3}{2}$.
Example 2.3. [19] Let (X, d) be a metric space and $\rho(x, y)=(d(x, y))^{p}$, where $p>1$ is a real number. Then ρ is a b-metric with $s=2^{p-1}$.

Definition 2.4. [10] Let (X, d) be a b-metric space, $x \in X$ and $\left(x_{n}\right)$ be a sequence in X. Then
(i) $\left(x_{n}\right)$ converges to x if and only if $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$. We denote this by $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x(n \rightarrow \infty)$.
(ii) $\left(x_{n}\right)$ is a Cauchy sequence if and only if $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$.
(iii) (X, d) is complete if and only if every Cauchy sequence in X is convergent.

REMARK 2.5. [10] In a b-metric space (X, d), the following assertions hold:
(i) A convergent sequence has a unique limit.
(ii) Each convergent sequence is Cauchy.
(iii) In general, a b-metric is not continuous.

THEOREM 2.6. [2] Let (X, d) be a b-metric space and suppose that $\left(x_{n}\right)$ and $\left(y_{n}\right)$ converge to $x, y \in X$, respectively. Then, we have

$$
\frac{1}{s^{2}} d(x, y) \leq \liminf _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \leq \limsup _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \leq s^{2} d(x, y)
$$

In particular, if $x=y$, then $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0$. Moreover, for each $z \in X$, we have

$$
\frac{1}{s} d(x, z) \leq \liminf _{n \rightarrow \infty} d\left(x_{n}, z\right) \leq \limsup _{n \rightarrow \infty} d\left(x_{n}, z\right) \leq s d(x, z)
$$

Let T and S be self mappings of a set X. Recall that, if $y=T x=S x$ for some x in X, then x is called a coincidence point of T and S and y is called a point of coincidence of T and S. The mappings T, S are weakly compatible [17], if for every $x \in X$, the following holds:

$$
T(S x)=S(T x) \text { whenever } S x=T x
$$

Proposition 2.7. [1] Let S and T be weakly compatible selfmaps of a nonempty set X. If S and T have a unique point of coincidence $y=S x=T x$, then y is the unique common fixed point of S and T.

Definition 2.8. Let (X, d) be a b-metric space with the coefficient $s \geq 1$. A mapping $f: X \rightarrow X$ is called expansive if there exists a positive number $k>s$ such that

$$
d(f x, f y) \geq k d(x, y)
$$

for all $x, y \in X$.
We next review some basic notions in graph theory.
Let (X, d) be a b-metric space. We assume that G is a reflexive digraph where the set $V(G)$ of its vertices coincides with X and the set $E(G)$ of its edges contains no parallel edges. So we can identify G with the pair $(V(G), E(G))$. G may be considered as a weighted graph by assigning to each edge the distance between its vertices. By G^{-1} we denote the graph obtained from G by reversing the direction of edges, i.e., $E\left(G^{-1}\right)=\{(x, y) \in X \times X:(y, x) \in E(G)\}$. Let \tilde{G} denote the undirected graph obtained from G by ignoring the direction of edges. Actually, it will be more convenient for us to treat \tilde{G} as a digraph for which the set of its edges is symmetric. Under this convention,

$$
E(\tilde{G})=E(G) \cup E\left(G^{-1}\right)
$$

Our graph theory notations and terminology are standard and can be found in all graph theory books, like $[9,11,15]$. If x, y are vertices of the digraph G, then a path in G from x to y of length $n(n \in \mathbb{N})$ is a sequence $\left(x_{i}\right)_{i=0}^{n}$ of $n+1$ vertices such that $x_{0}=x, x_{n}=y$ and $\left(x_{i-1}, x_{i}\right) \in E(G)$ for $i=1,2, \ldots, n$. A graph G is connected if there is a path between any two vertices of G. G is weakly connected if \tilde{G} is connected.

Definition 2.9. Let (X, d) be a b-metric space with the coefficient $s \geq 1$ and let $G=(V(G), E(G))$ be a graph. A mapping $f: X \rightarrow X$ is called a Banach G-contraction or simply G-contraction if there exists $\alpha \in\left(0, \frac{1}{s}\right)$ such that

$$
d(f x, f y) \leq \alpha d(x, y)
$$

for all $x, y \in X$ with $(x, y) \in E(G)$.
Any Banach contraction is a G_{0}-contraction, where the graph G_{0} is defined by $E\left(G_{0}\right)=X \times X$. But it is worth mentioning that a Banach G-contraction need not be a Banach contraction (see Remark 3.22).

Definition 2.10. Let (X, d) be a b-metric space with the coefficient $s \geq 1$ and let $G=(V(G), E(G))$ be a graph. A mapping $f: X \rightarrow X$ is called G-Kannan if there exists $k \in\left(0, \frac{1}{2 s}\right)$ such that

$$
d(f x, f y) \leq k[d(f x, x)+d(f y, y)]
$$

for all $x, y \in X$ with $(x, y) \in E(G)$.
Note that any Kannan operator is G_{0}-Kannan. However, a G-Kannan operator need not be a Kannan operator (see Remark 3.25).

Definition 2.11. Let (X, d) be a b-metric space with the coefficient $s \geq 1$ and let $G=(V(G), E(G))$ be a graph. A mapping $f: X \rightarrow X$ is called a Fisher G-contraction if there exists $k \in\left(0, \frac{1}{s(1+s)}\right)$ such that

$$
\begin{equation*}
d(f x, f y) \leq k[d(f x, y)+d(f y, x)] \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$ with $(x, y) \in E(G)$.
If we take $G=G_{0}$, then condition (2.1) holds for all $x, y \in X$ and f is called a Fisher contraction. The following example shows that a Fisher G-contraction need not be a Fisher contraction.

Example 2.12. Let $X=[0, \infty)$ and define $d: X \times X \rightarrow \mathbb{R}^{+}$by $d(x, y)=$ $|x-y|^{2}$ for all $x, y \in X$. Then (X, d) is a b-metric space with the coefficient $s=2$. Let G be a digraph such that $V(G)=X$ and $E(G)=\Delta \cup\left\{\left(4^{t} x, 4^{t}(x+1)\right): x \in\right.$ X with $x \geq 2, t=0,1,2, \ldots\}$, where $\Delta=\{(x, x): x \in X\}$. Let $f: X \rightarrow X$ be defined by $f x=4 x$ for all $x \in X$.

For $x=4^{t} z, y=4^{t}(z+1), z \geq 2$ with $k=\frac{16}{125}$, we have

$$
\begin{aligned}
d(f x, f y) & =d\left(4^{t+1} z, 4^{t+1}(z+1)\right)=4^{2 t+2} \\
& \leq \frac{16}{125} 4^{2 t}\left(18 z^{2}+18 z+17\right) \\
& =\frac{16}{125}\left[d\left(4^{t+1} z, 4^{t}(z+1)\right)+d\left(4^{t+1}(z+1), 4^{t} z\right)\right] \\
& =k[d(f x, y)+d(f y, x)]
\end{aligned}
$$

Thus, f is a Fisher G-contraction. But f is not a Fisher contraction because, if $x=4, y=0$, then for any arbitrary positive number $k<\frac{1}{s(1+s)}$, we have

$$
\begin{aligned}
k[d(f x, y)+d(f y, x)] & =k[d(f 4,0)+d(f 0,4)]=k[d(16,0))+d(0,4)] \\
& =272 k<256=d(f x, f y)
\end{aligned}
$$

Remark 2.13. If f is a G-contraction (resp., G-Kannan or Fisher G-contraction), then f is both a G^{-1}-contraction (resp., G^{-1}-Kannan or Fisher G^{-1} contraction) and a \tilde{G}-contraction (resp., \tilde{G}-Kannan or Fisher \tilde{G}-contraction).

3. Main results

In this section, we assume that (X, d) is a b-metric space with the coefficient $s \geq 1$, and G is a reflexive digraph such that $V(G)=X$ and G has no parallel edges. Let $f, g: X \rightarrow X$ be such that $f(X) \subseteq g(X)$. If $x_{0} \in X$ is arbitrary, then there exists an element $x_{1} \in X$ such that $f x_{0}=g x_{1}$, since $f(X) \subseteq g(X)$. Proceeding in this way, we can construct a sequence $\left(g x_{n}\right)$ such that $g x_{n}=f x_{n-1}, n=1,2,3, \ldots$. By $C_{g f}$ we denote the set of all elements x_{0} of X such that $\left(g x_{n}, g x_{m}\right) \in E(\tilde{G})$ for $m, n=0,1,2, \ldots$ If $g=I$, the identity map on X, then obviously $C_{g f}$ becomes C_{f} which is the collection of all elements x of X such that $\left(f^{n} x, f^{m} x\right) \in E(\tilde{G})$ for $m, n=0,1,2, \ldots$.

Theorem 3.1. Let (X, d) be a b-metric space endowed with a graph G and the mappings $f, g: X \rightarrow X$ satisfy

$$
\begin{equation*}
d(f x, f y) \leq k d(g x, g y) \tag{3.1}
\end{equation*}
$$

for all $x, y \in X$ with $(g x, g y) \in E(\tilde{G})$, where $k \in\left(0, \frac{1}{s}\right)$ is a constant. Suppose $f(X) \subseteq g(X)$ and $g(X)$ is a complete subspace of X with the following property:
$(*)$ If $\left(g x_{n}\right)$ is a sequence in X such that $g x_{n} \rightarrow x$ and $\left(g x_{n}, g x_{n+1}\right) \in E(\tilde{G})$ for all $n \geq 1$, then there exists a subsequence $\left(g x_{n_{i}}\right)$ of $\left(g x_{n}\right)$ such that $\left(g x_{n_{i}}, x\right) \in E(\tilde{G})$ for all $i \geq 1$.
Then f and g have a point of coincidence in X if $C_{g f} \neq \emptyset$. Moreover, f and g have a unique point of coincidence in X if the graph G has the following property:
$(* *)$ If x, y are points of coincidence of f and g in X, then $(x, y) \in E(\tilde{G})$.
Furthermore, if f and g are weakly compatible, then f and g have a unique common fixed point in X.

Proof. Suppose that $C_{g f} \neq \emptyset$. We choose an $x_{0} \in C_{g f}$ and keep it fixed. Since $f(X) \subseteq g(X)$, there exists a sequence $\left(g x_{n}\right)$ such that $g x_{n}=f x_{n-1}, n=1,2,3, \ldots$ and $\left(g x_{n}, g x_{m}\right) \in E(\tilde{G})$ for $m, n=0,1,2, \ldots$

We now show that $\left(g x_{n}\right)$ is a Cauchy sequence in $g(X)$.
For any natural number n, we have by using condition (3.1) that

$$
\begin{equation*}
d\left(g x_{n}, g x_{n+1}\right)=d\left(f x_{n-1}, f x_{n}\right) \leq k d\left(g x_{n-1}, g x_{n}\right) \tag{3.2}
\end{equation*}
$$

By repeated use of condition (3.2), we get

$$
\begin{equation*}
d\left(g x_{n}, g x_{n+1}\right) \leq k^{n} d\left(g x_{0}, g x_{1}\right) \tag{3.3}
\end{equation*}
$$

for all $n \in \mathbb{N}$. For $m, n \in \mathbb{N}$ with $m>n$, using condition (3.3), we have

$$
\begin{aligned}
d\left(g x_{n}, g x_{m}\right) \leq & s d\left(g x_{n}, g x_{n+1}\right)+s^{2} d\left(g x_{n+1}, g x_{n+2}\right) \\
& +\cdots+s^{m-n-1} d\left(g x_{m-2}, g x_{m-1}\right)+s^{m-n-1} d\left(g x_{m-1}, g x_{m}\right) \\
\leq & {\left[s k^{n}+s^{2} k^{n+1}+\cdots+s^{m-n-1} k^{m-2}+s^{m-n-1} k^{m-1}\right] d\left(g x_{0}, g x_{1}\right) } \\
\leq & s k^{n}\left[1+s k+(s k)^{2}+\cdots+(s k)^{m-n-2}+(s k)^{m-n-1}\right] d\left(g x_{0}, g x_{1}\right) \\
\leq & \frac{s k^{n}}{1-s k} d\left(g x_{0}, g x_{1}\right) \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Therefore, $\left(g x_{n}\right)$ is a Cauchy sequence in $g(X)$. As $g(X)$ is complete, there exists an $u \in g(X)$ such that $g x_{n} \rightarrow u=g v$ for some $v \in X$.

As $x_{0} \in C_{g f}$, it follows that $\left(g x_{n}, g x_{n+1}\right) \in E(\tilde{G})$ for all $n \geq 0$, and so by property $(*)$, there exists a subsequence $\left(g x_{n_{i}}\right)$ of $\left(g x_{n}\right)$ such that $\left(g x_{n_{i}}, g v\right) \in E(\tilde{G})$ for all $i \geq 1$. Again, using condition (3.1), we have

$$
\begin{aligned}
d(f v, g v) & \leq s d\left(f v, f x_{n_{i}}\right)+s d\left(f x_{n_{i}}, g v\right) \\
& \leq \operatorname{skd}\left(g v, g x_{n_{i}}\right)+\operatorname{sd}\left(g x_{n_{i}+1}, g v\right) \\
& \rightarrow 0 \text { as } i \rightarrow \infty
\end{aligned}
$$

This gives that $d(f v, g v)=0$ and hence, $f v=g v=u$. Therefore, u is a point of coincidence of f and g.

The next is to show that the point of coincidence is unique. Assume that there is another point of coincidence u^{*} in X such that $f x=g x=u^{*}$ for some $x \in X$. By property $(* *)$, we have $\left(u, u^{*}\right) \in E(\tilde{G})$. Then,

$$
d\left(u, u^{*}\right)=d(f v, f x) \leq k d(g v, g x)=k d\left(u, u^{*}\right)
$$

which gives that $u=u^{*}$. Therefore, f and g have a unique point of coincidence in X.

If f and g are weakly compatible, then by Proposition $2.7, f$ and g have a unique common fixed point in X.

The following corollary gives fixed point of Banach G-contraction in b-metric spaces.

Corollary 3.2. Let (X, d) be a complete b-metric space endowed with a graph G and the mapping $f: X \rightarrow X$ be such that

$$
\begin{equation*}
d(f x, f y) \leq k d(x, y) \tag{3.4}
\end{equation*}
$$

for all $x, y \in X$ with $(x, y) \in E(\tilde{G})$, where $k \in\left(0, \frac{1}{s}\right)$ is a constant. Suppose the triple (X, d, G) have the following property:
$\left(*^{\prime}\right)$ If $\left(x_{n}\right)$ is a sequence in X such that $x_{n} \rightarrow x$ and $\left(x_{n}, x_{n+1}\right) \in E(\tilde{G})$ for all $n \geq 1$, then there exists a subsequence $\left(x_{n_{i}}\right)$ of $\left(x_{n}\right)$ such that $\left(x_{n_{i}}, x\right) \in E(\tilde{G})$ for all $i \geq 1$.
Then f has a fixed point in X if $C_{f} \neq \emptyset$. Moreover, f has a unique fixed point in X if the graph G has the following property:
$\left(* *^{\prime}\right)$ If x, y are fixed points of f in X, then $(x, y) \in E(\tilde{G})$.
Proof. The proof can be obtained from Theorem 3.1 by considering $g=I$, the identity map on X.

Corollary 3.3. Let (X, d) be a b-metric space and mappings $f, g: X \rightarrow X$ satisfy (3.1) for all $x, y \in X$, where $k \in\left(0, \frac{1}{s}\right)$ is a constant. If $f(X) \subseteq g(X)$ and $g(X)$ is a complete subspace of X, then f and g have a unique point of coincidence in X. Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point in X.

Proof. The proof follows from Theorem 3.1 by taking $G=G_{0}$, where G_{0} is the complete graph $(X, X \times X)$.

The following corollary is the b-metric version of Banach contraction principle.
Corollary 3.4. Let (X, d) be a complete b-metric space and a mapping $f: X \rightarrow X$ be such that (3.4) holds for all $x, y \in X$, where $k \in\left(0, \frac{1}{s}\right)$ is a constant. Then f has a unique fixed point u in X and $f^{n} x \rightarrow u$ for all $x \in X$.

Proof. It follows from Theorem 3.1 by putting $G=G_{0}$ and $g=I$.
From Theorem 3.1, we obtain the following corollary concerning the fixed point of expansive mapping in b-metric spaces.

Corollary 3.5. Let (X, d) be a complete b-metric space and let $g: X \rightarrow X$ be an onto expansive mapping. Then g has a unique fixed point in X.

Proof. The conclusion of the corollary follows from Theorem 3.1 by taking $G=G_{0}$ and $f=I$.

Corollary 3.6. Let (X, d) be a complete b-metric space endowed with a partial ordering \preceq and the mapping $f: X \rightarrow X$ be such that (3.4) holds for all $x, y \in X$ with $x \preceq y$ or $y \preceq x$, where $k \in\left(0, \frac{1}{s}\right)$ is a constant. Suppose the triple (X, d, \preceq) has the following property:
(\dagger) If $\left(x_{n}\right)$ is a sequence in X such that $x_{n} \rightarrow x$ and x_{n}, x_{n+1} are comparable for all $n \geq 1$, then there exists a subsequence $\left(x_{n_{i}}\right)$ of $\left(x_{n}\right)$ such that $x_{n_{i}}, x$ are comparable for all $i \geq 1$.
If there exists $x_{0} \in X$ such that $f^{n} x_{0}, f^{m} x_{0}$ are comparable for $m, n=0,1,2, \ldots$, then f has a fixed point in X. Moreover, f has a unique fixed point in X if the following property holds:
$(\dagger \dagger)$ If x, y are fixed points of f in X, then x, y are comparable.

Proof. The proof can be obtained from Theorem 3.1 by taking $g=I$ and $G=$ G_{2}, where the graph G_{2} is defined by $E\left(G_{2}\right)=\{(x, y) \in X \times X: x \preceq y$ or $y \preceq x\}$.

Theorem 3.7. Let (X, d) be a b-metric space endowed with a graph G and the mappings $f, g: X \rightarrow X$ satisfy

$$
\begin{equation*}
d(f x, f y) \leq k d(f x, g x)+l d(f y, g y) \tag{3.5}
\end{equation*}
$$

for all $x, y \in X$ with $(g x, g y) \in E(\tilde{G})$, where k, l are positive numbers with $k+l<\frac{1}{s}$. Suppose $f(X) \subseteq g(X)$ and $g(X)$ is a complete subspace of X with the property $(*)$. Then f and g have a point of coincidence in X if $C_{g f} \neq \emptyset$. Moreover, f and g have a unique point of coincidence in X if the graph G has the property (**). Furthermore, if f and g are weakly compatible, then f and g have a unique common fixed point in X.

Proof. As in the proof of Theorem 3.1, we can construct a sequence $\left(g x_{n}\right)$ such that $g x_{n}=f x_{n-1}, n=1,2,3, \ldots$ and $\left(g x_{n}, g x_{m}\right) \in E(\tilde{G})$ for $m, n=0,1,2, \ldots$. We shall show that $\left(g x_{n}\right)$ is a Cauchy sequence in $g(X)$.

For any natural number n, we have by using condition (3.5) that

$$
\begin{aligned}
d\left(g x_{n+1}, g x_{n}\right) & =d\left(f x_{n}, f x_{n-1}\right) \leq k d\left(f x_{n}, g x_{n}\right)+l d\left(f x_{n-1}, g x_{n-1}\right) \\
& =k d\left(g x_{n+1}, g x_{n}\right)+l d\left(g x_{n}, g x_{n-1}\right)
\end{aligned}
$$

which gives that

$$
\begin{equation*}
d\left(g x_{n+1}, g x_{n}\right) \leq \alpha d\left(g x_{n}, g x_{n-1}\right) \tag{3.6}
\end{equation*}
$$

where $\alpha=\frac{l}{1-k} \in\left(0, \frac{1}{s}\right)$. By repeated use of condition (3.6), we obtain

$$
\begin{equation*}
d\left(g x_{n+1}, g x_{n}\right) \leq \alpha^{n} d\left(g x_{1}, g x_{0}\right) \tag{3.7}
\end{equation*}
$$

for all $n \in \mathbb{N}$. For $m, n \in \mathbb{N}$, using conditions (3.5) and (3.7), we have

$$
\begin{aligned}
d\left(g x_{m}, g x_{n}\right) & =d\left(f x_{m-1}, f x_{n-1}\right) \\
& \leq k d\left(f x_{m-1}, g x_{m-1}\right)+l d\left(f x_{n-1}, g x_{n-1}\right) \\
& =k d\left(g x_{m}, g x_{m-1}\right)+l d\left(g x_{n}, g x_{n-1}\right) \\
& \leq k \alpha^{m-1} d\left(g x_{1}, g x_{0}\right)+l \alpha^{n-1} d\left(g x_{1}, g x_{0}\right) \\
& \rightarrow 0 \text { as } m, n \rightarrow \infty .
\end{aligned}
$$

Therefore, $\left(g x_{n}\right)$ is a Cauchy sequence in $g(X)$. As $g(X)$ is complete, there exists an $u \in g(X)$ such that $g x_{n} \rightarrow u=g v$ for some $v \in X$. As $x_{0} \in C_{g f}$, it follows that $\left(g x_{n}, g x_{n+1}\right) \in E(\tilde{G})$ for all $n \geq 0$, and so by property $(*)$, there exists a subsequence $\left(g x_{n_{i}}\right)$ of $\left(g x_{n}\right)$ such that $\left(g x_{n_{i}}, g v\right) \in E(\tilde{G})$ for all $i \geq 1$.

Now using conditions (3.5) and (3.7), we find

$$
\begin{aligned}
d(f v, g v) & \leq s d\left(f v, f x_{n_{i}}\right)+s d\left(f x_{n_{i}}, g v\right) \\
& \leq\left[s k d(f v, g v)+\operatorname{sld}\left(f x_{n_{i}}, g x_{n_{i}}\right)\right]+s d\left(g x_{n_{i}+1}, g v\right) \\
& =s k d(f v, g v)+\operatorname{sld}\left(g x_{n_{i}+1}, g x_{n_{i}}\right)+s d\left(g x_{n_{i}+1}, g v\right)
\end{aligned}
$$

which yields

$$
\begin{aligned}
d(f v, g v) & \leq \frac{s l}{1-s k} d\left(g x_{n_{i}+1}, g x_{n_{i}}\right)+\frac{s}{1-s k} d\left(g x_{n_{i}+1}, g v\right) \\
& \leq \frac{s l \alpha^{n_{i}}}{1-s k} d\left(g x_{1}, g x_{0}\right)+\frac{s}{1-s k} d\left(g x_{n_{i}+1}, g v\right) \\
& \rightarrow 0 \text { as } i \rightarrow \infty
\end{aligned}
$$

This gives that, $f v=g v=u$. Therefore, u is a point of coincidence of f and g.
Finally, to prove the uniqueness of the point of coincidence, suppose that there is another point of coincidence u^{*} in X such that $f x=g x=u^{*}$ for some $x \in X$. By property $(* *)$, we have $\left(u, u^{*}\right) \in E(\tilde{G})$. Then,

$$
d\left(u, u^{*}\right)=d(f v, f x) \leq k d(f v, g v)+l d(f x, g x)=0
$$

which gives that $u=u^{*}$. Therefore, f and g have a unique point of coincidence in X.

If f and g are weakly compatible, then by Proposition $2.7, f$ and g have a unique common fixed point in X.

Corollary 3.8. Let (X, d) be a complete b-metric space endowed with a graph G and the mapping $f: X \rightarrow X$ be such that

$$
\begin{equation*}
d(f x, f y) \leq k d(f x, x)+l d(f y, y) \tag{3.8}
\end{equation*}
$$

for all $x, y \in X$ with $(x, y) \in E(\tilde{G})$, where k, l are positive numbers with $k+l<\frac{1}{s}$. Suppose the triple (X, d, G) has the property $\left(*^{\prime}\right)$. Then f has a fixed point in X if $C_{f} \neq \emptyset$. Moreover, f has a unique fixed point in X if the graph G has the property ($* *^{\prime}$).

Proof. The proof can be obtained from Theorem 3.7 by putting $g=I$.
REmARK 3.9. In particular (i.e., taking $k=l$), the above corollary gives fixed points of G-Kannan operators in b-metric spaces.

Corollary 3.10. Let (X, d) be a b-metric space and the mappings $f, g: X \rightarrow$ X satisfy (3.5) for all $x, y \in X$, where k, l are positive numbers with $k+l<\frac{1}{s}$. If $f(X) \subseteq g(X)$ and $g(X)$ is a complete subspace of X, then f and g have a unique point of coincidence in X. Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point in X.

Proof. It can be obtained from Theorem 3.7 by taking $G=G_{0}$.
Corollary 3.11. Let (X, d) be a complete b-metric space and $f: X \rightarrow X$ be a mapping such that (3.8) holds for all $x, y \in X$, where k, l are positive numbers with $k+l<\frac{1}{s}$. Then f has a unique fixed point u in X and $f^{n} x \rightarrow u$ for all $x \in X$.

Proof. The proof follows from Theorem 3.7 by putting $G=G_{0}$ and $g=I$.

REMARK 3.12. In particular (i.e., taking $k=l$), the above corollary is the b-metric version of Kannan fixed point theorem.

Corollary 3.13. Let (X, d) be a complete b-metric space endowed with a partial ordering \preceq and the mapping $f: X \rightarrow X$ be such that (3.8) holds for all $x, y \in X$ with $x \preceq y$ or $y \preceq x$, where k, l are positive numbers with $k+l<\frac{1}{s}$. Suppose the triple (X, d, \preceq) has the property (\dagger). If there exists $x_{0} \in X$ such that $f^{n} x_{0}, f^{m} x_{0}$ are comparable for $m, n=0,1,2, \ldots$, then f has a fixed point in X. Moreover, f has a unique fixed point in X if the property ($\dagger \dagger$) holds.

Proof. The proof can be obtained from Theorem 3.7 by taking $g=I$ and $G=G_{2}$.

Theorem 3.14. Let (X, d) be a b-metric space endowed with a graph G and the mappings $f, g: X \rightarrow X$ satisfy

$$
\begin{equation*}
d(f x, f y) \leq k d(f x, g y)+l d(f y, g x) \tag{3.9}
\end{equation*}
$$

for all $x, y \in X$ with $(g x, g y) \in E(\tilde{G})$, where k, l are positive numbers with $s k<\frac{1}{1+s}$ or sl $<\frac{1}{1+s}$. Suppose $f(X) \subseteq g(X)$ and $g(X)$ is a complete subspace of X with the property $(*)$. Then f and g have a point of coincidence in X if $C_{g f} \neq \emptyset$. Moreover, f and g have a unique point of coincidence in X if the graph G has the property $(* *)$ and $k+l<1$. Furthermore, if f and g are weakly compatible, then f and g have a unique common fixed point in X.

Proof. As in the proof of Theorem 3.1, we can construct a sequence $\left(g x_{n}\right)$ such that $g x_{n}=f x_{n-1}, n=1,2, \ldots$ and $\left(g x_{n}, g x_{m}\right) \in E(\tilde{G})$ for $m, n=0,1,2, \ldots$ We shall show that $\left(g x_{n}\right)$ is Cauchy in $g(X)$. We assume that $s k<\frac{1}{1+s}$.

For any natural number n, we have by using condition (3.9) that

$$
\begin{aligned}
d\left(g x_{n+1}, g x_{n}\right) & =d\left(f x_{n}, f x_{n-1}\right) \\
& \leq k d\left(f x_{n}, g x_{n-1}\right)+l d\left(f x_{n-1}, g x_{n}\right) \\
& =k d\left(g x_{n+1}, g x_{n-1}\right) \\
& \leq \operatorname{skd}\left(g x_{n+1}, g x_{n}\right)+\operatorname{skd}\left(g x_{n}, g x_{n-1}\right)
\end{aligned}
$$

which gives that,

$$
\begin{equation*}
\left.d\left(g x_{n+1}, g x_{n}\right)\right) \leq \alpha d\left(g x_{n}, g x_{n-1}\right) \tag{3.10}
\end{equation*}
$$

where $\alpha=\frac{s k}{1-s k} \in\left(0, \frac{1}{s}\right)$, since $s k<\frac{1}{1+s}$. By repeated use of condition (3.10), we obtain

$$
d\left(g x_{n+1}, g x_{n}\right) \leq \alpha^{n} d\left(g x_{1}, g x_{0}\right), \quad \text { for all } n \in \mathbb{N}
$$

By an argument similar to that used in Theorem 3.1, it follows that $\left(g x_{n}\right)$ is a Cauchy sequence in $g(X)$. As $g(X)$ is complete, there exists an $u \in g(X)$ such that $g x_{n} \rightarrow u=g v$ for some $v \in X$. Since $x_{0} \in C_{g f}$, it follows that $\left(g x_{n}, g x_{n+1}\right) \in E(\tilde{G})$ for all $n \geq 0$, and so by property $(*)$, there exists a subsequence $\left(g x_{n_{i}}\right)$ of $\left(g x_{n}\right)$ such that $\left(g x_{n_{i}}, g v\right) \in E(\tilde{G})$ for all $i \geq 1$.

Now using condition (3.9), we find

$$
\begin{aligned}
d(f v, g v) & \leq s d\left(f v, f x_{n_{i}}\right)+s d\left(f x_{n_{i}}, g v\right) \\
& \leq s\left[k d\left(f v, g x_{n_{i}}\right)+l d\left(f x_{n_{i}}, g v\right)\right]+s d\left(g x_{n_{i}+1}, g v\right) \\
& \leq s^{2} k d(f v, g v)+s^{2} k d\left(g v, g x_{n_{i}}\right)+s(l+1) d\left(g x_{n_{i}+1}, g v\right)
\end{aligned}
$$

which gives that

$$
d(f v, g v) \leq \frac{s^{2} k}{1-s^{2} k} d\left(g x_{n_{i}}, g v\right)+\frac{s(l+1)}{1-s^{2} k} d\left(g x_{n_{i}+1}, g v\right) \rightarrow 0 \text { as } i \rightarrow \infty
$$

This proves that $f v=g v=u$. Therefore, u is a point of coincidence of f and g.
Finally, to prove the uniqueness of point of coincidence, suppose that there is another point of coincidence u^{*} in X such that $f x=g x=u^{*}$ for some $x \in X$. By property $(* *)$, we have $\left(u, u^{*}\right) \in E(\tilde{G})$. Then,

$$
\begin{aligned}
d\left(u, u^{*}\right) & =d(f v, f x) \leq k d(f v, g x)+l d(f x, g v) \\
& =(k+l) d\left(u^{*}, u\right)
\end{aligned}
$$

If $k+l<1$, then it must be the case that $d\left(u, u^{*}\right)=0$ i.e., $u=u^{*}$. Therefore, f and g have a unique point of coincidence in X.

If f and g are weakly compatible, then by Proposition $2.7, f$ and g have a unique common fixed point in X.

Corollary 3.15. Let (X, d) be a complete b-metric space endowed with a graph G and the mapping $f: X \rightarrow X$ be such that

$$
\begin{equation*}
d(f x, f y) \leq k d(f x, y)+l d(f y, x) \tag{3.11}
\end{equation*}
$$

for all $x, y \in X$ with $(x, y) \in E(\tilde{G})$, where k, l are positive numbers with $s k<\frac{1}{1+s}$ or sl $<\frac{1}{1+s}$. Suppose the triple (X, d, G) has the property $\left(*^{\prime}\right)$. Then f has a fixed point in X if $C_{f} \neq \emptyset$. Moreover, f has a unique fixed point in X if the graph G has the property $\left(* *^{\prime}\right)$ and $k+l<1$.

Proof. The proof can be obtained from Theorem 3.14 by putting $g=I$.
REMARK 3.16. In particular (i.e., taking $k=l$), the above corollary gives fixed points of Fisher G-contraction in b-metric spaces.

Corollary 3.17. Let (X, d) be a b-metric space and the mappings $f, g: X \rightarrow$ X satisfy (3.9) for all $x, y \in X$, where k, l are positive numbers with sk $<\frac{1}{1+s}$ or sl $<\frac{1}{1+s}$. If $f(X) \subseteq g(X)$ and $g(X)$ is a complete subspace of X, then f and g have a point of coincidence in X. Moreover, if $k+l<1$, then f and g have a unique point of coincidence in X. Furthermore, if f and g are weakly compatible, then f and g have a unique common fixed point in X.

Proof. The proof can be obtained from Theorem 3.14 by taking $G=G_{0}$.

The following corollary is [18, Theorem 5]. In particular (when $k=l$), it is the b-metric version of Fisher's theorem.

Corollary 3.18. Let (X, d) be a complete b-metric space and let $f: X \rightarrow X$ be a mapping such that (3.11) holds for all $x, y \in X$, where k, l are positive numbers with $s k<\frac{1}{1+s}$ or $s l<\frac{1}{1+s}$. Then f has a fixed point in X. Moreover, if $k+l<1$, then f has a unique fixed point u in X and $f^{n} x \rightarrow u$ for all $x \in X$.

Proof. The proof can be obtained from Theorem 3.14 by considering $G=G_{0}$ and $g=I$.

Corollary 3.19. Let (X, d) be a complete b-metric space endowed with a partial ordering \preceq and the mapping $f: X \rightarrow X$ be such that (3.11) holds for all $x, y \in X$ with $x \preceq y$ or, $y \preceq x$, where k, l are positive numbers with sk $<\frac{1}{1+s}$ or $s l<\frac{1}{1+s}$. Suppose the triple (X, d, \preceq) has the property (\dagger). If there exists $x_{0} \in X$ such that $f^{n} x_{0}, f^{m} x_{0}$ are comparable for $m, n=0,1,2, \ldots$, then f has a fixed point in X. Moreover, f has a unique fixed point in X if the property ($\dagger \dagger$) holds and $k+l<1$.

Proof. The proof can be obtained from Theorem 3.14 by taking $g=I$ and $G=G_{2}$.

We furnish some examples in favour of our results.
Example 3.20 . Let $X=\mathbb{R}$ and define $d: X \times X \rightarrow \mathbb{R}^{+}$by $d(x, y)=|x-y|^{2}$ for all $x, y \in X$. Then (X, d) is a complete b-metric space with the coefficient $s=2$. Let G be a digraph such that $V(G)=X$ and $E(G)=\Delta \cup\left\{\left(0, \frac{1}{5^{n}}\right): n=0,1,2, \ldots\right\}$. Let $f, g: X \rightarrow X$ be defined by

$$
f x= \begin{cases}\frac{x}{5}, & \text { if } x \neq \frac{2}{5} \\ 1, & \text { if } x=\frac{2}{5}\end{cases}
$$

and $g x=3 x$ for all $x \in X$. Obviously, $f(X) \subseteq g(X)=X$.
If $x=0, y=\frac{1}{3.5^{n}}$, then $g x=0, g y=\frac{1}{5^{n}}$ and so $(g x, g y) \in E(\tilde{G})$.
For $x=0, y=\frac{1}{3.5^{n}}$, we have

$$
\begin{aligned}
d(f x, f y) & =d\left(0, \frac{1}{3.5^{n+1}}\right)=\frac{1}{9.5^{2 n+2}} \\
& <\frac{1}{9} \cdot \frac{1}{5^{2 n}}=k d(g x, g y), \text { where } k=\frac{1}{9}
\end{aligned}
$$

Therefore, $d(f x, f y) \leq k d(g x, g y)$ holds for all $x, y \in X$ with $(g x, g y) \in E(\tilde{G})$, where $k=\frac{1}{9} \in\left(0, \frac{1}{s}\right)$ is a constant. We can verify that $0 \in C_{g f}$. In fact, $g x_{n}=$ $f x_{n-1}, n=1,2,3, \ldots$ gives that $g x_{1}=f 0=0 \Rightarrow x_{1}=0$ and so $g x_{2}=f x_{1}=$ $0 \Rightarrow x_{2}=0$. Proceeding in this way, we get $g x_{n}=0$ for $n=0,1,2, \ldots$ and hence $\left(g x_{n}, g x_{m}\right)=(0,0) \in E(\tilde{G})$ for $m, n=0,1,2, \ldots$.

Also, any sequence $\left(g x_{n}\right)$ with the property $\left(g x_{n}, g x_{n+1}\right) \in E(\tilde{G})$ must be either a constant sequence or a sequence of the following form

$$
g x_{n}=\left\{\begin{array}{cl}
0, & \text { if } n \text { is odd } \\
\frac{1}{5^{n}}, & \text { if } n \text { is even }
\end{array}\right.
$$

where the words 'odd' and 'even' are interchangeable. Consequently it follows that property $(*)$ holds. Furthermore, f and g are weakly compatible. Thus, we have all the conditions of Theorem 3.1 and 0 is the unique common fixed point of f and g in X.

We now show that the weak compatibility condition in Theorem 3.1 cannot be relaxed.

Remark 3.21. In Example 3.20, if we take $g x=3 x-14$ for all $x \in X$ instead of $g x=3 x$, then $5 \in C_{g f}$ and $f(5)=g(5)=1$ but $g(f(5)) \neq f(g(5))$ i.e., f and g are not weakly compatible. However, all other conditions of Theorem 3.1 are satisfied. We observe that 1 is the unique point of coincidence of f and g without being a common fixed point.

Remark 3.22. In Example 3.20, f is a Banach G-contraction with constant $k=\frac{1}{25}$ but it is not a Banach contraction. In fact, for $x=\frac{2}{5}, y=1$, we have

$$
d(f x, f y)=d\left(1, \frac{1}{5}\right)=\frac{16}{25}=\frac{16}{9} \cdot \frac{9}{25}>k d(x, y)
$$

for any $k \in\left(0, \frac{1}{s}\right)$. This implies that f is not a Banach contraction.
The next example shows that the property $(*)$ in Theorem 3.1 is necessary.
Example 3.23. Let $X=[0,1]$ and define $d: X \times X \rightarrow \mathbb{R}^{+}$by $d(x, y)=|x-y|^{2}$ for all $x, y \in X$. Then (X, d) is a complete b-metric space with the coefficient $s=2$. Let G be a digraph such that $V(G)=X$ and $E(G)=\{(0,0)\} \cup\{(x, y):(x, y) \in$ $(0,1] \times(0,1], x \geq y\}$. Let $f, g: X \rightarrow X$ be defined by

$$
f x= \begin{cases}\frac{x}{3}, & \text { if } x \in(0,1] \\ 1, & \text { if } x=0\end{cases}
$$

and $g x=x$ for all $x \in X$. Obviously, $f(X) \subseteq g(X)=X$.
For $x, y \in X$ with $(g x, g y) \in E(\tilde{G})$, we have $d(f x, f y)=\frac{1}{9} d(g x, g y)$, where $\alpha=\frac{1}{9} \in\left(0, \frac{1}{s}\right)$ is a constant. We see that f and g have no point of coincidence in X. We now verify that the property $(*)$ does not hold. In fact, $\left(g x_{n}\right)$ is a sequence in X with $g x_{n} \rightarrow 0$ and $\left(g x_{n}, g x_{n+1}\right) \in E(\tilde{G})$ for all $n \in \mathbb{N}$ where $x_{n}=\frac{1}{n}$. But there exists no subsequence $\left(g x_{n_{i}}\right)$ of $\left(g x_{n}\right)$ such that $\left(g x_{n_{i}}, 0\right) \in E(\tilde{G})$.

The following example supports our Theorem 3.7.
Example 3.24. Let $X=[0, \infty)$ and define $d: X \times X \rightarrow \mathbb{R}^{+}$by $d(x, y)=$ $|x-y|^{2}$ for all $x, y \in X$. Then (X, d) is a complete b-metric space with the coefficient $s=2$. Let G be a digraph such that $V(G)=X$ and $E(G)=\Delta \cup\left\{\left(3^{t} x, 3^{t}(x+1)\right)\right.$: $x \in X$ with $x \geq 2, t=0,1,2, \ldots\}$.

Let $f, g: X \rightarrow X$ be defined by $f x=3 x$ and $g x=9 x$ for all $x \in X$. Clearly, $f(X)=g(X)=X$.

If $x=3^{t-2} z, y=3^{t-2}(z+1)$, then $g x=3^{t} z, g y=3^{t}(z+1)$ and so $(g x, g y) \in$ $E(\tilde{G})$ for all $z \geq 2$.

For $x=3^{t-2} z, y=3^{t-2}(z+1), z \geq 2$ with $k=l=\frac{1}{52}$, we have

$$
\begin{aligned}
d(f x, f y) & =d\left(3^{t-1} z, 3^{t-1}(z+1)\right)=3^{2 t-2} \\
& \leq \frac{1}{52} 3^{2 t-2}\left(8 z^{2}+8 z+4\right) \\
& =\frac{1}{52}\left[d\left(3^{t-1} z, 3^{t} z\right)+d\left(3^{t-1}(z+1), 3^{t}(z+1)\right)\right] \\
& =k d(f x, g x)+l d(f y, g y)
\end{aligned}
$$

Thus, condition (3.5) is satisfied. It is easy to verify that $0 \in C_{g f}$.
Also, any sequence $\left(g x_{n}\right)$ with $g x_{n} \rightarrow x$ and $\left(g x_{n}, g x_{n+1}\right) \in E(\tilde{G})$ must be a constant sequence and hence property $(*)$ holds. Furthermore, f and g are weakly compatible. Thus, we have all the conditions of Theorem 3.7 and 0 is the unique common fixed point of f and g in X.

REmARK 3.25. In Example 3.23, f is a G-Kannan operator with constant $k=\frac{9}{52}$. But f is not a Kannan operator because, if $x=3, y=0$, then for any arbitrary positive number $k<\frac{1}{2 s}$, we have

$$
k[d(f x, x)+d(f y, y)]=k[d(f 3,3)+d(f 0,0)]=36 k<81=d(f x, f y)
$$

Example 3.26. Let $X=\mathbb{R}$ and define $d: X \times X \rightarrow \mathbb{R}^{+}$by $d(x, y)=|x-y|^{p}$ for all $x, y \in X$, where $p>1$ is a real number. Then (X, d) is a complete b-metric space with the coefficient $s=2^{p-1}$. Let $f, g: X \rightarrow X$ be defined by

$$
f x= \begin{cases}1, & \text { if } x \neq 4 \\ 2, & \text { if } x=4\end{cases}
$$

and $g x=2 x-1$ for all $x \in X$. Obviously, $f(X) \subseteq g(X)=X$.
Let G be a digraph such that $V(G)=X$ and $E(G)=\Delta \cup\{(1,2),(2,4)\}$. If $x=1, y=\frac{3}{2}$, then $g x=1, g y=2$ and so $(g x, g y) \in E(\tilde{G})$. Again, if $x=\frac{3}{2}, y=\frac{5}{2}$, then $g x=2, g y=4$ and so $(g x, g y) \in E(\tilde{G})$.

It is easy to verify that condition (3.9) of Theorem 3.14 holds for all $x, y \in X$ with $(g x, g y) \in E(\tilde{G})$. Furthermore, $1 \in C_{g f}$, i.e., $C_{g f} \neq \emptyset, f$ and g are weakly compatible, and the triple (X, d, G) have property $(*)$. Thus, all the conditions of Theorem 3.14 are satisfied and 1 is the unique common fixed point of f and g in X.

Remark 3.27. In Example 3.26, f is not a Fisher G-contraction for $p=5$. In fact, for $x=2, y=4$ and $p=5$, we have

$$
\begin{aligned}
k[d(f x, y)+d(f y, x)] & =k[d(1,4)+d(2,2)]=3^{p} k<\frac{243}{272} \\
& <1=d(f x, f y)
\end{aligned}
$$

for arbitrary positive number k with $k<\frac{1}{s(1+s)}$. This implies that f is not a Fisher G-contraction for $p=5$. However, we can verify that f is a Fisher G-contraction for $p=4$.

REFERENCES

[1] M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 341 (2008), 416-420.
[2] A. Aghajani, M. Abbas and J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 4, 2014, 941-960.
[3] S. Aleomraninejad, S. Rezapour and N. Shahzad, Fixed point results on subgraphs of directed graphs, Math. Sciences, 7:41 (2013).
[4] M. R. Alfuraidan and M. A. Khamsi, Caristi fixed point theorem in metric spaces with a graph, Abstract Appl. Anal., 2014, Art. ID 303484, 5 pages.
[5] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk, 30 (1989), 26-37.
[6] I. Beg, A. R. Butt and S. Radojević, The contraction principle for set valued mappings on a metric space with a graph, Comput. Math. Appl., 60 (2010), 1214-1219.
[7] F. Bojor, Fixed point of φ-contraction in metric spaces endowed with a graph, Ann. Univ. Cralova, Mathematics and Computer Science Series, 37 (2010), 85-92.
[8] F. Bojor, Fixed points of Kannan mappings in metric spaces endowed with a graph, An. St. Univ. Ovidius Constanta, 20 (2012), 31-40.
[9] J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976.
[10] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Mod. Math., 4 (2009), 285-301.
[11] G. Chartrand, L. Lesniak and P. Zhang, Graph and Digraph, CRC Press, New York, NY, USA, 2011.
[12] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav, 1 (1993), 5-11.
[13] F. Echenique, A short and constructive proof of Tarski's fixed point theorem, Internat. J. Game Theory, 33 (2005), 215-218.
[14] R. Espinola and W. A. Kirk, Fixed point theorems in R-trees with applications to graph theory, Topology Appl., 153 (2006), 1046-1055.
[15] J. I. Gross and J. Yellen, Graph Theory and its Applications, CRC Press, New York, NY, USA, 1999.
[16] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359-1373.
[17] G. Jungck, Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci., 4 (1996), 199-215.
[18] S. K. Mohanta, Some fixed point theorems using wt-distance in b-metric spaces, Fasciculi Math., 54 (2015), 125-140.
[19] J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi, Common fixed points of almost generalized $(\psi, \varphi)_{s}$-contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl., 2013:159 (2013), 23 pages.
(received 30.09.2015; in revised form 09.02.2016; available online 21.03.2016)
Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), Kolkata-700126, West Bengal, India
E-mail: smwbes@yahoo.in

[^0]: 2010 Mathematics Subject Classification: 47H10, 54H25
 Keywords and phrases: b-metric; reflexive digraph; point of coincidence; common fixed point.

