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COMMON FIXED POINTS IN b-METRIC SPACES
ENDOWED WITH A GRAPH

Sushanta Kumar Mohanta

Abstract. We discuss the existence and uniqueness of points of coincidence and common
fixed points for a pair of self-mappings defined on a b-metric space endowed with a graph. Our
results improve and supplement several recent results of metric fixed point theory.

1. Introduction

Fixed point theory plays a major role in mathematics and applied sciences such
as variational and linear inequalities, mathematical models, optimization, mathe-
matical economics and the like. Different generalizations of the usual notion of a
metric space were proposed by several mathematicians. In 1989, Bakhtin [5] in-
troduced b-metric spaces as a generalization of metric spaces and generalized the
famous Banach contraction principle in metric spaces to b-metric spaces. Since
then, a series of articles have been dedicated to the improvement of fixed point
theory in b-metric spaces.

In [17], Jungck introduced the concept of weak compatibility. Several authors
have obtained coincidence points and common fixed points for various classes of
mappings on a metric space by using this concept.

In recent investigations, the study of fixed point theory endowed with a graph
occupies a prominent place in many aspects. In 2005, Echenique [13] studied fixed
point theory by using graphs. Espinola and Kirk [14] applied fixed point results in
graph theory. Recently, Jachymski [16] proved a sufficient condition for a selfmap f
of a metric space (X, d) to be a Picard operator and applied it to the Kelisky-Rivlin
theorem on iterates of the Bernstein operators on the space C[0, 1].

Motivated by the idea given in some recent work on metric spaces with a graph
(see [3,4,6–8]), we reformulate some important fixed point results in metric spaces
to b-metric spaces endowed with a graph. As some consequences of our results, we
obtain Banach contraction principle, Kannan fixed point theorem and Fisher fixed
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point theorem in metric spaces. Finally, some examples are provided to illustrate
our results.

2. Some basic concepts

We begin with some basic notations, definitions, and necessary results in b-
metric spaces.

Definition 2.1. [12] Let X be a nonempty set and s ≥ 1 be a given real
number. A function d : X ×X → R+ is said to be a b-metric on X if the following
conditions hold:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≤ s (d(x, z) + d(z, y)) for all x, y, z ∈ X.

The pair (X, d) is called a b-metric space.

It seems important to note that if s = 1, then the triangle inequality in a
metric space is satisfied, however it does not hold true when s > 1. Thus the class
of b-metric spaces is effectively larger than that of the ordinary metric spaces. The
following example illustrates the above remarks.

Example 2.2. [18] Let X = {−1, 0, 1}. Define d : X ×X → R+ by d(x, y) =
d(y, x) for all x, y ∈ X, d(x, x) = 0, x ∈ X and d(−1, 0) = 3, d(−1, 1) = d(0, 1) = 1.
Then (X, d) is a b-metric space, but not a metric space since the triangle inequality
is not satisfied. Indeed, we have that

d(−1, 1) + d(1, 0) = 1 + 1 = 2 < 3 = d(−1, 0).

It is easy to verify that s = 3
2 .

Example 2.3. [19] Let (X, d) be a metric space and ρ(x, y) = (d(x, y))p,
where p > 1 is a real number. Then ρ is a b-metric with s = 2p−1.

Definition 2.4. [10] Let (X, d) be a b-metric space, x ∈ X and (xn) be a
sequence in X. Then

(i) (xn) converges to x if and only if limn→∞ d(xn, x) = 0. We denote this by
limn→∞ xn = x or xn → x (n →∞).

(ii) (xn) is a Cauchy sequence if and only if limn,m→∞ d(xn, xm) = 0.

(iii) (X, d) is complete if and only if every Cauchy sequence in X is convergent.

Remark 2.5. [10] In a b-metric space (X, d), the following assertions hold:

(i) A convergent sequence has a unique limit.

(ii) Each convergent sequence is Cauchy.

(iii) In general, a b-metric is not continuous.
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Theorem 2.6. [2] Let (X, d) be a b-metric space and suppose that (xn) and
(yn) converge to x, y ∈ X, respectively. Then, we have

1
s2

d(x, y) ≤ lim inf
n→∞

d(xn, yn) ≤ lim sup
n→∞

d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then limn→∞ d(xn, yn) = 0. Moreover, for each z ∈ X, we
have

1
s
d(x, z) ≤ lim inf

n→∞
d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z).

Let T and S be self mappings of a set X. Recall that, if y = Tx = Sx for
some x in X, then x is called a coincidence point of T and S and y is called a point
of coincidence of T and S. The mappings T, S are weakly compatible [17], if for
every x ∈ X, the following holds:

T (Sx) = S(Tx) whenever Sx = Tx.

Proposition 2.7. [1] Let S and T be weakly compatible selfmaps of a nonemp-
ty set X. If S and T have a unique point of coincidence y = Sx = Tx, then y is
the unique common fixed point of S and T .

Definition 2.8. Let (X, d) be a b-metric space with the coefficient s ≥ 1. A
mapping f : X → X is called expansive if there exists a positive number k > s
such that

d(fx, fy) ≥ k d(x, y)

for all x, y ∈ X.

We next review some basic notions in graph theory.
Let (X, d) be a b-metric space. We assume that G is a reflexive digraph where

the set V (G) of its vertices coincides with X and the set E(G) of its edges contains
no parallel edges. So we can identify G with the pair (V (G), E(G)). G may be
considered as a weighted graph by assigning to each edge the distance between its
vertices. By G−1 we denote the graph obtained from G by reversing the direction
of edges, i.e., E(G−1) = {(x, y) ∈ X × X : (y, x) ∈ E(G)}. Let G̃ denote the
undirected graph obtained from G by ignoring the direction of edges. Actually, it
will be more convenient for us to treat G̃ as a digraph for which the set of its edges
is symmetric. Under this convention,

E(G̃) = E(G) ∪ E(G−1).

Our graph theory notations and terminology are standard and can be found
in all graph theory books, like [9,11,15]. If x, y are vertices of the digraph G, then
a path in G from x to y of length n (n ∈ N) is a sequence (xi)n

i=0 of n + 1 vertices
such that x0 = x, xn = y and (xi−1, xi) ∈ E(G) for i = 1, 2, . . . , n. A graph G is
connected if there is a path between any two vertices of G. G is weakly connected
if G̃ is connected.
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Definition 2.9. Let (X, d) be a b-metric space with the coefficient s ≥ 1
and let G = (V (G), E(G)) be a graph. A mapping f : X → X is called a Banach
G-contraction or simply G-contraction if there exists α ∈ (0, 1

s ) such that

d(fx, fy) ≤ α d(x, y)

for all x, y ∈ X with (x, y) ∈ E(G).

Any Banach contraction is a G0-contraction, where the graph G0 is defined by
E(G0) = X × X. But it is worth mentioning that a Banach G-contraction need
not be a Banach contraction (see Remark 3.22).

Definition 2.10. Let (X, d) be a b-metric space with the coefficient s ≥ 1
and let G = (V (G), E(G)) be a graph. A mapping f : X → X is called G-Kannan
if there exists k ∈ (0, 1

2s ) such that

d(fx, fy) ≤ k [d(fx, x) + d(fy, y)]

for all x, y ∈ X with (x, y) ∈ E(G).

Note that any Kannan operator is G0-Kannan. However, a G-Kannan operator
need not be a Kannan operator (see Remark 3.25).

Definition 2.11. Let (X, d) be a b-metric space with the coefficient s ≥ 1
and let G = (V (G), E(G)) be a graph. A mapping f : X → X is called a Fisher
G-contraction if there exists k ∈ (0, 1

s(1+s) ) such that

d(fx, fy) ≤ k [d(fx, y) + d(fy, x)] (2.1)

for all x, y ∈ X with (x, y) ∈ E(G).

If we take G = G0, then condition (2.1) holds for all x, y ∈ X and f is called a
Fisher contraction. The following example shows that a Fisher G-contraction need
not be a Fisher contraction.

Example 2.12. Let X = [0,∞) and define d : X × X → R+ by d(x, y) =
|x− y|2 for all x, y ∈ X. Then (X, d) is a b-metric space with the coefficient s = 2.
Let G be a digraph such that V (G) = X and E(G) = ∆ ∪ {(4tx, 4t(x + 1)) : x ∈
X with x ≥ 2, t = 0, 1, 2, . . . }, where ∆ = {(x, x) : x ∈ X}. Let f : X → X be
defined by fx = 4x for all x ∈ X.

For x = 4tz, y = 4t(z + 1), z ≥ 2 with k = 16
125 , we have

d(fx, fy) = d
(
4t+1z, 4t+1(z + 1)

)
= 42t+2

≤ 16
125

42t(18z2 + 18z + 17)

=
16
125

[
d

(
4t+1z, 4t(z + 1)

)
+ d

(
4t+1(z + 1), 4tz

)]

= k [d(fx, y) + d(fy, x)].
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Thus, f is a Fisher G-contraction. But f is not a Fisher contraction because, if
x = 4, y = 0, then for any arbitrary positive number k < 1

s(1+s) , we have

k [d(fx, y) + d(fy, x)] = k [d(f4, 0) + d(f0, 4)] = k [d(16, 0)) + d(0, 4)]

= 272k < 256 = d(fx, fy).

Remark 2.13. If f is a G-contraction (resp., G-Kannan or Fisher G-con-
traction), then f is both a G−1-contraction (resp., G−1-Kannan or Fisher G−1-
contraction) and a G̃-contraction (resp., G̃-Kannan or Fisher G̃-contraction).

3. Main results

In this section, we assume that (X, d) is a b-metric space with the coefficient
s ≥ 1, and G is a reflexive digraph such that V (G) = X and G has no parallel edges.
Let f, g : X → X be such that f(X) ⊆ g(X). If x0 ∈ X is arbitrary, then there
exists an element x1 ∈ X such that fx0 = gx1, since f(X) ⊆ g(X). Proceeding in
this way, we can construct a sequence (gxn) such that gxn = fxn−1, n = 1, 2, 3, . . . .
By Cgf we denote the set of all elements x0 of X such that (gxn, gxm) ∈ E(G̃) for
m,n = 0, 1, 2, . . . . If g = I, the identity map on X, then obviously Cgf becomes
Cf which is the collection of all elements x of X such that (fnx, fmx) ∈ E(G̃) for
m,n = 0, 1, 2, . . . .

Theorem 3.1. Let (X, d) be a b-metric space endowed with a graph G and the
mappings f, g : X → X satisfy

d(fx, fy) ≤ k d(gx, gy) (3.1)

for all x, y ∈ X with (gx, gy) ∈ E(G̃), where k ∈ (0, 1
s ) is a constant. Suppose

f(X) ⊆ g(X) and g(X) is a complete subspace of X with the following property:

(∗) If (gxn) is a sequence in X such that gxn → x and (gxn, gxn+1) ∈ E(G̃) for
all n ≥ 1, then there exists a subsequence (gxni) of (gxn) such that (gxni , x) ∈ E(G̃)
for all i ≥ 1.
Then f and g have a point of coincidence in X if Cgf 6= ∅. Moreover, f and g have
a unique point of coincidence in X if the graph G has the following property:

(∗∗) If x, y are points of coincidence of f and g in X, then (x, y) ∈ E(G̃).
Furthermore, if f and g are weakly compatible, then f and g have a unique common
fixed point in X.

Proof. Suppose that Cgf 6= ∅. We choose an x0 ∈ Cgf and keep it fixed. Since
f(X) ⊆ g(X), there exists a sequence (gxn) such that gxn = fxn−1, n = 1, 2, 3, . . .

and (gxn, gxm) ∈ E(G̃) for m,n = 0, 1, 2, . . . .
We now show that (gxn) is a Cauchy sequence in g(X).
For any natural number n, we have by using condition (3.1) that

d(gxn, gxn+1) = d(fxn−1, fxn) ≤ kd(gxn−1, gxn). (3.2)
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By repeated use of condition (3.2), we get

d(gxn, gxn+1) ≤ knd(gx0, gx1) (3.3)

for all n ∈ N. For m,n ∈ N with m > n, using condition (3.3), we have

d(gxn, gxm) ≤ sd(gxn, gxn+1) + s2d(gxn+1, gxn+2)

+ · · ·+ sm−n−1d(gxm−2, gxm−1) + sm−n−1d(gxm−1, gxm)

≤ [
skn + s2kn+1 + · · ·+ sm−n−1km−2 + sm−n−1km−1

]
d(gx0, gx1)

≤ skn
[
1 + sk + (sk)2 + · · ·+ (sk)m−n−2 + (sk)m−n−1

]
d(gx0, gx1)

≤ skn

1− sk
d(gx0, gx1) → 0 as n →∞.

Therefore, (gxn) is a Cauchy sequence in g(X). As g(X) is complete, there exists
an u ∈ g(X) such that gxn → u = gv for some v ∈ X.

As x0 ∈ Cgf , it follows that (gxn, gxn+1) ∈ E(G̃) for all n ≥ 0, and so by
property (∗), there exists a subsequence (gxni) of (gxn) such that (gxni , gv) ∈ E(G̃)
for all i ≥ 1. Again, using condition (3.1), we have

d(fv, gv) ≤ sd(fv, fxni) + sd(fxni , gv)

≤ skd(gv, gxni) + sd(gxni+1, gv)
→ 0 as i →∞.

This gives that d(fv, gv) = 0 and hence, fv = gv = u. Therefore, u is a point of
coincidence of f and g.

The next is to show that the point of coincidence is unique. Assume that there
is another point of coincidence u∗ in X such that fx = gx = u∗ for some x ∈ X.
By property (∗∗), we have (u, u∗) ∈ E(G̃). Then,

d(u, u∗) = d(fv, fx) ≤ kd(gv, gx) = kd(u, u∗),

which gives that u = u∗. Therefore, f and g have a unique point of coincidence
in X.

If f and g are weakly compatible, then by Proposition 2.7, f and g have a
unique common fixed point in X.

The following corollary gives fixed point of Banach G-contraction in b-metric
spaces.

Corollary 3.2. Let (X, d) be a complete b-metric space endowed with a graph
G and the mapping f : X → X be such that

d(fx, fy) ≤ kd(x, y) (3.4)

for all x, y ∈ X with (x, y) ∈ E(G̃), where k ∈ (0, 1
s ) is a constant. Suppose the

triple (X, d,G) have the following property:
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(∗′) If (xn) is a sequence in X such that xn → x and (xn, xn+1) ∈ E(G̃) for
all n ≥ 1, then there exists a subsequence (xni

) of (xn) such that (xni
, x) ∈ E(G̃)

for all i ≥ 1.
Then f has a fixed point in X if Cf 6= ∅. Moreover, f has a unique fixed point in
X if the graph G has the following property:

(∗∗′) If x, y are fixed points of f in X, then (x, y) ∈ E(G̃).

Proof. The proof can be obtained from Theorem 3.1 by considering g = I, the
identity map on X.

Corollary 3.3. Let (X, d) be a b-metric space and mappings f, g : X → X
satisfy (3.1) for all x, y ∈ X, where k ∈ (0, 1

s ) is a constant. If f(X) ⊆ g(X) and
g(X) is a complete subspace of X, then f and g have a unique point of coincidence
in X. Moreover, if f and g are weakly compatible, then f and g have a unique
common fixed point in X.

Proof. The proof follows from Theorem 3.1 by taking G = G0, where G0 is the
complete graph (X,X ×X).

The following corollary is the b-metric version of Banach contraction principle.

Corollary 3.4. Let (X, d) be a complete b-metric space and a mapping
f : X → X be such that (3.4) holds for all x, y ∈ X, where k ∈ (0, 1

s ) is a constant.
Then f has a unique fixed point u in X and fnx → u for all x ∈ X.

Proof. It follows from Theorem 3.1 by putting G = G0 and g = I.
From Theorem 3.1, we obtain the following corollary concerning the fixed point

of expansive mapping in b-metric spaces.

Corollary 3.5. Let (X, d) be a complete b-metric space and let g : X → X
be an onto expansive mapping. Then g has a unique fixed point in X.

Proof. The conclusion of the corollary follows from Theorem 3.1 by taking
G = G0 and f = I.

Corollary 3.6. Let (X, d) be a complete b-metric space endowed with a
partial ordering ¹ and the mapping f : X → X be such that (3.4) holds for all
x, y ∈ X with x ¹ y or y ¹ x, where k ∈ (0, 1

s ) is a constant. Suppose the triple
(X, d,¹) has the following property:

(†) If (xn) is a sequence in X such that xn → x and xn, xn+1 are comparable
for all n ≥ 1, then there exists a subsequence (xni) of (xn) such that xni , x are
comparable for all i ≥ 1.
If there exists x0 ∈ X such that fnx0, f

mx0 are comparable for m,n = 0, 1, 2, . . . ,
then f has a fixed point in X. Moreover, f has a unique fixed point in X if the
following property holds:

(††) If x, y are fixed points of f in X, then x, y are comparable.
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Proof. The proof can be obtained from Theorem 3.1 by taking g = I and G =
G2, where the graph G2 is defined by E(G2) = {(x, y) ∈ X×X : x ¹ y or y ¹ x}.

Theorem 3.7. Let (X, d) be a b-metric space endowed with a graph G and the
mappings f, g : X → X satisfy

d(fx, fy) ≤ kd(fx, gx) + ld(fy, gy) (3.5)

for all x, y ∈ X with (gx, gy) ∈ E(G̃), where k, l are positive numbers with k+l < 1
s .

Suppose f(X) ⊆ g(X) and g(X) is a complete subspace of X with the property (∗).
Then f and g have a point of coincidence in X if Cgf 6= ∅. Moreover, f and g have a
unique point of coincidence in X if the graph G has the property (∗∗). Furthermore,
if f and g are weakly compatible, then f and g have a unique common fixed point
in X.

Proof. As in the proof of Theorem 3.1, we can construct a sequence (gxn) such
that gxn = fxn−1, n = 1, 2, 3, . . . and (gxn, gxm) ∈ E(G̃) for m,n = 0, 1, 2, . . . .
We shall show that (gxn) is a Cauchy sequence in g(X).

For any natural number n, we have by using condition (3.5) that

d(gxn+1, gxn) = d(fxn, fxn−1) ≤ kd(fxn, gxn) + ld(fxn−1, gxn−1)

= kd(gxn+1, gxn) + ld(gxn, gxn−1),

which gives that
d(gxn+1, gxn) ≤ αd(gxn, gxn−1) (3.6)

where α = l
1−k ∈ (0, 1

s ). By repeated use of condition (3.6), we obtain

d(gxn+1, gxn) ≤ αnd(gx1, gx0), (3.7)

for all n ∈ N. For m,n ∈ N, using conditions (3.5) and (3.7), we have

d(gxm, gxn) = d(fxm−1, fxn−1)

≤ kd(fxm−1, gxm−1) + ld(fxn−1, gxn−1)

= kd(gxm, gxm−1) + ld(gxn, gxn−1)

≤ kαm−1d(gx1, gx0) + lαn−1d(gx1, gx0)
→ 0 as m,n →∞.

Therefore, (gxn) is a Cauchy sequence in g(X). As g(X) is complete, there exists
an u ∈ g(X) such that gxn → u = gv for some v ∈ X. As x0 ∈ Cgf , it follows
that (gxn, gxn+1) ∈ E(G̃) for all n ≥ 0, and so by property (∗), there exists a
subsequence (gxni) of (gxn) such that (gxni , gv) ∈ E(G̃) for all i ≥ 1.

Now using conditions (3.5) and (3.7), we find

d(fv, gv) ≤ sd(fv, fxni) + sd(fxni , gv)

≤ [skd(fv, gv) + sld(fxni , gxni)] + sd(gxni+1, gv)

= skd(fv, gv) + sld(gxni+1, gxni) + sd(gxni+1, gv),
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which yields

d(fv, gv) ≤ sl

1− sk
d(gxni+1, gxni

) +
s

1− sk
d(gxni+1, gv)

≤ slαni

1− sk
d(gx1, gx0) +

s

1− sk
d(gxni+1, gv)

→ 0 as i →∞.

This gives that, fv = gv = u. Therefore, u is a point of coincidence of f and g.
Finally, to prove the uniqueness of the point of coincidence, suppose that there

is another point of coincidence u∗ in X such that fx = gx = u∗ for some x ∈ X.
By property (∗∗), we have (u, u∗) ∈ E(G̃). Then,

d(u, u∗) = d(fv, fx) ≤ kd(fv, gv) + ld(fx, gx) = 0,

which gives that u = u∗. Therefore, f and g have a unique point of coincidence
in X.

If f and g are weakly compatible, then by Proposition 2.7, f and g have a
unique common fixed point in X.

Corollary 3.8. Let (X, d) be a complete b-metric space endowed with a graph
G and the mapping f : X → X be such that

d(fx, fy) ≤ kd(fx, x) + ld(fy, y) (3.8)

for all x, y ∈ X with (x, y) ∈ E(G̃), where k, l are positive numbers with k + l < 1
s .

Suppose the triple (X, d, G) has the property (∗′). Then f has a fixed point in X if
Cf 6= ∅. Moreover, f has a unique fixed point in X if the graph G has the property
(∗∗′).

Proof. The proof can be obtained from Theorem 3.7 by putting g = I.
Remark 3.9. In particular (i.e., taking k = l), the above corollary gives fixed

points of G-Kannan operators in b-metric spaces.

Corollary 3.10. Let (X, d) be a b-metric space and the mappings f, g : X →
X satisfy (3.5) for all x, y ∈ X, where k, l are positive numbers with k + l < 1

s . If
f(X) ⊆ g(X) and g(X) is a complete subspace of X, then f and g have a unique
point of coincidence in X. Moreover, if f and g are weakly compatible, then f and
g have a unique common fixed point in X.

Proof. It can be obtained from Theorem 3.7 by taking G = G0.

Corollary 3.11. Let (X, d) be a complete b-metric space and f : X → X be
a mapping such that (3.8) holds for all x, y ∈ X, where k, l are positive numbers
with k+ l < 1

s . Then f has a unique fixed point u in X and fnx → u for all x ∈ X.

Proof. The proof follows from Theorem 3.7 by putting G = G0 and g = I.
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Remark 3.12. In particular (i.e., taking k = l), the above corollary is the
b-metric version of Kannan fixed point theorem.

Corollary 3.13. Let (X, d) be a complete b-metric space endowed with a
partial ordering ¹ and the mapping f : X → X be such that (3.8) holds for all
x, y ∈ X with x ¹ y or y ¹ x, where k, l are positive numbers with k + l < 1

s .
Suppose the triple (X, d,¹) has the property (†). If there exists x0 ∈ X such that
fnx0, f

mx0 are comparable for m,n = 0, 1, 2, . . . , then f has a fixed point in X.
Moreover, f has a unique fixed point in X if the property (††) holds.

Proof. The proof can be obtained from Theorem 3.7 by taking g = I and
G = G2.

Theorem 3.14. Let (X, d) be a b-metric space endowed with a graph G and
the mappings f, g : X → X satisfy

d(fx, fy) ≤ kd(fx, gy) + ld(fy, gx) (3.9)

for all x, y ∈ X with (gx, gy) ∈ E(G̃), where k, l are positive numbers with sk < 1
1+s

or sl < 1
1+s . Suppose f(X) ⊆ g(X) and g(X) is a complete subspace of X with the

property (∗). Then f and g have a point of coincidence in X if Cgf 6= ∅. Moreover,
f and g have a unique point of coincidence in X if the graph G has the property
(∗∗) and k + l < 1. Furthermore, if f and g are weakly compatible, then f and g
have a unique common fixed point in X.

Proof. As in the proof of Theorem 3.1, we can construct a sequence (gxn) such
that gxn = fxn−1, n = 1, 2, . . . and (gxn, gxm) ∈ E(G̃) for m,n = 0, 1, 2, . . . . We
shall show that (gxn) is Cauchy in g(X). We assume that sk < 1

1+s .

For any natural number n, we have by using condition (3.9) that

d(gxn+1, gxn) = d(fxn, fxn−1)

≤ kd(fxn, gxn−1) + ld(fxn−1, gxn)

= kd(gxn+1, gxn−1)

≤ skd(gxn+1, gxn) + skd(gxn, gxn−1),

which gives that,
d(gxn+1, gxn)) ≤ αd(gxn, gxn−1) (3.10)

where α = sk
1−sk ∈ (0, 1

s ), since sk < 1
1+s . By repeated use of condition (3.10), we

obtain
d(gxn+1, gxn) ≤ αnd(gx1, gx0), for all n ∈ N.

By an argument similar to that used in Theorem 3.1, it follows that (gxn) is a
Cauchy sequence in g(X). As g(X) is complete, there exists an u ∈ g(X) such that
gxn → u = gv for some v ∈ X. Since x0 ∈ Cgf , it follows that (gxn, gxn+1) ∈ E(G̃)
for all n ≥ 0, and so by property (∗), there exists a subsequence (gxni) of (gxn)
such that (gxni , gv) ∈ E(G̃) for all i ≥ 1.
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Now using condition (3.9), we find

d(fv, gv) ≤ sd(fv, fxni
) + sd(fxni

, gv)

≤ s[kd(fv, gxni) + ld(fxni , gv)] + sd(gxni+1, gv)

≤ s2kd(fv, gv) + s2kd(gv, gxni
) + s(l + 1)d(gxni+1, gv)

which gives that

d(fv, gv) ≤ s2k

1− s2k
d(gxni

, gv) +
s(l + 1)
1− s2k

d(gxni+1, gv) → 0 as i →∞.

This proves that fv = gv = u. Therefore, u is a point of coincidence of f and g.
Finally, to prove the uniqueness of point of coincidence, suppose that there is

another point of coincidence u∗ in X such that fx = gx = u∗ for some x ∈ X. By
property (∗∗), we have (u, u∗) ∈ E(G̃). Then,

d(u, u∗) = d(fv, fx) ≤ kd(fv, gx) + ld(fx, gv)

= (k + l)d(u∗, u).

If k + l < 1, then it must be the case that d(u, u∗) = 0 i.e., u = u∗. Therefore, f
and g have a unique point of coincidence in X.

If f and g are weakly compatible, then by Proposition 2.7, f and g have a
unique common fixed point in X.

Corollary 3.15. Let (X, d) be a complete b-metric space endowed with a
graph G and the mapping f : X → X be such that

d(fx, fy) ≤ kd(fx, y) + ld(fy, x) (3.11)

for all x, y ∈ X with (x, y) ∈ E(G̃), where k, l are positive numbers with sk < 1
1+s

or sl < 1
1+s . Suppose the triple (X, d, G) has the property (∗′). Then f has a fixed

point in X if Cf 6= ∅. Moreover, f has a unique fixed point in X if the graph G
has the property (∗∗′) and k + l < 1.

Proof. The proof can be obtained from Theorem 3.14 by putting g = I.
Remark 3.16. In particular (i.e., taking k = l), the above corollary gives

fixed points of Fisher G-contraction in b-metric spaces.

Corollary 3.17. Let (X, d) be a b-metric space and the mappings f, g : X →
X satisfy (3.9) for all x, y ∈ X, where k, l are positive numbers with sk < 1

1+s or
sl < 1

1+s . If f(X) ⊆ g(X) and g(X) is a complete subspace of X, then f and g
have a point of coincidence in X. Moreover, if k + l < 1, then f and g have a
unique point of coincidence in X. Furthermore, if f and g are weakly compatible,
then f and g have a unique common fixed point in X.

Proof. The proof can be obtained from Theorem 3.14 by taking G = G0.
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The following corollary is [18, Theorem 5]. In particular (when k = l), it is
the b-metric version of Fisher’s theorem.

Corollary 3.18. Let (X, d) be a complete b-metric space and let f : X → X
be a mapping such that (3.11) holds for all x, y ∈ X, where k, l are positive numbers
with sk < 1

1+s or sl < 1
1+s . Then f has a fixed point in X. Moreover, if k + l < 1,

then f has a unique fixed point u in X and fnx → u for all x ∈ X.

Proof. The proof can be obtained from Theorem 3.14 by considering G = G0

and g = I.

Corollary 3.19. Let (X, d) be a complete b-metric space endowed with a
partial ordering ¹ and the mapping f : X → X be such that (3.11) holds for all
x, y ∈ X with x ¹ y or, y ¹ x, where k, l are positive numbers with sk < 1

1+s or
sl < 1

1+s . Suppose the triple (X, d,¹) has the property (†). If there exists x0 ∈ X
such that fnx0, f

mx0 are comparable for m,n = 0, 1, 2, . . . , then f has a fixed point
in X. Moreover, f has a unique fixed point in X if the property (††) holds and
k + l < 1.

Proof. The proof can be obtained from Theorem 3.14 by taking g = I and
G = G2.

We furnish some examples in favour of our results.

Example 3.20. Let X = R and define d : X ×X → R+ by d(x, y) = |x− y|2
for all x, y ∈ X. Then (X, d) is a complete b-metric space with the coefficient s = 2.
Let G be a digraph such that V (G) = X and E(G) = ∆∪{(0, 1

5n ) : n = 0, 1, 2, . . . }.
Let f, g : X → X be defined by

fx =
{ x

5 , if x 6= 2
5 ,

1, if x = 2
5 ,

and gx = 3x for all x ∈ X. Obviously, f(X) ⊆ g(X) = X.

If x = 0, y = 1
3.5n , then gx = 0, gy = 1

5n and so (gx, gy) ∈ E(G̃).

For x = 0, y = 1
3.5n , we have

d(fx, fy) = d

(
0,

1
3.5n+1

)
=

1
9.52n+2

<
1
9
.

1
52n

= kd(gx, gy), where k =
1
9
.

Therefore, d(fx, fy) ≤ kd(gx, gy) holds for all x, y ∈ X with (gx, gy) ∈ E(G̃),
where k = 1

9 ∈ (0, 1
s ) is a constant. We can verify that 0 ∈ Cgf . In fact, gxn =

fxn−1, n = 1, 2, 3, . . . gives that gx1 = f0 = 0 ⇒ x1 = 0 and so gx2 = fx1 =
0 ⇒ x2 = 0. Proceeding in this way, we get gxn = 0 for n = 0, 1, 2, . . . and hence
(gxn, gxm) = (0, 0) ∈ E(G̃) for m, n = 0, 1, 2, . . . .
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Also, any sequence (gxn) with the property (gxn, gxn+1) ∈ E(G̃) must be
either a constant sequence or a sequence of the following form

gxn =
{

0, if n is odd,
1
5n , if n is even,

where the words ‘odd’ and ‘even’ are interchangeable. Consequently it follows that
property (∗) holds. Furthermore, f and g are weakly compatible. Thus, we have
all the conditions of Theorem 3.1 and 0 is the unique common fixed point of f and
g in X.

We now show that the weak compatibility condition in Theorem 3.1 cannot be
relaxed.

Remark 3.21. In Example 3.20, if we take gx = 3x−14 for all x ∈ X instead
of gx = 3x, then 5 ∈ Cgf and f(5) = g(5) = 1 but g(f(5)) 6= f(g(5)) i.e., f and
g are not weakly compatible. However, all other conditions of Theorem 3.1 are
satisfied. We observe that 1 is the unique point of coincidence of f and g without
being a common fixed point.

Remark 3.22. In Example 3.20, f is a Banach G-contraction with constant
k = 1

25 but it is not a Banach contraction. In fact, for x = 2
5 , y = 1, we have

d(fx, fy) = d

(
1,

1
5

)
=

16
25

=
16
9
· 9
25

> kd(x, y),

for any k ∈ (0, 1
s ). This implies that f is not a Banach contraction.

The next example shows that the property (∗) in Theorem 3.1 is necessary.
Example 3.23. Let X = [0, 1] and define d : X×X → R+ by d(x, y) = |x−y|2

for all x, y ∈ X. Then (X, d) is a complete b-metric space with the coefficient s = 2.
Let G be a digraph such that V (G) = X and E(G) = {(0, 0)} ∪ {(x, y) : (x, y) ∈
(0, 1]× (0, 1], x ≥ y}. Let f, g : X → X be defined by

fx =
{ x

3 , if x ∈ (0, 1],
1, if x = 0,

and gx = x for all x ∈ X. Obviously, f(X) ⊆ g(X) = X.

For x, y ∈ X with (gx, gy) ∈ E(G̃), we have d (fx, fy) = 1
9d (gx, gy), where

α = 1
9 ∈ (0, 1

s ) is a constant. We see that f and g have no point of coincidence in
X. We now verify that the property (∗) does not hold. In fact, (gxn) is a sequence
in X with gxn → 0 and (gxn, gxn+1) ∈ E(G̃) for all n ∈ N where xn = 1

n . But
there exists no subsequence (gxni) of (gxn) such that (gxni , 0) ∈ E(G̃).

The following example supports our Theorem 3.7.
Example 3.24. Let X = [0,∞) and define d : X × X → R+ by d(x, y) =

|x−y|2 for all x, y ∈ X. Then (X, d) is a complete b-metric space with the coefficient
s = 2. Let G be a digraph such that V (G) = X and E(G) = ∆∪{(3tx, 3t(x + 1)) :
x ∈ X with x ≥ 2, t = 0, 1, 2, . . . }.
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Let f, g : X → X be defined by fx = 3x and gx = 9x for all x ∈ X. Clearly,
f(X) = g(X) = X.

If x = 3t−2z, y = 3t−2(z + 1), then gx = 3tz, gy = 3t(z + 1) and so (gx, gy) ∈
E(G̃) for all z ≥ 2.

For x = 3t−2z, y = 3t−2(z + 1), z ≥ 2 with k = l = 1
52 , we have

d(fx, fy) = d
(
3t−1z, 3t−1(z + 1)

)
= 32t−2

≤ 1
52

32t−2(8z2 + 8z + 4)

=
1
52

[
d

(
3t−1z, 3tz

)
+ d

(
3t−1(z + 1), 3t(z + 1)

)]

= kd(fx, gx) + ld(fy, gy).

Thus, condition (3.5) is satisfied. It is easy to verify that 0 ∈ Cgf .

Also, any sequence (gxn) with gxn → x and (gxn, gxn+1) ∈ E(G̃) must be a
constant sequence and hence property (∗) holds. Furthermore, f and g are weakly
compatible. Thus, we have all the conditions of Theorem 3.7 and 0 is the unique
common fixed point of f and g in X.

Remark 3.25. In Example 3.23, f is a G-Kannan operator with constant
k = 9

52 . But f is not a Kannan operator because, if x = 3, y = 0, then for any
arbitrary positive number k < 1

2s , we have

k[d(fx, x) + d(fy, y)] = k[d(f3, 3) + d(f0, 0)] = 36k < 81 = d(fx, fy).

Example 3.26. Let X = R and define d : X ×X → R+ by d(x, y) = |x− y|p
for all x, y ∈ X, where p > 1 is a real number. Then (X, d) is a complete b-metric
space with the coefficient s = 2p−1. Let f, g : X → X be defined by

fx =
{

1, if x 6= 4,

2, if x = 4,

and gx = 2x− 1 for all x ∈ X. Obviously, f(X) ⊆ g(X) = X.
Let G be a digraph such that V (G) = X and E(G) = ∆ ∪ {(1, 2), (2, 4)}. If

x = 1, y = 3
2 , then gx = 1, gy = 2 and so (gx, gy) ∈ E(G̃). Again, if x = 3

2 , y = 5
2 ,

then gx = 2, gy = 4 and so (gx, gy) ∈ E(G̃).
It is easy to verify that condition (3.9) of Theorem 3.14 holds for all x, y ∈ X

with (gx, gy) ∈ E(G̃). Furthermore, 1 ∈ Cgf , i.e., Cgf 6= ∅, f and g are weakly
compatible, and the triple (X, d, G) have property (∗). Thus, all the conditions of
Theorem 3.14 are satisfied and 1 is the unique common fixed point of f and g in X.

Remark 3.27. In Example 3.26, f is not a Fisher G-contraction for p = 5. In
fact, for x = 2, y = 4 and p = 5, we have

k[d(fx, y) + d(fy, x)] = k[d(1, 4) + d(2, 2)] = 3pk <
243
272

< 1 = d(fx, fy),
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for arbitrary positive number k with k < 1
s(1+s) . This implies that f is not a Fisher

G-contraction for p = 5. However, we can verify that f is a Fisher G-contraction
for p = 4.
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