COMMON FIXED POINTS IN *b*-METRIC SPACES ENDOWED WITH A GRAPH

Sushanta Kumar Mohanta

Abstract. We discuss the existence and uniqueness of points of coincidence and common fixed points for a pair of self-mappings defined on a *b*-metric space endowed with a graph. Our results improve and supplement several recent results of metric fixed point theory.

1. Introduction

Fixed point theory plays a major role in mathematics and applied sciences such as variational and linear inequalities, mathematical models, optimization, mathematical economics and the like. Different generalizations of the usual notion of a metric space were proposed by several mathematicians. In 1989, Bakhtin [5] introduced *b*-metric spaces as a generalization of metric spaces and generalized the famous Banach contraction principle in metric spaces to *b*-metric spaces. Since then, a series of articles have been dedicated to the improvement of fixed point theory in *b*-metric spaces.

In [17], Jungck introduced the concept of weak compatibility. Several authors have obtained coincidence points and common fixed points for various classes of mappings on a metric space by using this concept.

In recent investigations, the study of fixed point theory endowed with a graph occupies a prominent place in many aspects. In 2005, Echenique [13] studied fixed point theory by using graphs. Espinola and Kirk [14] applied fixed point results in graph theory. Recently, Jachymski [16] proved a sufficient condition for a selfmap f of a metric space (X, d) to be a Picard operator and applied it to the Kelisky-Rivlin theorem on iterates of the Bernstein operators on the space C[0, 1].

Motivated by the idea given in some recent work on metric spaces with a graph (see [3,4,6-8]), we reformulate some important fixed point results in metric spaces to *b*-metric spaces endowed with a graph. As some consequences of our results, we obtain Banach contraction principle, Kannan fixed point theorem and Fisher fixed

Keywords and phrases: b-metric; reflexive digraph; point of coincidence; common fixed point. 140

²⁰¹⁰ Mathematics Subject Classification: 47H10, 54H25

point theorem in metric spaces. Finally, some examples are provided to illustrate our results.

2. Some basic concepts

We begin with some basic notations, definitions, and necessary results in b-metric spaces.

DEFINITION 2.1. [12] Let X be a nonempty set and $s \ge 1$ be a given real number. A function $d: X \times X \to \mathbb{R}^+$ is said to be a *b*-metric on X if the following conditions hold:

- (i) d(x, y) = 0 if and only if x = y;
- (ii) d(x,y) = d(y,x) for all $x, y \in X$;
- (iii) $d(x,y) \leq s (d(x,z) + d(z,y))$ for all $x, y, z \in X$.

The pair (X, d) is called a *b*-metric space.

It seems important to note that if s = 1, then the triangle inequality in a metric space is satisfied, however it does not hold true when s > 1. Thus the class of *b*-metric spaces is effectively larger than that of the ordinary metric spaces. The following example illustrates the above remarks.

EXAMPLE 2.2. [18] Let $X = \{-1, 0, 1\}$. Define $d: X \times X \to \mathbb{R}^+$ by d(x, y) = d(y, x) for all $x, y \in X$, d(x, x) = 0, $x \in X$ and d(-1, 0) = 3, d(-1, 1) = d(0, 1) = 1. Then (X, d) is a *b*-metric space, but not a metric space since the triangle inequality is not satisfied. Indeed, we have that

$$d(-1,1) + d(1,0) = 1 + 1 = 2 < 3 = d(-1,0).$$

It is easy to verify that $s = \frac{3}{2}$.

EXAMPLE 2.3. [19] Let (X, d) be a metric space and $\rho(x, y) = (d(x, y))^p$, where p > 1 is a real number. Then ρ is a *b*-metric with $s = 2^{p-1}$.

DEFINITION 2.4. [10] Let (X, d) be a *b*-metric space, $x \in X$ and (x_n) be a sequence in X. Then

- (i) (x_n) converges to x if and only if $\lim_{n\to\infty} d(x_n, x) = 0$. We denote this by $\lim_{n\to\infty} x_n = x$ or $x_n \to x$ $(n \to \infty)$.
- (ii) (x_n) is a Cauchy sequence if and only if $\lim_{n,m\to\infty} d(x_n, x_m) = 0$.
- (iii) (X, d) is complete if and only if every Cauchy sequence in X is convergent.

REMARK 2.5. [10] In a *b*-metric space (X, d), the following assertions hold:

- (i) A convergent sequence has a unique limit.
- (ii) Each convergent sequence is Cauchy.
- (iii) In general, a *b*-metric is not continuous.

THEOREM 2.6. [2] Let (X, d) be a b-metric space and suppose that (x_n) and (y_n) converge to $x, y \in X$, respectively. Then, we have

$$\frac{1}{s^2}d(x,y) \le \liminf_{n \to \infty} d(x_n, y_n) \le \limsup_{n \to \infty} d(x_n, y_n) \le s^2 d(x, y).$$

In particular, if x = y, then $\lim_{n\to\infty} d(x_n, y_n) = 0$. Moreover, for each $z \in X$, we have

$$\frac{1}{s}d(x,z) \leq \liminf_{n \to \infty} \, d(x_n,z) \leq \limsup_{n \to \infty} \, d(x_n,z) \leq sd(x,z)$$

Let T and S be self mappings of a set X. Recall that, if y = Tx = Sx for some x in X, then x is called a coincidence point of T and S and y is called a point of coincidence of T and S. The mappings T, S are weakly compatible [17], if for every $x \in X$, the following holds:

$$T(Sx) = S(Tx)$$
 whenever $Sx = Tx$.

PROPOSITION 2.7. [1] Let S and T be weakly compatible selfmaps of a nonempty set X. If S and T have a unique point of coincidence y = Sx = Tx, then y is the unique common fixed point of S and T.

DEFINITION 2.8. Let (X, d) be a *b*-metric space with the coefficient $s \ge 1$. A mapping $f : X \to X$ is called expansive if there exists a positive number k > s such that

$$d(fx, fy) \ge k \, d(x, y)$$

for all $x, y \in X$.

We next review some basic notions in graph theory.

Let (X, d) be a *b*-metric space. We assume that G is a reflexive digraph where the set V(G) of its vertices coincides with X and the set E(G) of its edges contains no parallel edges. So we can identify G with the pair (V(G), E(G)). G may be considered as a weighted graph by assigning to each edge the distance between its vertices. By G^{-1} we denote the graph obtained from G by reversing the direction of edges, i.e., $E(G^{-1}) = \{(x, y) \in X \times X : (y, x) \in E(G)\}$. Let \tilde{G} denote the undirected graph obtained from G by ignoring the direction of edges. Actually, it will be more convenient for us to treat \tilde{G} as a digraph for which the set of its edges is symmetric. Under this convention,

$$E(\tilde{G}) = E(G) \cup E(G^{-1}).$$

Our graph theory notations and terminology are standard and can be found in all graph theory books, like [9,11,15]. If x, y are vertices of the digraph G, then a path in G from x to y of length n $(n \in \mathbb{N})$ is a sequence $(x_i)_{i=0}^n$ of n+1 vertices such that $x_0 = x, x_n = y$ and $(x_{i-1}, x_i) \in E(G)$ for $i = 1, 2, \ldots, n$. A graph G is connected if there is a path between any two vertices of G. G is weakly connected if \tilde{G} is connected.

142

DEFINITION 2.9. Let (X, d) be a *b*-metric space with the coefficient $s \ge 1$ and let G = (V(G), E(G)) be a graph. A mapping $f : X \to X$ is called a Banach *G*-contraction or simply *G*-contraction if there exists $\alpha \in (0, \frac{1}{s})$ such that

$$d(fx, fy) \le \alpha \, d(x, y)$$

for all $x, y \in X$ with $(x, y) \in E(G)$.

Any Banach contraction is a G_0 -contraction, where the graph G_0 is defined by $E(G_0) = X \times X$. But it is worth mentioning that a Banach G-contraction need not be a Banach contraction (see Remark 3.22).

DEFINITION 2.10. Let (X, d) be a *b*-metric space with the coefficient $s \ge 1$ and let G = (V(G), E(G)) be a graph. A mapping $f : X \to X$ is called *G*-Kannan if there exists $k \in (0, \frac{1}{2s})$ such that

$$d(fx, fy) \le k \left[d(fx, x) + d(fy, y) \right]$$

for all $x, y \in X$ with $(x, y) \in E(G)$.

Note that any Kannan operator is G_0 -Kannan. However, a G-Kannan operator need not be a Kannan operator (see Remark 3.25).

DEFINITION 2.11. Let (X, d) be a *b*-metric space with the coefficient $s \ge 1$ and let G = (V(G), E(G)) be a graph. A mapping $f : X \to X$ is called a Fisher *G*-contraction if there exists $k \in (0, \frac{1}{s(1+s)})$ such that

$$d(fx, fy) \le k \left[d(fx, y) + d(fy, x) \right]$$

$$(2.1)$$

for all $x, y \in X$ with $(x, y) \in E(G)$.

If we take $G = G_0$, then condition (2.1) holds for all $x, y \in X$ and f is called a Fisher contraction. The following example shows that a Fisher G-contraction need not be a Fisher contraction.

EXAMPLE 2.12. Let $X = [0, \infty)$ and define $d : X \times X \to \mathbb{R}^+$ by $d(x, y) = |x - y|^2$ for all $x, y \in X$. Then (X, d) is a *b*-metric space with the coefficient s = 2. Let G be a digraph such that V(G) = X and $E(G) = \Delta \cup \{(4^tx, 4^t(x + 1)) : x \in X \text{ with } x \ge 2, t = 0, 1, 2, \ldots\}$, where $\Delta = \{(x, x) : x \in X\}$. Let $f : X \to X$ be defined by fx = 4x for all $x \in X$.

For $x = 4^{t}z$, $y = 4^{t}(z+1)$, $z \ge 2$ with $k = \frac{16}{125}$, we have

$$\begin{aligned} d(fx, fy) &= d\left(4^{t+1}z, 4^{t+1}(z+1)\right) = 4^{2t+2} \\ &\leq \frac{16}{125} \, 4^{2t}(18z^2 + 18z + 17) \\ &= \frac{16}{125} \, \left[d\left(4^{t+1}z, 4^t(z+1)\right) + d\left(4^{t+1}(z+1), 4^tz\right) \right] \\ &= k \left[d(fx, y) + d(fy, x) \right]. \end{aligned}$$

Thus, f is a Fisher G-contraction. But f is not a Fisher contraction because, if x = 4, y = 0, then for any arbitrary positive number $k < \frac{1}{s(1+s)}$, we have

$$\begin{aligned} k\left[d(fx,y) + d(fy,x)\right] &= k\left[d(f4,0) + d(f0,4)\right] = k\left[d(16,0)\right) + d(0,4)\right] \\ &= 272k < 256 = d(fx,fy). \end{aligned}$$

REMARK 2.13. If f is a G-contraction (resp., G-Kannan or Fisher G-contraction), then f is both a G^{-1} -contraction (resp., G^{-1} -Kannan or Fisher G^{-1} -contraction) and a \tilde{G} -contraction (resp., \tilde{G} -Kannan or Fisher \tilde{G} -contraction).

3. Main results

In this section, we assume that (X, d) is a *b*-metric space with the coefficient $s \geq 1$, and *G* is a reflexive digraph such that V(G) = X and *G* has no parallel edges. Let $f, g: X \to X$ be such that $f(X) \subseteq g(X)$. If $x_0 \in X$ is arbitrary, then there exists an element $x_1 \in X$ such that $fx_0 = gx_1$, since $f(X) \subseteq g(X)$. Proceeding in this way, we can construct a sequence (gx_n) such that $gx_n = fx_{n-1}, n = 1, 2, 3, \ldots$. By C_{gf} we denote the set of all elements x_0 of X such that $(gx_n, gx_m) \in E(\tilde{G})$ for $m, n = 0, 1, 2, \ldots$. If g = I, the identity map on X, then obviously C_{gf} becomes C_f which is the collection of all elements x of X such that $(f^nx, f^mx) \in E(\tilde{G})$ for $m, n = 0, 1, 2, \ldots$.

THEOREM 3.1. Let (X, d) be a b-metric space endowed with a graph G and the mappings $f, g: X \to X$ satisfy

$$d(fx, fy) \le k \, d(gx, gy) \tag{3.1}$$

for all $x, y \in X$ with $(gx, gy) \in E(\tilde{G})$, where $k \in (0, \frac{1}{s})$ is a constant. Suppose $f(X) \subseteq g(X)$ and g(X) is a complete subspace of X with the following property:

(*) If (gx_n) is a sequence in X such that $gx_n \to x$ and $(gx_n, gx_{n+1}) \in E(\hat{G})$ for all $n \geq 1$, then there exists a subsequence (gx_{n_i}) of (gx_n) such that $(gx_{n_i}, x) \in E(\tilde{G})$ for all $i \geq 1$.

Then f and g have a point of coincidence in X if $C_{gf} \neq \emptyset$. Moreover, f and g have a unique point of coincidence in X if the graph G has the following property:

(**) If x, y are points of coincidence of f and g in X, then $(x, y) \in E(G)$.

Furthermore, if f and g are weakly compatible, then f and g have a unique common fixed point in X.

Proof. Suppose that $C_{gf} \neq \emptyset$. We choose an $x_0 \in C_{gf}$ and keep it fixed. Since $f(X) \subseteq g(X)$, there exists a sequence (gx_n) such that $gx_n = fx_{n-1}, n = 1, 2, 3, ...$ and $(gx_n, gx_m) \in E(\tilde{G})$ for m, n = 0, 1, 2, ...

We now show that (gx_n) is a Cauchy sequence in g(X).

For any natural number n, we have by using condition (3.1) that

$$d(gx_n, gx_{n+1}) = d(fx_{n-1}, fx_n) \le kd(gx_{n-1}, gx_n).$$
(3.2)

By repeated use of condition (3.2), we get

$$d(gx_n, gx_{n+1}) \le k^n d(gx_0, gx_1) \tag{3.3}$$

for all $n \in \mathbb{N}$. For $m, n \in \mathbb{N}$ with m > n, using condition (3.3), we have

$$\begin{aligned} d(gx_n, gx_m) &\leq sd(gx_n, gx_{n+1}) + s^2 d(gx_{n+1}, gx_{n+2}) \\ &+ \dots + s^{m-n-1} d(gx_{m-2}, gx_{m-1}) + s^{m-n-1} d(gx_{m-1}, gx_m) \\ &\leq \left[sk^n + s^2 k^{n+1} + \dots + s^{m-n-1} k^{m-2} + s^{m-n-1} k^{m-1} \right] d(gx_0, gx_1) \\ &\leq sk^n \left[1 + sk + (sk)^2 + \dots + (sk)^{m-n-2} + (sk)^{m-n-1} \right] d(gx_0, gx_1) \\ &\leq \frac{sk^n}{1 - sk} d(gx_0, gx_1) \to 0 \text{ as } n \to \infty. \end{aligned}$$

Therefore, (gx_n) is a Cauchy sequence in g(X). As g(X) is complete, there exists an $u \in g(X)$ such that $gx_n \to u = gv$ for some $v \in X$.

As $x_0 \in C_{gf}$, it follows that $(gx_n, gx_{n+1}) \in E(\tilde{G})$ for all $n \geq 0$, and so by property (*), there exists a subsequence (gx_{n_i}) of (gx_n) such that $(gx_{n_i}, gv) \in E(\tilde{G})$ for all $i \geq 1$. Again, using condition (3.1), we have

$$d(fv, gv) \le sd(fv, fx_{n_i}) + sd(fx_{n_i}, gv)$$

$$\le skd(gv, gx_{n_i}) + sd(gx_{n_i+1}, gv)$$

$$\to 0 \text{ as } i \to \infty.$$

This gives that d(fv, gv) = 0 and hence, fv = gv = u. Therefore, u is a point of coincidence of f and g.

The next is to show that the point of coincidence is unique. Assume that there is another point of coincidence u^* in X such that $fx = gx = u^*$ for some $x \in X$. By property (**), we have $(u, u^*) \in E(\tilde{G})$. Then,

$$d(u,u^*) = d(fv,fx) \le kd(gv,gx) = kd(u,u^*),$$

which gives that $u = u^*$. Therefore, f and g have a unique point of coincidence in X.

If f and g are weakly compatible, then by Proposition 2.7, f and g have a unique common fixed point in X.

The following corollary gives fixed point of Banach G-contraction in b-metric spaces.

COROLLARY 3.2. Let (X, d) be a complete b-metric space endowed with a graph G and the mapping $f : X \to X$ be such that

$$d(fx, fy) \le kd(x, y) \tag{3.4}$$

for all $x, y \in X$ with $(x, y) \in E(\tilde{G})$, where $k \in (0, \frac{1}{s})$ is a constant. Suppose the triple (X, d, G) have the following property:

(*') If (x_n) is a sequence in X such that $x_n \to x$ and $(x_n, x_{n+1}) \in E(\tilde{G})$ for all $n \geq 1$, then there exists a subsequence (x_{n_i}) of (x_n) such that $(x_{n_i}, x) \in E(\tilde{G})$ for all $i \geq 1$.

Then f has a fixed point in X if $C_f \neq \emptyset$. Moreover, f has a unique fixed point in X if the graph G has the following property:

(**') If x, y are fixed points of f in X, then $(x, y) \in E(\tilde{G})$.

Proof. The proof can be obtained from Theorem 3.1 by considering g = I, the identity map on X.

COROLLARY 3.3. Let (X, d) be a b-metric space and mappings $f, g: X \to X$ satisfy (3.1) for all $x, y \in X$, where $k \in (0, \frac{1}{s})$ is a constant. If $f(X) \subseteq g(X)$ and g(X) is a complete subspace of X, then f and g have a unique point of coincidence in X. Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point in X.

Proof. The proof follows from Theorem 3.1 by taking $G = G_0$, where G_0 is the complete graph $(X, X \times X)$.

The following corollary is the *b*-metric version of Banach contraction principle.

COROLLARY 3.4. Let (X,d) be a complete b-metric space and a mapping $f: X \to X$ be such that (3.4) holds for all $x, y \in X$, where $k \in (0, \frac{1}{s})$ is a constant. Then f has a unique fixed point u in X and $f^n x \to u$ for all $x \in X$.

Proof. It follows from Theorem 3.1 by putting $G = G_0$ and g = I.

From Theorem 3.1, we obtain the following corollary concerning the fixed point of expansive mapping in *b*-metric spaces.

COROLLARY 3.5. Let (X, d) be a complete b-metric space and let $g: X \to X$ be an onto expansive mapping. Then g has a unique fixed point in X.

Proof. The conclusion of the corollary follows from Theorem 3.1 by taking $G = G_0$ and f = I.

COROLLARY 3.6. Let (X,d) be a complete b-metric space endowed with a partial ordering \leq and the mapping $f : X \to X$ be such that (3.4) holds for all $x, y \in X$ with $x \leq y$ or $y \leq x$, where $k \in (0, \frac{1}{s})$ is a constant. Suppose the triple (X, d, \leq) has the following property:

(†) If (x_n) is a sequence in X such that $x_n \to x$ and x_n, x_{n+1} are comparable for all $n \ge 1$, then there exists a subsequence (x_{n_i}) of (x_n) such that x_{n_i}, x are comparable for all $i \ge 1$.

If there exists $x_0 \in X$ such that $f^n x_0, f^m x_0$ are comparable for m, n = 0, 1, 2, ...,then f has a fixed point in X. Moreover, f has a unique fixed point in X if the following property holds:

 $(\dagger\dagger)$ If x, y are fixed points of f in X, then x, y are comparable.

Proof. The proof can be obtained from Theorem 3.1 by taking g = I and $G = G_2$, where the graph G_2 is defined by $E(G_2) = \{(x, y) \in X \times X : x \leq y \text{ or } y \leq x\}$.

THEOREM 3.7. Let (X, d) be a b-metric space endowed with a graph G and the mappings $f, g: X \to X$ satisfy

$$d(fx, fy) \le kd(fx, gx) + ld(fy, gy) \tag{3.5}$$

for all $x, y \in X$ with $(gx, gy) \in E(\tilde{G})$, where k, l are positive numbers with $k+l < \frac{1}{s}$. Suppose $f(X) \subseteq g(X)$ and g(X) is a complete subspace of X with the property (*). Then f and g have a point of coincidence in X if $C_{gf} \neq \emptyset$. Moreover, f and g have a unique point of coincidence in X if the graph G has the property (**). Furthermore, if f and g are weakly compatible, then f and g have a unique common fixed point in X.

Proof. As in the proof of Theorem 3.1, we can construct a sequence (gx_n) such that $gx_n = fx_{n-1}, n = 1, 2, 3, \ldots$ and $(gx_n, gx_m) \in E(\tilde{G})$ for $m, n = 0, 1, 2, \ldots$. We shall show that (gx_n) is a Cauchy sequence in g(X).

For any natural number n, we have by using condition (3.5) that

$$d(gx_{n+1}, gx_n) = d(fx_n, fx_{n-1}) \le kd(fx_n, gx_n) + ld(fx_{n-1}, gx_{n-1})$$

= $kd(gx_{n+1}, gx_n) + ld(gx_n, gx_{n-1}),$

which gives that

$$d(gx_{n+1}, gx_n) \le \alpha d(gx_n, gx_{n-1}) \tag{3.6}$$

where $\alpha = \frac{l}{1-k} \in (0, \frac{1}{s})$. By repeated use of condition (3.6), we obtain

$$d(gx_{n+1}, gx_n) \le \alpha^n d(gx_1, gx_0), \tag{3.7}$$

for all $n \in \mathbb{N}$. For $m, n \in \mathbb{N}$, using conditions (3.5) and (3.7), we have

$$d(gx_m, gx_n) = d(fx_{m-1}, fx_{n-1})$$

$$\leq kd(fx_{m-1}, gx_{m-1}) + ld(fx_{n-1}, gx_{n-1})$$

$$= kd(gx_m, gx_{m-1}) + ld(gx_n, gx_{n-1})$$

$$\leq k\alpha^{m-1}d(gx_1, gx_0) + l\alpha^{n-1}d(gx_1, gx_0)$$

$$\to 0 \text{ as } m, n \to \infty.$$

Therefore, (gx_n) is a Cauchy sequence in g(X). As g(X) is complete, there exists an $u \in g(X)$ such that $gx_n \to u = gv$ for some $v \in X$. As $x_0 \in C_{gf}$, it follows that $(gx_n, gx_{n+1}) \in E(\tilde{G})$ for all $n \ge 0$, and so by property (*), there exists a subsequence (gx_{n_i}) of (gx_n) such that $(gx_{n_i}, gv) \in E(\tilde{G})$ for all $i \ge 1$.

Now using conditions (3.5) and (3.7), we find

$$\begin{split} d(fv,gv) &\leq sd(fv,fx_{n_i}) + sd(fx_{n_i},gv) \\ &\leq [skd(fv,gv) + sld(fx_{n_i},gx_{n_i})] + sd(gx_{n_i+1},gv) \\ &= skd(fv,gv) + sld(gx_{n_i+1},gx_{n_i}) + sd(gx_{n_i+1},gv), \end{split}$$

which yields

$$d(fv,gv) \leq \frac{sl}{1-sk}d(gx_{n_i+1},gx_{n_i}) + \frac{s}{1-sk}d(gx_{n_i+1},gv)$$
$$\leq \frac{sl\alpha^{n_i}}{1-sk}d(gx_1,gx_0) + \frac{s}{1-sk}d(gx_{n_i+1},gv)$$
$$\to 0 \text{ as } i \to \infty.$$

This gives that, fv = gv = u. Therefore, u is a point of coincidence of f and g.

Finally, to prove the uniqueness of the point of coincidence, suppose that there is another point of coincidence u^* in X such that $fx = gx = u^*$ for some $x \in X$. By property (**), we have $(u, u^*) \in E(\tilde{G})$. Then,

$$d(u, u^*) = d(fv, fx) \le kd(fv, gv) + ld(fx, gx) = 0,$$

which gives that $u = u^*$. Therefore, f and g have a unique point of coincidence in X.

If f and g are weakly compatible, then by Proposition 2.7, f and g have a unique common fixed point in X.

COROLLARY 3.8. Let (X, d) be a complete b-metric space endowed with a graph G and the mapping $f : X \to X$ be such that

$$d(fx, fy) \le kd(fx, x) + ld(fy, y) \tag{3.8}$$

for all $x, y \in X$ with $(x, y) \in E(\overline{G})$, where k, l are positive numbers with $k + l < \frac{1}{s}$. Suppose the triple (X, d, G) has the property (*'). Then f has a fixed point in X if $C_f \neq \emptyset$. Moreover, f has a unique fixed point in X if the graph G has the property (**').

Proof. The proof can be obtained from Theorem 3.7 by putting g = I.

REMARK 3.9. In particular (i.e., taking k = l), the above corollary gives fixed points of *G*-Kannan operators in *b*-metric spaces.

COROLLARY 3.10. Let (X, d) be a b-metric space and the mappings $f, g: X \to X$ satisfy (3.5) for all $x, y \in X$, where k, l are positive numbers with $k + l < \frac{1}{s}$. If $f(X) \subseteq g(X)$ and g(X) is a complete subspace of X, then f and g have a unique point of coincidence in X. Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point in X.

Proof. It can be obtained from Theorem 3.7 by taking $G = G_0$.

COROLLARY 3.11. Let (X, d) be a complete b-metric space and $f: X \to X$ be a mapping such that (3.8) holds for all $x, y \in X$, where k, l are positive numbers with $k+l < \frac{1}{s}$. Then f has a unique fixed point u in X and $f^n x \to u$ for all $x \in X$.

Proof. The proof follows from Theorem 3.7 by putting $G = G_0$ and g = I.

148

REMARK 3.12. In particular (i.e., taking k = l), the above corollary is the *b*-metric version of Kannan fixed point theorem.

COROLLARY 3.13. Let (X,d) be a complete b-metric space endowed with a partial ordering \leq and the mapping $f: X \to X$ be such that (3.8) holds for all $x, y \in X$ with $x \leq y$ or $y \leq x$, where k, l are positive numbers with $k + l < \frac{1}{s}$. Suppose the triple (X, d, \leq) has the property (\dagger). If there exists $x_0 \in X$ such that $f^n x_0, f^m x_0$ are comparable for $m, n = 0, 1, 2, \ldots$, then f has a fixed point in X. Moreover, f has a unique fixed point in X if the property (\dagger) holds.

Proof. The proof can be obtained from Theorem 3.7 by taking g = I and $G = G_2$.

THEOREM 3.14. Let (X, d) be a b-metric space endowed with a graph G and the mappings $f, g: X \to X$ satisfy

$$d(fx, fy) \le kd(fx, gy) + ld(fy, gx) \tag{3.9}$$

for all $x, y \in X$ with $(gx, gy) \in E(\tilde{G})$, where k, l are positive numbers with $sk < \frac{1}{1+s}$ or $sl < \frac{1}{1+s}$. Suppose $f(X) \subseteq g(X)$ and g(X) is a complete subspace of X with the property (*). Then f and g have a point of coincidence in X if $C_{gf} \neq \emptyset$. Moreover, f and g have a unique point of coincidence in X if the graph G has the property (**) and k + l < 1. Furthermore, if f and g are weakly compatible, then f and ghave a unique common fixed point in X.

Proof. As in the proof of Theorem 3.1, we can construct a sequence (gx_n) such that $gx_n = fx_{n-1}, n = 1, 2, ...$ and $(gx_n, gx_m) \in E(\tilde{G})$ for m, n = 0, 1, 2, ... We shall show that (gx_n) is Cauchy in g(X). We assume that $sk < \frac{1}{1+s}$.

For any natural number n, we have by using condition (3.9) that

$$d(gx_{n+1}, gx_n) = d(fx_n, fx_{n-1})$$

$$\leq kd(fx_n, gx_{n-1}) + ld(fx_{n-1}, gx_n)$$

$$= kd(gx_{n+1}, gx_{n-1})$$

$$\leq skd(gx_{n+1}, gx_n) + skd(gx_n, gx_{n-1}),$$

which gives that,

$$d(gx_{n+1}, gx_n)) \le \alpha d(gx_n, gx_{n-1}) \tag{3.10}$$

where $\alpha = \frac{sk}{1-sk} \in (0, \frac{1}{s})$, since $sk < \frac{1}{1+s}$. By repeated use of condition (3.10), we obtain

 $d(gx_{n+1}, gx_n) \le \alpha^n d(gx_1, gx_0), \text{ for all } n \in \mathbb{N}.$

By an argument similar to that used in Theorem 3.1, it follows that (gx_n) is a Cauchy sequence in g(X). As g(X) is complete, there exists an $u \in g(X)$ such that $gx_n \to u = gv$ for some $v \in X$. Since $x_0 \in C_{gf}$, it follows that $(gx_n, gx_{n+1}) \in E(\tilde{G})$ for all $n \geq 0$, and so by property (*), there exists a subsequence (gx_{n_i}) of (gx_n) such that $(gx_{n_i}, gv) \in E(\tilde{G})$ for all $i \geq 1$.

Now using condition (3.9), we find

$$\begin{aligned} d(fv,gv) &\leq sd(fv,fx_{n_{i}}) + sd(fx_{n_{i}},gv) \\ &\leq s[kd(fv,gx_{n_{i}}) + ld(fx_{n_{i}},gv)] + sd(gx_{n_{i}+1},gv) \\ &\leq s^{2}kd(fv,gv) + s^{2}kd(gv,gx_{n_{i}}) + s(l+1)d(gx_{n_{i}+1},gv) \end{aligned}$$

which gives that

$$d(fv, gv) \le \frac{s^2k}{1 - s^2k} d(gx_{n_i}, gv) + \frac{s(l+1)}{1 - s^2k} d(gx_{n_i+1}, gv) \to 0 \text{ as } i \to \infty.$$

This proves that fv = gv = u. Therefore, u is a point of coincidence of f and g.

Finally, to prove the uniqueness of point of coincidence, suppose that there is another point of coincidence u^* in X such that $fx = gx = u^*$ for some $x \in X$. By property (**), we have $(u, u^*) \in E(\tilde{G})$. Then,

$$\begin{aligned} d(u,u^*) &= d(fv,fx) \leq kd(fv,gx) + ld(fx,gv) \\ &= (k+l)d(u^*,u). \end{aligned}$$

If k + l < 1, then it must be the case that $d(u, u^*) = 0$ i.e., $u = u^*$. Therefore, f and g have a unique point of coincidence in X.

If f and g are weakly compatible, then by Proposition 2.7, f and g have a unique common fixed point in X.

COROLLARY 3.15. Let (X, d) be a complete b-metric space endowed with a graph G and the mapping $f: X \to X$ be such that

$$d(fx, fy) \le kd(fx, y) + ld(fy, x) \tag{3.11}$$

for all $x, y \in X$ with $(x, y) \in E(\tilde{G})$, where k, l are positive numbers with $sk < \frac{1}{1+s}$ or $sl < \frac{1}{1+s}$. Suppose the triple (X, d, G) has the property (*'). Then f has a fixed point in X if $C_f \neq \emptyset$. Moreover, f has a unique fixed point in X if the graph Ghas the property (**') and k + l < 1.

Proof. The proof can be obtained from Theorem 3.14 by putting g = I.

REMARK 3.16. In particular (i.e., taking k = l), the above corollary gives fixed points of Fisher *G*-contraction in *b*-metric spaces.

COROLLARY 3.17. Let (X, d) be a b-metric space and the mappings $f, g: X \to X$ satisfy (3.9) for all $x, y \in X$, where k, l are positive numbers with $sk < \frac{1}{1+s}$ or $sl < \frac{1}{1+s}$. If $f(X) \subseteq g(X)$ and g(X) is a complete subspace of X, then f and g have a point of coincidence in X. Moreover, if k + l < 1, then f and g have a unique point of coincidence in X. Furthermore, if f and g are weakly compatible, then f and g have a unique common fixed point in X.

Proof. The proof can be obtained from Theorem 3.14 by taking $G = G_0$.

150

The following corollary is [18, Theorem 5]. In particular (when k = l), it is the *b*-metric version of Fisher's theorem.

COROLLARY 3.18. Let (X, d) be a complete b-metric space and let $f : X \to X$ be a mapping such that (3.11) holds for all $x, y \in X$, where k, l are positive numbers with $sk < \frac{1}{1+s}$ or $sl < \frac{1}{1+s}$. Then f has a fixed point in X. Moreover, if k+l < 1, then f has a unique fixed point u in X and $f^n x \to u$ for all $x \in X$.

Proof. The proof can be obtained from Theorem 3.14 by considering $G = G_0$ and g = I.

COROLLARY 3.19. Let (X,d) be a complete b-metric space endowed with a partial ordering \leq and the mapping $f: X \to X$ be such that (3.11) holds for all $x, y \in X$ with $x \leq y$ or, $y \leq x$, where k, l are positive numbers with $sk < \frac{1}{1+s}$ or $sl < \frac{1}{1+s}$. Suppose the triple (X, d, \leq) has the property (\dagger). If there exists $x_0 \in X$ such that $f^n x_0, f^m x_0$ are comparable for $m, n = 0, 1, 2, \ldots$, then f has a fixed point in X. Moreover, f has a unique fixed point in X if the property (\dagger \dagger) holds and k+l < 1.

Proof. The proof can be obtained from Theorem 3.14 by taking g = I and $G = G_2$.

We furnish some examples in favour of our results.

EXAMPLE 3.20. Let $X = \mathbb{R}$ and define $d: X \times X \to \mathbb{R}^+$ by $d(x, y) = |x - y|^2$ for all $x, y \in X$. Then (X, d) is a complete *b*-metric space with the coefficient s = 2. Let *G* be a digraph such that V(G) = X and $E(G) = \Delta \cup \{(0, \frac{1}{5^n}) : n = 0, 1, 2, ...\}$. Let $f, g: X \to X$ be defined by

$$fx = \begin{cases} \frac{x}{5}, & \text{if } x \neq \frac{2}{5} \\ 1, & \text{if } x = \frac{2}{5} \end{cases}$$

and gx = 3x for all $x \in X$. Obviously, $f(X) \subseteq g(X) = X$.

If $x = 0, y = \frac{1}{3.5^n}$, then $gx = 0, gy = \frac{1}{5^n}$ and so $(gx, gy) \in E(\tilde{G})$. For $x = 0, y = \frac{1}{3.5^n}$, we have

$$\begin{split} d(fx, fy) &= d\left(0, \frac{1}{3.5^{n+1}}\right) = \frac{1}{9.5^{2n+2}} \\ &< \frac{1}{9} \cdot \frac{1}{5^{2n}} = kd(gx, gy), \text{ where } k = \frac{1}{9} \end{split}$$

Therefore, $d(fx, fy) \leq kd(gx, gy)$ holds for all $x, y \in X$ with $(gx, gy) \in E(\tilde{G})$, where $k = \frac{1}{9} \in (0, \frac{1}{s})$ is a constant. We can verify that $0 \in C_{gf}$. In fact, $gx_n = fx_{n-1}, n = 1, 2, 3, \ldots$ gives that $gx_1 = f0 = 0 \Rightarrow x_1 = 0$ and so $gx_2 = fx_1 = 0 \Rightarrow x_2 = 0$. Proceeding in this way, we get $gx_n = 0$ for $n = 0, 1, 2, \ldots$ and hence $(gx_n, gx_m) = (0, 0) \in E(\tilde{G})$ for $m, n = 0, 1, 2, \ldots$

Also, any sequence (gx_n) with the property $(gx_n, gx_{n+1}) \in E(\hat{G})$ must be either a constant sequence or a sequence of the following form

$$gx_n = \begin{cases} 0, & \text{if } n \text{ is odd,} \\ \frac{1}{5^n}, & \text{if } n \text{ is even,} \end{cases}$$

where the words 'odd' and 'even' are interchangeable. Consequently it follows that property (*) holds. Furthermore, f and g are weakly compatible. Thus, we have all the conditions of Theorem 3.1 and 0 is the unique common fixed point of f and g in X.

We now show that the weak compatibility condition in Theorem 3.1 cannot be relaxed.

REMARK 3.21. In Example 3.20, if we take gx = 3x - 14 for all $x \in X$ instead of gx = 3x, then $5 \in C_{gf}$ and f(5) = g(5) = 1 but $g(f(5)) \neq f(g(5))$ i.e., f and g are not weakly compatible. However, all other conditions of Theorem 3.1 are satisfied. We observe that 1 is the unique point of coincidence of f and g without being a common fixed point.

REMARK 3.22. In Example 3.20, f is a Banach *G*-contraction with constant $k = \frac{1}{25}$ but it is not a Banach contraction. In fact, for $x = \frac{2}{5}, y = 1$, we have

$$d(fx, fy) = d\left(1, \frac{1}{5}\right) = \frac{16}{25} = \frac{16}{9} \cdot \frac{9}{25} > kd(x, y),$$

for any $k \in (0, \frac{1}{s})$. This implies that f is not a Banach contraction.

The next example shows that the property (*) in Theorem 3.1 is necessary.

EXAMPLE 3.23. Let X = [0, 1] and define $d : X \times X \to \mathbb{R}^+$ by $d(x, y) = |x-y|^2$ for all $x, y \in X$. Then (X, d) is a complete *b*-metric space with the coefficient s = 2. Let *G* be a digraph such that V(G) = X and $E(G) = \{(0,0)\} \cup \{(x,y) : (x,y) \in (0,1] \times (0,1], x \ge y\}$. Let $f, g : X \to X$ be defined by

$$fx = \begin{cases} \frac{x}{3}, & \text{if } x \in (0,1] \\ 1, & \text{if } x = 0, \end{cases}$$

and gx = x for all $x \in X$. Obviously, $f(X) \subseteq g(X) = X$.

For $x, y \in X$ with $(gx, gy) \in E(\tilde{G})$, we have $d(fx, fy) = \frac{1}{9}d(gx, gy)$, where $\alpha = \frac{1}{9} \in (0, \frac{1}{s})$ is a constant. We see that f and g have no point of coincidence in X. We now verify that the property (*) does not hold. In fact, (gx_n) is a sequence in X with $gx_n \to 0$ and $(gx_n, gx_{n+1}) \in E(\tilde{G})$ for all $n \in \mathbb{N}$ where $x_n = \frac{1}{n}$. But there exists no subsequence (gx_{n_i}) of (gx_n) such that $(gx_{n_i}, 0) \in E(\tilde{G})$.

The following example supports our Theorem 3.7.

EXAMPLE 3.24. Let $X = [0, \infty)$ and define $d : X \times X \to \mathbb{R}^+$ by $d(x, y) = |x-y|^2$ for all $x, y \in X$. Then (X, d) is a complete *b*-metric space with the coefficient s = 2. Let *G* be a digraph such that V(G) = X and $E(G) = \Delta \cup \{(3^t x, 3^t (x+1)) : x \in X \text{ with } x \ge 2, t = 0, 1, 2, ...\}.$

Let $f, g: X \to X$ be defined by fx = 3x and gx = 9x for all $x \in X$. Clearly, f(X) = g(X) = X.

If $x = 3^{t-2}z, y = 3^{t-2}(z+1)$, then $gx = 3^tz, gy = 3^t(z+1)$ and so $(gx, gy) \in E(\tilde{G})$ for all $z \ge 2$.

For $x = 3^{t-2}z, y = 3^{t-2}(z+1), z \ge 2$ with $k = l = \frac{1}{52}$, we have

$$\begin{aligned} d(fx, fy) &= d\left(3^{t-1}z, 3^{t-1}(z+1)\right) = 3^{2t-2} \\ &\leq \frac{1}{52}3^{2t-2}(8z^2+8z+4) \\ &= \frac{1}{52}\left[d\left(3^{t-1}z, 3^tz\right) + d\left(3^{t-1}(z+1), 3^t(z+1)\right)\right] \\ &= kd(fx, gx) + ld(fy, gy). \end{aligned}$$

Thus, condition (3.5) is satisfied. It is easy to verify that $0 \in C_{gf}$.

Also, any sequence (gx_n) with $gx_n \to x$ and $(gx_n, gx_{n+1}) \in E(\hat{G})$ must be a constant sequence and hence property (*) holds. Furthermore, f and g are weakly compatible. Thus, we have all the conditions of Theorem 3.7 and 0 is the unique common fixed point of f and g in X.

REMARK 3.25. In Example 3.23, f is a G-Kannan operator with constant $k = \frac{9}{52}$. But f is not a Kannan operator because, if x = 3, y = 0, then for any arbitrary positive number $k < \frac{1}{2s}$, we have

$$k[d(fx, x) + d(fy, y)] = k[d(f3, 3) + d(f0, 0)] = 36k < 81 = d(fx, fy).$$

EXAMPLE 3.26. Let $X = \mathbb{R}$ and define $d: X \times X \to \mathbb{R}^+$ by $d(x, y) = |x - y|^p$ for all $x, y \in X$, where p > 1 is a real number. Then (X, d) is a complete *b*-metric space with the coefficient $s = 2^{p-1}$. Let $f, g: X \to X$ be defined by

$$fx = \begin{cases} 1, & \text{if } x \neq 4\\ 2, & \text{if } x = 4 \end{cases}$$

and gx = 2x - 1 for all $x \in X$. Obviously, $f(X) \subseteq g(X) = X$.

Let G be a digraph such that V(G) = X and $E(G) = \Delta \cup \{(1,2), (2,4)\}$. If $x = 1, y = \frac{3}{2}$, then gx = 1, gy = 2 and so $(gx, gy) \in E(\tilde{G})$. Again, if $x = \frac{3}{2}, y = \frac{5}{2}$, then gx = 2, gy = 4 and so $(gx, gy) \in E(\tilde{G})$.

It is easy to verify that condition (3.9) of Theorem 3.14 holds for all $x, y \in X$ with $(gx, gy) \in E(\tilde{G})$. Furthermore, $1 \in C_{gf}$, i.e., $C_{gf} \neq \emptyset$, f and g are weakly compatible, and the triple (X, d, G) have property (*). Thus, all the conditions of Theorem 3.14 are satisfied and 1 is the unique common fixed point of f and g in X.

REMARK 3.27. In Example 3.26, f is not a Fisher G-contraction for p = 5. In fact, for x = 2, y = 4 and p = 5, we have

$$\begin{split} k[d(fx,y) + d(fy,x)] &= k[d(1,4) + d(2,2)] = 3^p k < \frac{243}{272} \\ &< 1 = d(fx,fy), \end{split}$$

for arbitrary positive number k with $k < \frac{1}{s(1+s)}$. This implies that f is not a Fisher G-contraction for p = 5. However, we can verify that f is a Fisher G-contraction for p = 4.

REFERENCES

- M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 341 (2008), 416–420.
- [2] A. Aghajani, M. Abbas and J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 4, 2014, 941–960.
- [3] S. Aleomraninejad, S. Rezapour and N. Shahzad, Fixed point results on subgraphs of directed graphs, Math. Sciences, 7:41 (2013).
- [4] M. R. Alfuraidan and M. A. Khamsi, Caristi fixed point theorem in metric spaces with a graph, Abstract Appl. Anal., 2014, Art. ID 303484, 5 pages.
- [5] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk, 30 (1989), 26–37.
- [6] I. Beg, A. R. Butt and S. Radojević, The contraction principle for set valued mappings on a metric space with a graph, Comput. Math. Appl., 60 (2010), 1214–1219.
- [7] F. Bojor, Fixed point of φ-contraction in metric spaces endowed with a graph, Ann. Univ. Cralova, Mathematics and Computer Science Series, 37 (2010), 85–92.
- [8] F. Bojor, Fixed points of Kannan mappings in metric spaces endowed with a graph, An. St. Univ. Ovidius Constanta, 20 (2012), 31–40.
- [9] J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976.
- [10] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Mod. Math., 4 (2009), 285–301.
- [11] G. Chartrand, L. Lesniak and P. Zhang, Graph and Digraph, CRC Press, New York, NY, USA, 2011.
- [12] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav, 1 (1993), 5–11.
- [13] F. Echenique, A short and constructive proof of Tarski's fixed point theorem, Internat. J. Game Theory, 33 (2005), 215–218.
- [14] R. Espinola and W. A. Kirk, Fixed point theorems in R-trees with applications to graph theory, Topology Appl., 153 (2006), 1046–1055.
- [15] J. I. Gross and J. Yellen, Graph Theory and its Applications, CRC Press, New York, NY, USA, 1999.
- [16] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359–1373.
- [17] G. Jungck, Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci., 4 (1996), 199–215.
- [18] S. K. Mohanta, Some fixed point theorems using wt-distance in b-metric spaces, Fasciculi Math., 54 (2015), 125–140.
- [19] J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi, Common fixed points of almost generalized (ψ, φ)_s-contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl., 2013:159 (2013), 23 pages.

(received 30.09.2015; in revised form 09.02.2016; available online 21.03.2016)

Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), Kolkata-700126, West Bengal, India

E-mail: smwbes@yahoo.in