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Consequences of the compatibility of skein
algebra and cluster algebra on surfaces

Han-BomMoon and HelenWong

Abstract. We investigate two algebras consisting of curves on a surface
with interior punctures – the cluster algebra defined by Fomin, Shapiro, and
Thurston, and the generalized skein algebra constructed by Roger and Yang.
We establish their compatibility, and use it to prove Roger-Yang’s conjecture
that the skein algebra is a deformation quantization of the decorated Teich-
müller space. We also obtain several structural results on the cluster algebra
of surfaces. The cluster algebra of a positive genus surface is not finitely gen-
erated, and it differs from its upper cluster algebra.
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1. Introduction
By a surface Σ𝑔,𝑛, we denote a compact Riemann surface of genus 𝑔, with-

out boundaries, minus 𝑛 punctures. We may associate two ‘algebras of curves’
on Σ𝑔,𝑛, but coming from entirely different motivations – one from geometric
topology, and the other from combinatorial algebra. In this paper, we estab-
lish compatibility between the two algebras. By employing it, we prove several
structural results about each of the algebras that might not be readily apparent
if considering each algebra separately.
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The first algebra is the curve algebra 𝒞(Σ𝑔,𝑛), which belongs to a family of
invariants that generalize the Jones polynomial for knots [23] and are associ-
ated with the Witten-Reshetikhin-Turaev topological quantum field theory [6,
38, 42]. The curve algebra is closely related both to the Kauffman bracket skein
algebra of a surface [36, 41] and to hyperbolic geometry. In particular, theKauff-
man bracket skein algebra is the deformation quantization of the SL2-character
variety, which contains the Teichmüller space of the surface [10, 11, 37, 41]. In
[39], Roger and Yang generalize this interpretation to the case of a punctured
surface Σ𝑔,𝑛 by defining a skein algebra 𝒮𝑞(Σ𝑔,𝑛) spanned by disjoint unions of
framed knots, arcs, and vertex classes. They proposed that it is the deforma-
tion quantization for the decorated Teichmüller space 𝒯𝑑(Σ𝑔,𝑛) constructed by
Penner in [34, 35], and the current paper resolves their conjecture. We do so by
studying the curve algebra 𝒞(Σ𝑔,𝑛), which is the classical limit of Roger-Yang’s
generalized skein algebra 𝒮𝑞(Σ𝑔,𝑛) obtained by setting 𝑞 = 1.
The second algebra studied in this paper is the cluster algebra𝒜(Σ𝑔,𝑛) of a sur-

face. Such cluster algebras were observed by [16, 19] to be interesting examples
of the cluster algebras originally introduced by Fomin andZelevinsky in [18] for
studying the total positivity and dual canonical bases in Lie theory. The cluster
algebra of a surface is generated by arcs on the surface, and was designed to
encode certain geometric properties of Penner’s decorated Teichmuller space.
However, if the endpoints are at interior punctures, as in the situation of the
punctured surface Σ𝑔,𝑛, the arcs in 𝒜(Σ𝑔,𝑛) need to have additional tagging (of
plain or notched) at its endpoints in order to have the structure of a cluster alge-
bra. Necessary from a combinatorial perspective, the tagging also has various
geometric interpretations, as can be seen from [1, 15, 17, 31]. In part, this paper
began from an attempt to better understand the relationship between geometric
and combinatorial aspects of the curve algebra 𝒞(Σ𝑔,𝑛) and the cluster algebra
𝒜(Σ𝑔,𝑛).
Each of the two algebras has its own distinct features, and the main results

of this paper come from transferring advantageous properties between the two
algebras. Our primary tool is an injective homomorphism from the curve alge-
bra 𝒞(Σ𝑔,𝑛) to the cluster algebra 𝒜(Σ𝑔,𝑛), which manifests the ‘compatibility’
of the two commutative algebras. By leveraging the integrality of 𝒜(Σ𝑔,𝑛), we
prove that the generalized skein algebra 𝒮𝑞(Σ𝑔,𝑛) is a deformation quantization
of 𝒯𝑑(Σ𝑔,𝑛) and resolve Roger-Yang’s conjecture (Theorem A). Compatibility
also enables us to define a nontrivial ‘reduction’ map and prove the non-finite
generation of𝒜(Σ𝑔,𝑛) (Theorem C) for 𝑔 ≥ 1. The unifying theme of this paper
is the interplay between the two algebras afforded by compatibility.

1.1. Compatibility of curve algebra and cluster algebra. Let Σ𝑔,𝑛 be a Rie-
mann surface of genus 𝑔 with 𝑛 > 0 punctures. We assume that 𝜒(Σ𝑔,𝑛) < 0,
so that 𝑛-punctured spheres with 𝑛 = 1, 2 are excluded. When we define the
cluster algebra, we also exclude the three-punctured sphere.
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We have an explicit comparison of𝒜(Σ𝑔,𝑛) and 𝒞(Σ𝑔,𝑛), which will be the key
step to the main results of this paper.

Compatibility Lemma. Let 𝒜(Σ𝑔,𝑛) be the cluster algebra and 𝒞(Σ𝑔,𝑛) be the
curve algebra associated to Σ𝑔,𝑛. Then there is a monomorphism

𝜌 ∶ 𝒜(Σ𝑔,𝑛) → 𝒞(Σ𝑔,𝑛).

This is not merely an existence statement. As discussed in Section 4, the
construction of 𝜌 gives a simple geometric interpretation of the tagging, which
can be plain or notched (Definition 4.1). The upshot is that “a notch is a ver-
tex class,” where a vertex class is a formal variable in 𝒞(Σ𝑔,𝑛) assigned to each
puncture (Definition 2.1).
Both algebras have their geometric origin from the same decorated Teich-

müller space due to Penner, and the proof of the Compatibility Lemma is rela-
tively straightforward (see Section 4). Indeed, a similar compatibility result for
surfaces with boundaries but without interior punctures was proven by Muller
in [30]. We note that because there are no interior punctures in Muller’s case,
the vertex classes in the skein algebra and the tagged arcs in the cluster algebra
do not exist. Thus the interpretation of the tagging as a vertex is new in the
punctured surface case considered here.
Like other recent developments, e.g. [3, 21, 25, 33, 43] among others, one

could think of these compatibility results as another indication of deep connec-
tion between knot theory and cluster algebra. Instead, what we would rather
emphasize here is the key role the Compatibility Lemma plays in the proofs of
the main results of this paper, as we will see throughout the paper. Let us now
describe themain results in this paper, beginning first with the quantum theory
of skein algebras and then turning to the structural theory of cluster algebras.

1.2. Skeinalgebra anddeformationquantization. In [39], Roger andYang
introduced a generalized skein algebra 𝒮𝑞(Σ𝑔,𝑛) as a candidate of the deforma-
tion quantization of 𝒯𝑑(Σ𝑔,𝑛). Their program consists of two steps. First, they
showed that 𝒮𝑞(Σ𝑔,𝑛) is a deformation quantization of its classical limit 𝒞(Σ𝑔,𝑛).
They then proved that there is a Poisson algebra homomorphismΦ ∶ 𝒞(Σ𝑔,𝑛) →

𝐶∞(𝒯𝑑(Σ𝑔,𝑛)) whose Poisson structures are given by the generalized Goldman
bracket and the Weil-Peterssen form, respectively [39, Theorem 1.2]. Thus,
if the Poisson algebra representation is faithful (meaning Φ is injective), then
𝒮𝑞(Σ𝑔,𝑛) can be understood as the quantization of 𝒯𝑑(Σ𝑔,𝑛). However, they left
the faithfulness as a conjecture [39, Conjecture 3.4]. In Section 5, we prove it
by employing Compatibility Lemma and finish Roger and Yang’s program.

TheoremA. TheRoger-Yang generalized skein algebra𝒮𝑞(Σ𝑔,𝑛) is a deformation
quantization of the decorated Teichmüller space𝒯𝑑(Σ𝑔,𝑛).

A consequence of our proof of Theorem A is that the fractional algebras of
both the two algebras 𝒜(Σ𝑔,𝑛) and 𝒞(Σ𝑔,𝑛) are identical. It thus follows that
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TheoremB. The Roger-Yang generalized skein algebra 𝒮𝑞(Σ𝑔,𝑛) is a deformation
quantization of𝒜(Σ𝑔,𝑛).

Note that in our earlier paper [28], we showed that Theorem A holds when
𝑛 is relatively large compared to 𝑔 [28, Theorem B]. The proof was based on a
long diagramatical computation with little theoretical or intuitive support. We
find that our proofs here, based on the relationship with cluster algebras es-
tablished by the Compatibility Lemma, provides a more satisfactory theoretical
reasoning.

Remark 1.1. In a result similar to Theorem B, Muller in [30] produced a de-
formation quantization of the cluster algebra for a surface with boundary and
marked points, but without interior punctures. The resulting quantization has
arcs that 𝑞-commute. Muller’s method cannot apply in the case considered in
this paper, because 𝒜(Σ𝑔,𝑛) does not extend to a quantum cluster algebra con-
struction of Berenstein-Zelevinski [5] if there is an interior puncture (see Re-
mark 3.14 for a more in depth discussion). Instead, the quantization of Theo-
rems A and B use the Poisson structure for the Roger-Yang skein algebra, which
was computed by Mondello for 𝜆-length of arcs [27]. In particular, these 𝜆-
lengths do not form log canonical coordinates in the sense of [19, Section 2.2].
Hence arcs are not 𝑞-commutative in the quantization, but satisfy a two-term
skein relation that generalizes the Ptolemy exchange relations for cluster vari-
ables.

1.3. Comparison of cluster algebras with their upper cluster algebra.
The upper cluster algebra 𝒰 (Definition 3.2) is a larger algebra containing the
ordinary cluster algebra 𝒜. While both are constructed from the same combi-
natorial data of seed,𝒰 behaves better than𝒜 inmanyways. Thus, the question
of whether 𝒜 = 𝒰 or not has attracted many researchers in the cluster algebra
community. Of note, when there is exactly one puncture, it was shown that
𝒜(Σ𝑔,1) ≠ 𝒰(Σ𝑔,1) by Ladkani [24]. For the summary of some known results,
see [12, Section 1.2] and a very recent result [22].
Here, we use a variant of the curve algebra we denote by 𝒞(Σ𝑔,𝑛)′ (Definition

2.10), and obtain an inclusion

𝒜(Σ𝑔,𝑛) ⊂ 𝒞(Σ𝑔,𝑛)
′ ⊂ 𝒰(Σ𝑔,𝑛). (1)

More specifically, the algebra 𝒞(Σ𝑔,𝑛)′ is a subalgebra of 𝒞(Σ𝑔,𝑛) that is gener-
ated by isotopy classes of loops and the image of𝒜(Σ𝑔,𝑛). Note that it thus con-
tains the Kauffman bracket skein algebra of Σ𝑔,𝑛, which is generated by isotopy
classes of loops. For the comparison of the original curve algebra 𝒞(Σ𝑔,𝑛) and
𝒰(Σ𝑔,𝑛), see Remark 6.14. We conjecture that this variant of the curve algebra
is equal to the upper cluster algebra, 𝒞(Σ𝑔,𝑛)′ = 𝒰(Σ𝑔,𝑛) (Conjecture 6.16). See
Remark 6.15 for a more detailed discussion.

1.4. Determining whether cluster algebras are finitely generated. It is
known that the Roger-Yang skein algebra is finitely generated [8], and our
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method is to use the compatibility map 𝜌 to deduce results about the cluster
algebra. We prove the following:
Theorem C. The cluster algebra of a punctured sphere𝒜(Σ0,𝑛) is finitely gener-
ated. On the other hand, for genus 𝑔 ≥ 1,𝒜(Σ𝑔,𝑛) is not finitely generated.

Note that [24] shows that𝒜(Σ𝑔,1) is not finitely generated for all 𝑔 ≥ 1. Note
also that the cluster algebra of a punctured surface is defined only when 𝑛 ≥ 3

punctures in the case of a sphere, and 𝑛 ≥ 1 in all other cases.
Because 𝒞(Σ𝑔,𝑛)′ is finitely generated, Theorem C and (1) leads to the corol-

lary:
Theorem D. For every 𝑔 ≥ 1,𝒜(Σ𝑔,𝑛) ≠ 𝒰(Σ𝑔,𝑛).
We would also like to note that the case of 𝑔 = 0 is exceptional. Indeed, we

expect that𝒜(Σ0,𝑛) = 𝒰(Σ0,𝑛) (Conjecture 6.16). For instance, when 𝑔 = 0, one
can show that loops are also in𝒜(Σ0,𝑛), by adapting the computation in [9] and
[2] (Remark 6.13).

1.5. Structure of the paper. Sections 2 and 3 review the definitions, basic
properties, and related constructions for 𝒞(Σ𝑔,𝑛) and 𝒜(Σ𝑔,𝑛). In Section 4, we
define the compatibilitymap𝜌, and show that iswell-defined and injective. The
next two sections detail our main results—Section 5 establishes the curve alge-
bra as a quantization of decorated Teichmuller space, and Section 6 discusses
algebraic properties of the cluster algebra and upper cluster algebra.
Acknowledgement. The authors would like to thank to Wade Bloomquist,
Hyunkyu Kim, Thang Le, Kyungyong Lee, Gregg Musiker, Fan Qin, and Dylan
Thurston for valuable conversations. This work was completed while the first
author was visiting Stanford University. He gratefully appreciates the hospi-
tality during his visit. The second author is partially supported by grant DMS-
1906323 from the US National Science Foundation and a Birman Fellowship
from the American Mathematical Society.

2. The curve algebra 𝒞(𝚺𝒈,𝒏)
In this section, we give a formal definition and basic properties of the curve

algebra 𝒞(Σ𝑔,𝑛). For details, see [39, Section 2.2] and [28, Section 2.4].
In this paper, a surface is Σ𝑔,𝑛 ∶= Σ𝑔 ⧵ 𝑉, where Σ𝑔 is a Riemann surface of

genus 𝑔without boundary, and𝑉 = {𝑣1, … , 𝑣𝑛} is a finite set of points in Σ𝑔. We
call 𝑉 the set of punctures or vertices.
A loop 𝛼 on Σ𝑔,𝑛 is an immersion of a circle into Σ𝑔,𝑛. An arc 𝛽 in Σ is an

immersion of [0, 1] into Σ𝑔 such that the image of (0, 1) is in Σ𝑔,𝑛 and the im-
age of two endpoints are (not necessarily distinct) points in 𝑉. The use of the
underbar notation will be explained in Section 3.
Definition 2.1. Let 𝑅 be a commutative ring. The curve algebra 𝒞(Σ𝑔,𝑛)𝑅 is the
𝑅-algebra generated by isotopy classes of loops, arcs, 𝑉 = {𝑣𝑖}, and their formal
inverses {𝑣−1

𝑖
}, modded out by the following relations:
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(1) (Skein relation) − ( + )

(2) (Puncture-skein relation) 𝑣𝑖 − ( + )

(3) (Framing relation) + 2

(4) (Puncture-framing relation) − 2.

The multiplication of elements in 𝒞(Σ𝑔,𝑛)𝑅 are represented by taking the
union of generators (and counted with multiplicity). The empty curve ∅ is the
multiplicative identity. In the relations, the curves are assumed to be identical
outside of the small balls depicted, and the 𝑖-th puncture 𝑣𝑖 is the one depicted
in the second relation.
We set 𝒞(Σ𝑔,𝑛) ∶= 𝒞(Σ𝑔,𝑛)ℤ, so that we mean 𝑅 = ℤ by default. Then

𝒞(Σ𝑔,𝑛)𝑅 = 𝒞(Σ𝑔,𝑛) ⊗ℤ 𝑅.

Remark 2.2. Note that in the curve algebra originally discussed by Roger-Yang
[39], they used 𝑅 = ℂ, and the vertices {𝑣𝑖} were treated as coefficients. But
for our purpose, it is more natural to think of the vertices as generators of the
algebra.

Remark 2.3. Onemight wonder about our choice of coefficient ringℤ, as com-
pared to Roger and Yang’s choice of ℂ. Clearly, there is a morphism 𝒞(Σ𝑔,𝑛) →

𝒞(Σ𝑔,𝑛)ℂ. In addition, one can adapt the proof of [39, Theorem 2.4] by replacing
theℂ-coefficient by theℤ-coefficient to show that 𝒞(Σ𝑔,𝑛) (withℤ-coefficients)
has no torsion. Thus, we have an inclusion 𝒞(Σ𝑔,𝑛) ⊂ 𝒞(Σ𝑔,𝑛)ℂ. It follows, for
example, that if 𝒞(Σ𝑔,𝑛)ℂ is an integral domain, then 𝒞(Σ𝑔,𝑛) is also an integral
domain.

Example 2.4. Let 𝛼 be an arc bounding an unpunctured monogon with the
vertex 𝑣. Then we can compute 𝑣𝛼 as follows:

𝑣
⎛

⎜

⎝

v

α⎞

⎟

⎠

= v + v = −2 + 2 = 0

Since 𝑣 is invertible in 𝒞(Σ𝑔,𝑛), this shows that any arc bounding an unpunc-
tured monogon is zero in 𝒞(Σ𝑔,𝑛).

Lemma 2.5. Let 𝑣 and 𝑤 be two distinct punctures, and 𝑒 be an arc connecting
𝑣 and 𝑤. In addition, let 𝛾 be an arc with both ends at 𝑣 that bounds a one-
punctured monogon containing 𝑤. Then 𝛾 = 𝑤𝑒2.

Proof.

𝑤𝑒2 = 𝑤 ( v w

e

e
) = ( v w + v w ) = ( v w )
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since any arc bounding an unpunctured monogon in 0 by the example above.
□

2.1. Relationshipof𝒞(𝚺𝒈,𝒏)withhyperbolic geometry. Let𝒯𝑑(Σ𝑔,𝑛) be the
decorated Teichmüller space of Σ𝑔,𝑛 constructed by Penner [34]. It parameter-
izes all pairs (𝑚, 𝑟) where 𝑚 is a complete hyperbolic metric Σ𝑔,𝑛 and 𝑟 is a
choice of a horocycle at every puncture of Σ𝑔,𝑛. Given such a pair (𝑚, 𝑟), one
can assign a well-defined length to any loop on Σ𝑔,𝑛 and any arc that goes from
puncture to puncture on Σ𝑔,𝑛. In addition, we set the length of a vertex to be the
length of the horocycle around that vertex. The lengths of loops, arcs, and ver-
tices can then be used to define 𝜆-length functions on 𝒯𝑑(Σ𝑔,𝑛). The 𝜆-length
functions parametrize the ring of ℂ-valued 𝐶∞ functions on 𝒯𝑑(Σ𝑔,𝑛) [34] and
can be used to define the Poisson structure on 𝒯𝑑(Σ𝑔,𝑛) induced by the Weil-
Petersson form [35].
Roger and Yang ([39, Theorem 1.2]) showed that there is a Poisson algebra

homomorphism
Φ ∶ 𝒞(Σ𝑔,𝑛)ℂ → 𝐶∞(𝒯𝑑(Σ𝑔,𝑛)) (2)

that sends any loop, arc, or vertex to its corresponding 𝜆-length function. One
can think of the relations from the curve algebra as designed to mirror the re-
lations from the 𝜆-length functions in 𝐶∞(𝒯𝑑(Σ𝑔,𝑛)). In fact, Roger and Yang
conjectured that the curve algebra relations captures all of the relations from
𝐶∞(𝒯𝑑(Σ𝑔,𝑛)), or equivalently, that

Conjecture 2.6. [39] The Poisson algebra homomorphism Φ in (2) is injective.

Theorem A proves Roger and Yang’s conjecture in all cases, by appealing to
the algebraic properties of 𝒞(Σ𝑔,𝑛)ℂ and the following theorem:

Theorem 2.7 ([28, Theorem A]). If 𝒞(Σ𝑔,𝑛)ℂ is an integral domain, then Φ is
injective.

In previous work [28, Theorem B and Section 4] , we were able to verify that
𝒞(Σ)ℂ is an integral domainwhenΣ admits a ‘locally planar’ ideal triangulation.

In particular, we needed satisfy 𝑛 ≥ ⌈
7+

√
48𝑔

2
⌉ punctures when genus 𝑔 ≠ 2, and

𝑛 ≥ 10 when 𝑔 = 2. In Theorem 5.2 of this paper, we instead use cluster
algebras to obtain an independent and unconditional proof of integrality, so
that Conjecture 2.6 applies for any Σ𝑔,𝑛.

2.2. Relationship of𝒞(𝚺𝒈,𝒏)withKauffmanbracket skein algebra. Roger
and Yang’s definition of the curve algebra and the construction ofΦ in [39] was
motivated by a search for an appropriate quantization of the decorated Teich-
muller space 𝒯𝑑(Σ𝑔,𝑛). In particular, they wanted to generalize the set-up of
[10, 11, 37, 41] that establishes the Kauffman bracket skein algebra as a quanti-
zation of the SL2-character variety of Σ𝑔, which contains the Teichmüller space
as a dense open subspace. Towards this end, Roger and Yang defined a gener-
alized Goldman bracket for 𝒞(Σ𝑔,𝑛) and used it to define a deformation quanti-
zation of 𝒞(Σ𝑔,𝑛) that we here denote by 𝒮𝑞(Σ𝑔,𝑛) [39, Theorem 1.1].
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We omit the precise definition of 𝒮𝑞(Σ𝑔,𝑛), but instead mention some key

properties. Firstly, 𝒮𝑞(Σ𝑔,𝑛) is an 𝑅[𝑞
±
1

2 ]-algebra generated by arcs, loops, and
vertices in the thickened surface Σ𝑔,𝑛×𝐼. Because it reduces to the usual Kauff-
man bracket skein algebra in the absence of punctures (so that the puncture-
skein and puncture-framing relations can be ignored), Roger-Yang’s 𝒮𝑞(Σ𝑔,𝑛) is
a skein algebra.
By construction as a deformation quantization, 𝒮𝑞(Σ𝑔,𝑛) can be identified

with 𝒞(Σ𝑔,𝑛)when 𝑞 = 1. Once we show that Conjecture 2.6 is true for 𝒞(Σ𝑔,𝑛),
it follows that 𝒮𝑞(Σ𝑔,𝑛) is a quantization of 𝒯𝑑(Σ𝑔,𝑛), as stated in Theorem A.
This completes Roger and Yang’s proposal from [39].
Many other results about the curve algebra 𝒞(Σ𝑔,𝑛) have consequences for

the skein algebra 𝒮𝑞(Σ𝑔,𝑛). For example, it was proved in [28, Theorem C] that
if 𝒞(Σ𝑔,𝑛) is an integral domain, then 𝒮𝑞(Σ𝑔,𝑛) is also an integral domain. Con-
versely, many results about 𝒮𝑞(Σ𝑔,𝑛) also apply to 𝒞(Σ𝑔,𝑛). The following two
theorems about algebraic properties of 𝒞(Σ𝑔,𝑛)were proved for 𝒮𝑞(Σ𝑔,𝑛)withℂ-
coefficients, but the same proof works just as well for ℤ-coefficients and with
𝑞 = 1.

Theorem 2.8 ([8, Theorem 2.2]). The algebra 𝒞(Σ𝑔,𝑛) is finitely generated.

We now turn to the 𝑔 = 0 case. Let 𝐶 be a small circle on Σ0,𝑛. We may
assume that the 𝑛 punctures {𝑣1,⋯ , 𝑣𝑛} lie on𝐶 in the clockwise circular order.
Let 𝛽𝑖𝑗 be the simple arc in the disk bounded by 𝐶 that connects 𝑣𝑖 and 𝑣𝑗.

Theorem 2.9 ([2, Theorem 1.1]). The algebra 𝒞(Σ0,𝑛) is isomorphic to

ℤ[𝑣
±

𝑖
, 𝛽𝑖𝑗]1≤𝑖,𝑗≤𝑛∕𝐽,

where 𝐽 is an ideal generated by
(1) 𝛽𝑖𝑘 𝛽𝑗𝓁 = 𝛽𝑖𝓁 𝛽𝑗𝑘+𝛽𝑖𝑗 𝛽𝑘𝓁 for any 4-subset {𝑖, 𝑗, 𝑘, 𝓁} ⊂ [𝑛] in cyclic order;
(2) 𝛾𝑖𝑗+ = 𝛾𝑖𝑗

−;
(3) 𝛿 = −2,

where 𝛾𝑖𝑗± and 𝛿 are explicit polynomials in the generators (and have a geometric
description).

For definitions of 𝛾𝑖𝑗± and 𝛿 and formulas in terms of 𝛽𝑖𝑗, see [2, Section 4].

2.3. A useful variant of 𝒞(𝚺𝒈,𝒏).

Definition 2.10. Let 𝒞(Σ𝑔,𝑛)′ ⊂ 𝒞(Σ𝑔,𝑛) be the subalgebra generated by the
following elements:

(1) Isotopy classes of loops;
(2) 𝛽, 𝑣𝛽, 𝑤𝛽, and 𝑣𝑤𝛽, where 𝛽 is an arc connecting (possibly non-

distinct) vertices 𝑣 and 𝑤.
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For any coefficient ring 𝑅, set 𝒞(Σ𝑔,𝑛)′𝑅 ∶= 𝒞(Σ𝑔,𝑛)
′ ⊗ℤ 𝑅 ⊂ 𝒞(Σ𝑔,𝑛)𝑅. Later,

we will need the following version of Theorem 2.8.

Theorem 2.11. For any coefficient ring 𝑅, the algebra 𝒞(Σ𝑔,𝑛)′𝑅 is finitely gener-
ated.

Note that the proof is identical to that of [8, Theorem 2.2]. More specifically,
one uses a generalized handle decomposition of Σ𝑔,𝑛 with a disk removed. The
complexity of a curve is defined based on howmany times and in what manner
a minimal representation of the curve traverses the handles [8, Section 3.1]. By
application of skein identities, any curve can be recursively written as lower-
complexity curves [8, Lemmas 3.1–3.4]. Importantly, none of the skein identi-
ties in the recursive steps use the formal inverses of vertices. In particular, the
skein identities from [8, Lemmas 3.1 and 3.2]) involve only undecorated arcs
of the form 𝛽, and those for [8, Lemma 3.3] uses arcs of the form 𝛽 and 𝑣𝑤𝛽.
For [8, Lemma 3.4], one identity (first identity on [8, p.10]) involves 𝑣−1. How-
ever, the recursive step comes from substituting it into a previous equation (last
identify on [8, p.9]), in a term with a factor of 𝑣. Because of the cancellation,
the recursive step can be written in a form involving only undecorated arcs.

Remark 2.12. After we define the cluster algebra𝒜(Σ𝑔,𝑛) in Section 3, we will
see that it can be understood as a subalgebra generated by ‘tagged’ arc classes by
the Compatibility Lemma. Also note that the classical limit (𝑞 = 1) of the orig-
inal Kauffman bracket skein algebra [36, 41] is a subalgebra of 𝒞(Σ𝑔,𝑛) gener-
ated by loop classes. So, one may interpret 𝒞(Σ𝑔,𝑛)′ as the subalgebra of 𝒞(Σ𝑔,𝑛)
generated by the image of the cluster algebra 𝒜(Σ𝑔,𝑛) and the usual Kauffman
bracket skein algebra.

3. Cluster algebra from surfaces
We review the definition of the cluster algebra 𝒜(Σ𝑔,𝑛) constructed from a

punctured surface Σ, as introduced by Fomin, Shapiro, and Thurston in [16].
Note that, in our definition of cluster algebra below, we do not provide the def-
inition of cluster algebras in full generality, which can be found for example in
[18]. We restrict to the case of constant coefficient, skew-symmetric exchange
matrix, and no frozen variables. The only minor extension is that we allow a
more general base ring, e.g. finite fields are allowed, whereas a cluster algebra
is often defined only overℤ,ℚ,ℝ, or ℂ. The choice of coefficient ring does not
significantly impact the theory [4, Section 2].

3.1. Definition of cluster algebras. Let 𝑅 be an integral domain. Letℱ be a
purely transcendental finite extension of 𝑄(𝑅), the field of fraction of 𝑅. A seed
is a pair (𝐱, 𝐵), where 𝐱 = {𝑥1, … , 𝑥𝑚} is a free generating set for ℱ as a field
over 𝑄(𝑅) and 𝐵 = (𝑏𝑖𝑗) is a skew-symmetric𝑚×𝑚 integral matrix. 𝐵 is called
the exchange matrix, the set 𝐱 is the cluster, and its elements 𝑥𝑖 are the cluster
variables of the seed.
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For a seed (𝐱, 𝐵) and 𝑘 ∈ {1, … ,𝑚}, a mutation in the direction of 𝑘 is an
operation that produces another seed 𝜇𝑘(𝐱, 𝐵) = (𝐱′, 𝐵′) where

(1) 𝐱′ = {𝑥′
1
, … , 𝑥′𝑚} is such that 𝑥′𝑘 is defined by the exchange relation

𝑥𝑘𝑥
′

𝑘
=

∏

𝑏𝑗𝑘>0

𝑥
𝑏𝑗𝑘

𝑗
+
∏

𝑏𝑗𝑘<0

𝑥
−𝑏𝑗𝑘

𝑗

and all other cluster variables are identical, so 𝑥𝑖 = 𝑥′
𝑖
for 𝑖 ≠ 𝑘;

(2) 𝐵′ = (𝑏′
𝑖𝑗
) is defined by

𝑏′
𝑖𝑗
= {

−𝑏𝑖𝑗, if 𝑖 = 𝑘 or 𝑗 = 𝑘,

𝑏𝑖𝑗 +
1

2
(|𝑏𝑖𝑘|𝑏𝑘𝑗 + 𝑏𝑖𝑘|𝑏𝑘𝑗|), otherwise.

(3)

Sometimes we notate it as 𝜇𝑘(𝐵) = 𝐵′. It is straightforward to check that a
mutation is involutive.
Since a mutation of a seed produces another seed, repeated mutations can

be performed following any sequence of indices 1, … ,𝑚. We say that two seeds
(𝐱, 𝐵) and (𝐲, 𝐶) are mutation equivalent and write (𝐱, 𝐵) ∼ (𝐲, 𝐶) if one seed
can be obtained from the other by a sequence of mutations.

Definition 3.1. The cluster algebra𝒜(𝐱, 𝐵) is the 𝑅-subalgebra of the ambient
field ℱ generated by

⋃

(𝐲,𝐶)∼(𝐱,𝐵)

𝐲,

the cluster variables of seeds that aremutation equivalent to a seed (𝐱, 𝐵). Since
mutation equivalent seeds produce the same cluster algebra, wewrite𝒜 instead
of 𝒜(𝐱, 𝐵) when the choice of initial seed may be safely suppressed. When we
need to specify the coefficient ring, we use the notation𝒜𝑅 for 𝒜.

A simplicial complex, called the cluster complex of 𝒜 = 𝒜(𝐱, 𝐵), is often
used to describe the relationships between the cluster variables used to gener-
ate it. In particular, the vertices of the cluster complex are the cluster variables⋃

(𝐲,𝐶)∼(𝐱,𝐵)

𝐲 that generate 𝒜, and there is a 𝑘-simplex whenever 𝑘 cluster vari-

ables belong to the same cluster. Thus each seed in a cluster algebra gives rise
to a maximal simplex in the cluster complex. The exhange graph is the dual
graph, where the vertices are the seeds, and there is an edge between two seeds
if they are mutations of each other. So by definition, the exchange graph of a
cluster algebra must be an𝑚-regular, connected graph.
By the Laurent phenomenon [18, Theorem 3.1], for any 𝑥𝑖 ∈ 𝐱 and an equiv-

alent seed (𝐲 = {𝑦1, 𝑦2,⋯ , 𝑦𝑚}, 𝐶) ∼ (𝐱, 𝐵),

𝑥𝑖 ∈ 𝑅[𝑦
±

1
, 𝑦

±

2
,⋯ , 𝑦

±
𝑚] ⊂ ℱ.
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Definition 3.2. For a cluster algebra 𝒜 = 𝒜(𝐱, 𝐵) ⊂ ℱ, the upper cluster alge-
bra 𝒰 is defined by

𝒰 ∶=
⋂

(𝐲,𝐶)∼(𝐱,𝐵)

𝑅[𝑦
±

1
, 𝑦

±

2
,⋯ , 𝑦

±
𝑚] ⊂ ℱ.

The Laurent phenomenon tells that𝒜 ⊂ 𝒰. In general they do not coincide.
The upper cluster algebra 𝒰 behaves better than 𝒜; for example, 𝒰 is an inte-
grally closed domain if 𝑅 is [4, Lemma 2.1]. However, the computation of 𝒰
and the question of whether𝒜 = 𝒰 or not are in general difficult. For a partial
criterion for 𝒜 = 𝒰, see [29].

3.2. Definition of the cluster algebra of a surface. In this paper, we focus
exclusively on cluster algebras associated to a punctured surface Σ𝑔,𝑛. The clus-
ter algebra𝒜(Σ𝑔,𝑛) is essentially the algebra generated by isotopy classes of arcs
on the surface Σ𝑔,𝑛. The idea is that the cluster variables in a cluster should
come from the edges of a triangulation, and mutation should correspond to a
flip of an edge of the triangulation. However, this intuitive picture is not com-
plete as standswhen there are interior punctures. The issue is that every cluster
variable can be mutated in a cluster algebra, but when a triangulation contains
a self-folded triangle, not every arc can be flipped.
As we present below, the solution from [16] was to introduce a tagging on

arcs. We begin with a review of cluster algebras from ordinary triangulations,
before discussing tagged triangulations. Note that the results in [16] also apply
to surfaces with boundary and marked points on the boundary, but we do not
need that generality here.

3.2.1. Ordinary Triangulations. As in Section 2, we denote a punctured sur-
face without boundary by Σ𝑔,𝑛 = Σ𝑔 ⧵ 𝑉, where 𝑉 = {𝑣1,⋯ , 𝑣𝑛}. We assume
that 𝑛 ≥ 1, and exclude Σ0,𝑛 for 𝑛 ≤ 3.
Recall an arc of Σ𝑔,𝑛 = Σ𝑔 ⧵ 𝑉 is an immersion 𝛼 ∶ [0, 1] → Σ𝑔 such that 𝛼

embeds (0, 1) in Σ𝑔,𝑛 and 𝛼 takes the endpoints {0, 1} to the punctures 𝑉. The
set of isotopy classes of arcs connecting two punctures in Σ𝑔,𝑛 will be denoted
by𝐀◦(Σ𝑔,𝑛). Two arcs are said to be compatible if they are the same, or if they do
not intersect except at the punctures. Amaximal collection of distinct, pairwise
compatible isotopy classes of arcs forms an ideal triangulation 𝒯 on Σ𝑔,𝑛. The
arcs in a triangulation are referred to as edges, and the set of edges is denoted
by 𝐸. Because of maximality, 𝐸 separates Σ𝑔,𝑛 into a set of triangles, which is
denoted by 𝑇. Recall that 𝑛 = |𝑉|, and from now on, we let𝑚 = |𝐸|.
A flip is an operation that removes an arc from a triangulation 𝒯 and re-

places it by another compatible arc, in order to obtain a different triangulation
𝒯′. In particular,𝒯 and𝒯′ share all arcs except one. Note that not every arc in
a triangulation is flippable, since the folded edge in a self-folded triangle is not
flippable. However, there is a finite sequence of flips that transforms any tri-
angulation into one without self-folded triangles, and more generally, any two
triangulations can be connected by finitely many flips.
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Let the arc complex ∆◦(Σ𝑔,𝑛) be the abstract simplicial complex where a 𝑘-
simplex is a collection of 𝑘 distinct, mutually compatible arcs in𝐀◦(Σ𝑔,𝑛). Thus
each vertex is an isotopy class of an arc, and amaximal simplex corresponds to a
triangulation𝒯. Its dual graphwe denote by 𝐄◦(Σ𝑔,𝑛). Equivalently, 𝐄◦(Σ𝑔,𝑛) is
the graphwhose vertices are the ideal triangulations ofΣ𝑔,𝑛 and two vertices are
connected if and only if the ideal triangulations are related by a flip. ∆◦(Σ𝑔,𝑛)
is connected in codimension-one, and 𝐄◦(Σ𝑔,𝑛) is connected, with each vertex
degree at most𝑚.

3.2.2. Cluster algebra froman ordinary triangulation. The combinatorial
data from an ordinary triangulation can be encoded using a matrix, which we
will define using puzzle pieces. Figure 1 shows three “puzzle pieces” which
are intended to be glued together along their boundary edges in order to con-
struct triangulations of surfaces. Figure 2 depicts a triangulation of the four-
punctured sphere Σ0,4, where the exterior of three self-folded triangles is an-
other triangle, which is not drawn in but which should be understood to be
a part of the figure. We sometimes refer to the triangulation in Figure 2 as a
fourth puzzle piece, even though it is not meant to be glued to any other puzzle
piece. Thematrix associated to the puzzle pieces are also given in Figures 1 and
2. Notice that there is one row and column for each edge in the puzzle piece,
and all four matrices are skew-symmetric.
As shown in [16, Section 4], every triangulation 𝒯 of Σ𝑔,𝑛 can be obtained

from gluing puzzle pieces of the four types depicted in Figures 1 and 2. More-
over, there is a well-defined exchange matrix 𝐵 = 𝐵𝒯 = (𝑏𝑖𝑗) that is the𝑚 ×𝑚

matrix whose rows and columns are indexed by the edges of the triangulation,
constructed as the sum of all minor matrices obtained from some set of puzzle
pieces which can be used to construct 𝒯. Since an edge of a triangulation can
be contained in at most two puzzle pieces, the entries of the exchange matrix
must satisfy −2 ≤ 𝑏𝑖𝑗 ≤ 2 for all 𝑖, 𝑗. We refer the reader to [16] for details as
well as worked examples.
Observe that the exchange matrix 𝐵𝒯 is skew-symmetric, since the minor

matrices obtained from the puzzle pieces are skew-symmetric. Thus, we may
define the seed from the triangulation𝒯 to be the pair (𝐸𝒯 , 𝐵𝒯), where 𝐸𝒯 is the
set of edges of a triangulation 𝒯 and 𝐵 is its exchange matrix.

Proposition 3.3 ([16, Proposition 4.8]). Suppose that the 𝑘-th edge of a trian-
gulation 𝒯 is flippable, and let 𝒯′ be the result of flipping that edge. Then the
exchange matrix for 𝒯′ is the exchange matrix for 𝒯 mutated in the direction 𝑘,
i.e., 𝐵𝒯′ = 𝜇𝑘(𝐵𝒯).

Since any two triangulations of Σ𝑔,𝑛 are related by a sequence of flips, seeds
from any two triangulations of Σ𝑔,𝑛 are related by a sequence of mutations and
hence are mutation equivalent. Hence, we have:

Definition3.4. Let the cluster algebra ofΣ𝑔,𝑛 be defined as𝒜(Σ𝑔,𝑛) = 𝒜(𝐸𝒯 , 𝐵𝒯).
Then𝒜(Σ𝑔,𝑛) is generated by the edges of triangulations of Σ𝑔,𝑛 and hence is in-
dependent of the initial choice of triangulation 𝒯.
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⎡
⎢

⎣

0 1 −1

−1 0 1

1 −1 0

⎤
⎥

⎦

⎡
⎢
⎢
⎢

⎣

0 1 −1 −1

−1 0 1 1

1 −1 0 0

1 −1 0 0

⎤
⎥
⎥
⎥

⎦

⎡
⎢
⎢
⎢
⎢

⎣

0 1 1 −1 −1

−1 0 0 1 1

−1 0 0 1 1

1 −1 −1 0 0

1 −1 −1 0 0

⎤
⎥
⎥
⎥
⎥

⎦

Figure 1. Three puzzle pieces and their associated matrix minors

1 3

2 4

5 6

⎡
⎢
⎢
⎢
⎢
⎢
⎢

⎣

0 0 −1 −1 1 1

0 0 −1 −1 1 1

1 1 0 0 −1 −1

1 1 0 0 −1 −1

−1 −1 1 1 0 0

−1 −1 1 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥

⎦

Figure 2. The fourth puzzle pieces and their associated matrix minors

While the cluster algebra of a surface can be formally defined as above, the
resulting cluster variables might not correspond to arcs in an ideal triangula-
tion. In a cluster algebra, wemust be able tomutate along every cluster variable,
but when the surface Σ𝑔,𝑛 admits a triangulation with self-folded triangles, not
every edge is flippable. In other words, the exchange graph of the cluster alge-
bra 𝒜(Σ𝑔,𝑛) should have degree 𝑚 at every vertex, but some vertex in the edge
graph 𝐄◦(Σ𝑔,𝑛) might have degree strictly smaller than 𝑚. In general we can
only say that ∆◦(Σ𝑔,𝑛) is a subcomplex of the cluster complex, and 𝐄◦(Σ𝑔,𝑛) is
a subgraph of the cluster algebra’s exchange graph. To fill in this gap, Fomin,
Shapiro, and Thurston [16] introduced a generalization of ordinary arcs which
we describe next.

3.2.3. Tagged Triangulations.

Definition 3.5. A tagged arc 𝛼 on Σ𝑔,𝑛 is an arc 𝛼 on Σ𝑔,𝑛 along with one of two
decorations, plain or notched, at each of the two ends of 𝛼 such that:

(1) 𝛼 does not cut a one-punctured monogon;
(2) if both ends of the arc are at the same vertex, then they have the same

decoration.
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The ordinary arc 𝛼 is the underlying arc of the tagged arc 𝛼 (hence the under-
line notation). The decoration of plain or notched at an end of a tagged arc is re-
ferred to as the tag at that end, or at the corresponding vertex. The set of isotopy
classes of tagged arcs is denoted by 𝐀⋈(Σ𝑔,𝑛). Naturally 𝐀◦(Σ𝑔,𝑛) ⊂ 𝐀⋈(Σ𝑔,𝑛).

Many concepts and constructions for arcs can be extended to tagged arcs.
Recall that two ordinary arcs are compatible if, up to isotopy, they are either
the same or disjoint except at the vertices.

Definition 3.6. If tagged arcs 𝛼 and 𝛽 satisfy the following conditions:
(1) the underlying arcs are 𝛼 and 𝛽 are compatible; and
(2) in the case that 𝛼 = 𝛽, then 𝛼 and 𝛽 have the same tag on at least one

of the shared vertices;
(3) in the case that 𝛼 ≠ 𝛽 and they share a vertex 𝑣, then 𝛼 and 𝛽 have the

same tag at 𝑣.
then we say that 𝛼 and 𝛽 are compatible.

It follows from the definition that, if 𝛼 and 𝛽 are compatible tagged arcs
whose underlying arcs are not the same but share both vertices, then 𝛼 and
𝛽must have the same tag at each vertex. For example, on a one-punctured sur-
face, all compatible arcs share a vertex, and hence all ends of compatible arcs
must have the same tag.

Definition 3.7. A tagged triangulation 𝒯⋈ is a maximal collection of compat-
ible, distinct tagged arcs.

If we take the arcs of an ordinary triangulation 𝒯 and tag all of the ends
plainly, then we obtain a tagged triangulation. However, the converse is not
true; it is possible that the underlying curves of a tagged triangulation𝒯⋈ = {𝛼𝑖}

do not form an ordinary triangulation of Σ𝑔,𝑛. In particular, tagged triangula-
tions may cut out bigons as pictured on the right of Figure 3. Because such
bigons appear often in tagged triangulations, we have the following language
for describing them.

Definition 3.8. Let 𝑣 and 𝑤 be two distinct vertices. A dangle 𝑑𝑤𝑣 is a bigon
with vertices at 𝑣 and 𝑤 such that its two boundary arcs are compatible and
have different tags at the vertex 𝑣 (Figure 3). The jewel of 𝑑𝑤𝑣 is the vertex 𝑣
with two distinct tags. An envelope of the dangle 𝑑𝑤𝑣 is the boundary 𝛾𝑤𝑣 of a
one-punctured monogon that is based at 𝑤 and such that it encloses the jewel
𝑣 and has the same tags at 𝑤 as on 𝑑𝑤𝑣 .

Note that, because the two boundary arcs of a dangle 𝑑𝑤𝑣 are compatible and
the tags at the jewel 𝑣 are different, the tags at the remaining vertex 𝑤 must
be both plain or both notched. In a tagged triangulation, the jewel of a dangle
cannot be the endpoint of any other edge besides those of the dangle, and thus
the degree of the jewel is two.
Let the tagged arc complex ∆⋈(Σ𝑔,𝑛) be the abstract simplicial complex gener-

ated by compatible distinct tagged arcs in𝐀⋈(Σ𝑔,𝑛), and let𝐄⋈(Σ𝑔,𝑛) be the dual
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Figure 3. On the left, the envelope 𝛾𝑤𝑣 encircles its jewel 𝑣.
On the right is the corresponding dangle 𝑑𝑤𝑣 , with the taggings
necessarily distinct at 𝑣. In this example, both the tags are plain
at 𝑤, but both could be notched at 𝑤 instead.

graph of ∆⋈(Σ𝑔,𝑛). Equivalently, 𝐄⋈(Σ𝑔,𝑛) is the graph whose vertices are the
tagged triangulations of Σ𝑔,𝑛 and two vertices are connected if and only if the
tagged triangulations share all but one edge. An edge of 𝐄⋈(Σ𝑔,𝑛) corresponds
to a tagged flip, which we think of as an operation that removes one tagged arc
from the tagged triangulation and replaces it with a different compatible tagged
arc.

Proposition 3.9 ([16, Proposition 7.10]). Let 𝑚 be the number of edges of an
ideal triangulation on Σ𝑔,𝑛.
When 𝑛 ≥ 2,𝐄⋈(Σ𝑔,𝑛) is an𝑚-regular, connected graph. Every edge of a tagged

triangulation is flippable and any two tagged triangulations is related by a se-
quence of tagged flips.
When 𝑛 = 1, 𝐄⋈(Σ𝑔,𝑛) is an 𝑚-regular graph with two isomorphic connected

components, one where all tags are plain and one where all tags are notched.

It follows that ∆⋈(Σ𝑔,𝑛) is also connected when there are at least two punc-
tures and has two isomorphic connected components when there is exactly one
puncture. Note that in the case of one puncture, each connected component of
𝐄⋈(Σ𝑔,1) is isomorphic to 𝐄◦(Σ𝑔,1), and each component of the tagged arc com-
plex ∆⋈(Σ𝑔,1) is isomorphic to ∆◦(Σ𝑔,1). For simplicity, we will restrict to the
component where all tags are plain in the one puncture case for ease of ex-
position. With this convention, we have that both 𝐄⋈(Σ𝑔,𝑛) and ∆⋈(Σ𝑔,𝑛) are
connected in all cases.
The relationship between the ordinary set-up and the tagged one can be

described by a map 𝜏 ∶ 𝐀◦(Σ𝑔,𝑛) → 𝐀⋈(Σ𝑔,𝑛), which we will define using
the language of dangles and envelopes from Definition 3.8 and Figure 3. If
𝑒 ∈ 𝐀◦(Σ𝑔,𝑛) is not an envelope (that is, it does not cut out a once-punctured
monogon), then 𝜏(𝑒) is 𝑒 tagged plain at both ends. If 𝑒 is an envelope based at
𝑤 and surrounding 𝑣, then 𝜏(𝑒) is the unique arc enclosed by 𝑒 that connects 𝑣
and 𝑤 and that is notched at 𝑣. For example, in Figure 3, 𝜏(𝑒) = 𝑒, but 𝜏 maps
the envelope 𝛾𝑤𝑣 to the tagged arc on the right.
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Figure 4. The four tagged puzzle pieces. They are the images
under 𝜏 of the four ordinary puzzle pieces from Figures 1 and
2.

As shown in [16, Section 7], 𝜏 preserves the compatibility of arcs and provides
a way of mapping an ordinary triangulation to a tagged triangulation. In this
way, we can understand ∆◦(Σ𝑔,𝑛) as a subcomplex of ∆⋈(Σ𝑔,𝑛) (though possibly
it is not an induced subcomplex), and 𝐄◦(Σ𝑔,𝑛) as a subgraph of 𝐄⋈(Σ𝑔,𝑛).
To define the exchange matrix of a tagged triangulation, we again use puzzle

pieces, as drawn in Figure 4. As before, the fourth puzzle piece by itself is a
tagged triangulation of the four-punctured sphere Σ0,4. Since it does not have
any exterior edge, it cannot be glued with any other puzzle pieces.

Lemma 3.10. Any tagged triangulation𝒯⋈ on Σ𝑔,𝑛 is obtained by
(1) gluing the tagged puzzle pieces along their boundary edges; and
(2) tagging all ends of the glued boundary edges in a compatible way.

Proof. For the given tagged triangulation𝒯⋈, we may think it as a top dimen-
sional simplex in ∆⋈(Σ𝑔,𝑛). Take a subsimplex 𝒮⋈ ⊂ 𝒯⋈, by eliminating all
dangles. Then at each vertex of 𝒮⋈, the adjacent tagged arcs have the same tag.
Pick a region 𝑅 ⊂ Σ𝑔,𝑛 bounded by arcs in 𝒮⋈. It is sufficient to show that 𝑅 is

one of the tagged puzzle pieces. 𝑅 is bounded by at most three arcs. Otherwise
we can refine the triangulation𝒯⋈ by introducing a new tagged arc dividing the
region𝑅, which violates themaximality of𝒯⋈. There is no inner vertex 𝑣 except
the other end of dangles, because otherwise we can insert another compatible
tagged edge connecting 𝑣 and one of the boundary vertices. If 𝑅 has 𝑘 ≤ 3

boundary arcs, then there are 3 − 𝑘 dangles in 𝑅, by the maximality of 𝒯⋈.
Then Figure 4 are the remaining possibilities. □

Observe that the four tagged puzzle pieces in Figure 4 are the images of the
four ordinary puzzle pieces in Figures 1 and 2 under the map 𝜏. We define the
matrix associated to each tagged puzzle piece as the same one associated to its
corresponding ordinary puzzle piece. Notewhen two tagged arcs have the same
underlying arc, their corresponding matrix entries are the same.

Definition 3.11. Let 𝒯⋈ be a tagged triangulation with 𝑚 edges that is made
up of tagged puzzle pieces, and let 𝐸𝒯⋈ be the set of its edges. The exchange
matrix 𝐵𝒯⋈ = (𝑏𝑖𝑗) is the 𝑚 × 𝑚 matrix whose rows and columns are indexed
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by the edges, constructed as the sum of all minor matrices obtained from the
puzzle pieces used to construct 𝒯⋈. The seed from the triangulation 𝒯⋈ is the
pair (𝐸𝒯⋈ , 𝐵𝒯⋈).

Example 3.12. Consider the tagged triangulation of Σ0,4 shown on the left of
Figure 11. It is obtained from gluing together two puzzle pieces of Type B. Tak-
ing 𝑒6 = 𝛼, the exchange matrix for the triangulation on the left is

⎡
⎢
⎢
⎢
⎢
⎢
⎢

⎣

0 0 0 0 1 −1

0 0 0 0 1 −1

0 0 0 0 −1 1

0 0 0 0 −1 1

−1 −1 1 1 0 0

1 1 −1 −1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥

⎦

.

Mutation of 𝛼 produces the triangulation on the right of Figure 11, which is by
itself the Type D puzzle piece. The mutated exchange matrix 𝜇(𝐵) is the one
from Figure 2.

It is a straightforward calculation to check that the exchange matrix for the
tagged triangulation obtained fromflipping the 𝑘-th edge of𝒯⋈ is the exchange
matrix for 𝒯⋈ mutated in the direction 𝑘.
The following theorem, which is the main result of [16], summarizes our

discussion so far. In the case |𝑉| = 1, recall that we restricted to the case where
all tags are plain, so that 𝐄⋈(Σ𝑔,1) is an𝑚-regular, connected graph in all cases.

Theorem 3.13 ([16, Theorem 7.11]). Define the cluster algebra 𝒜(Σ𝑔,𝑛) using
an initial seed coming from any ordinary or tagged triangulation of Σ𝑔,𝑛. Then
each seed of 𝒜(Σ𝑔,𝑛) comes from a tagged triangulation of Σ𝑔,𝑛, and mutation of
the seed corresponds to tagged flips of the triangulation. In particular, the cluster
complex of𝒜(Σ𝑔,𝑛) is the tagged arc complex ∆⋈(Σ𝑔,𝑛) and the exchange graph of
𝒜(Σ𝑔,𝑛) is the dual graph 𝐄⋈(Σ𝑔,𝑛) .

Remark 3.14. As one can see in Figure 2 or Example 3.12, the exchangematrix
for a punctured surface is not of full rank. Thus, in contrast to the case of surface
with boundaries and without punctures, 𝒜(Σ𝑔,𝑛) does not admit a quantum
cluster algebra as its deformation quantization [5, Proposition 3.3].

4. The homomorphism 𝝆 ∶ 𝒜(𝚺𝒈,𝒏) → 𝒞(𝚺𝒈,𝒏)

In this section, we prove Compatibility Lemma in Section 1.1, that there is
a monomorphism 𝜌 ∶ 𝒜(Σ𝑔,𝑛) → 𝒞(Σ𝑔,𝑛). After describing 𝜌, we prove in
Proposition 4.3 that it is a well-defined algebra homomorphism, and in Propo-
sition 4.6 that it is injective.
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Definition 4.1. Let 𝛼 ∈ 𝒜(Σ𝑔,𝑛) be a tagged arc with endpoints at the vertices
𝑣, 𝑤 ∈ 𝑉 (which are possibly the same). Let

𝜌(𝛼) ∶=

⎧
⎪

⎨
⎪

⎩

𝛼, if both ends of 𝛼 are plain
𝑣𝛼, if only the end at 𝑣 of 𝛼 is notched
𝑤𝛼, if only the end at 𝑤 of 𝛼 is notched
𝑣𝑤𝛼, if both ends of 𝛼 are notched.

where 𝛼 denotes the underlying arc (Definition 3.5).

Remark 4.2. (1) When 𝑣 = 𝑤, both ends of 𝛼must have the same decora-
tion (Definition 3.5). So the formula is 𝜌(𝛼) = 𝛼 if both ends are plain,
and 𝜌(𝛼) = 𝑣2𝛼 if both ends are notched.

(2) When there is only one puncture, all endpoints of arcs are tagged plainly.
So 𝜌(𝛼) = 𝛼 for edges 𝛼 in a once-punctured surface.

(3) For a related perspective for the definition of 𝜌, see [17, Lemma 10.14].

By introducing a little more notation, we can write the formula for 𝜌 more
compactly. For a tagged arc 𝛼 with an endpoint at 𝑣 ∈ 𝑉, let

𝑡𝑣(𝛼) ∶= {
0 if 𝛼 is decorated plainly at 𝑣,
1 if 𝛼 is decorated notched at 𝑣.

Then Definition 4.1 becomes

𝜌(𝛼) ∶= 𝑣𝑡𝑣(𝛼)𝑤𝑡𝑤(𝛼)𝛼.

for an edge 𝛼 whose endpoints are 𝑣 and 𝑤.

Proposition 4.3. There is a well-defined algebra homomorphism 𝜌 ∶ 𝒜(Σ𝑔,𝑛) →

𝒞(Σ𝑔,𝑛) that extends Definition 4.1.

Proof. Recall that 𝒜(Σ𝑔,𝑛) is generated by the edges of all tagged triangula-
tions of Σ𝑔,𝑛, subject to the exchange relations determined by the mutations. 𝜌
is already defined for all edges of tagged triangulations, and we can extend it
uniquely to the polynomial subalgebra ofℱ freely generated by the edges of all
tagged triangulations of Σ𝑔,𝑛. We need to show thismap preserves the exchange
relations coming from tagged flips along any edge of any tagged triangulation.
With that goal in mind, let 𝛼 be an arbitrary edge of an arbitrary tagged tri-

angulation 𝒯⋈. Let the ends of 𝛼 be 𝑣 and 𝑤 (which are possibly the same).
By Lemma 3.10, we may assume that 𝒯⋈ was constructed using tagged puzzle
pieces. Recall Definition 3.8 of a dangle. We split our proof into parts: when 𝛼
is in a dangle and when it is not.
Step 1. Assume that 𝛼 is not in a dangle. Then 𝛼 must be an edge shared by

two tagged puzzle pieces of type A, B, or C as depicted in Figure 4. There are
ten cases. In each case, we will check that the exchange relation from flipping
𝛼 holds in 𝒞(Σ𝑔,𝑛).
We will be applying the following observation repeatedly. If 𝛼 and 𝛼′ are

two compatible arcs forming a dangle with a jewel 𝑣 (as in Figure 3), then
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𝑡𝑣(𝛼) ≠ 𝑡𝑣(𝛼
′) and 𝑡𝑣(𝛼) + 𝑡𝑣(𝛼

′) = 1. But in all other cases, if 𝛼 and 𝛼′ are
two compatible arcs that have a common endpoint at 𝑣, and 𝑣 is not the jewel
of a dangle, then 𝑡𝑣(𝛼) = 𝑡𝑣(𝛼

′). In particular, a tagged triangulation deter-
mines a single tagging 𝑡𝑣 (independent from 𝛼) for the vertex 𝑣, provided 𝑣 is
not the jewel of a dangle in the triangulation.

Case 1. The arc 𝛼 is the unique common edge of two puzzle pieces of type A.
The two triangles glued along 𝛼 form a quadrilateral. Say the edges are

𝑒1, 𝑒2, 𝑒3, 𝑒4 in counterclockwise order, and 𝑒1 and 𝑒4 are adjacent to 𝑣. Figure 5
describes the configuration of the arcs, but with the tags suppressed at the four
vertices. Let 𝛼′ be the flip of 𝛼. We need to check that 𝜌 preserves the exchange
relation 𝛼𝛼′ = 𝑒1𝑒3 + 𝑒2𝑒4.

v

w

x yα

e1 e4

e3
e2

⟶

v

w

x y

e1 e4

e3
e2

α'

Figure 5. In Case 1, two type A puzzle pieces are glued along
exactly one edge 𝛼. The induced exchange relation from flip-
ping 𝛼 is 𝛼𝛼′ = 𝑒1𝑒3 + 𝑒2𝑒4

Although we have not shown the taggings, we know that on the left 𝑡𝑣 ∶=
𝑡𝑣(𝛼) = 𝑡𝑣(𝑒1) = 𝑡𝑣(𝑒4) and 𝑡𝑤 ∶= 𝑡𝑤(𝛼) = 𝑡𝑤(𝑒2) = 𝑡𝑤(𝑒3), and on the right
𝑡𝑥 ∶= 𝑡𝑥(𝛼

′) = 𝑡𝑥(𝑒1) = 𝑡𝑥(𝑒2) and 𝑡𝑦 ∶= 𝑡𝑦(𝛼
′) = 𝑡𝑦(𝑒3) = 𝑡𝑦(𝑒4) by our earlier

observation about the compatibility in the absence of dangles.
By definition of 𝜌, we have 𝜌(𝛼𝛼′) = 𝜌(𝛼)𝜌(𝛼′) = 𝑣𝑡𝑣𝑤𝑡𝑤𝑥𝑡𝑥𝑦𝑡𝑦𝛼 𝛼′. Simi-

larly, 𝜌(𝑒1𝑒3) = 𝑣𝑡𝑣𝑤𝑡𝑤𝑥𝑡𝑥𝑦𝑡𝑦𝑒1 𝑒3 and 𝜌(𝑒2𝑒4) = 𝑣𝑡𝑣𝑤𝑡𝑤𝑥𝑡𝑥𝑦𝑡𝑦𝑒2 𝑒4.
In 𝒞(Σ𝑔,𝑛), we have 𝛼 𝛼′ = 𝑒1 𝑒3 + 𝑒2 𝑒4 by the skein relation (1) in Definition

2.1. Thus
𝜌(𝛼𝛼′) = 𝑣𝑡𝑣𝑤𝑡𝑤𝑥𝑡𝑥𝑦𝑡𝑦𝛼′𝛼 = 𝑣𝑡𝑣𝑤𝑡𝑤𝑥𝑡𝑥𝑦𝑡𝑦 (𝑒1 𝑒3 + 𝑒2 𝑒4) = 𝜌(𝑒1𝑒3 + 𝑒2𝑒4).

Case 2. The arc 𝛼 is one of two common edges of two puzzle pieces of type
A.
In this case the two triangles form a one-punctured bigon, as in the left of Fig-

ure 6. Flipping 𝛼 produces the figure on the right, with the tags suppressed for
simplicity. If both 𝛼 and 𝑒2 are plain at 𝑤, then flipping 𝛼 produces 𝛼′ notched
at𝑤while 𝑒2 remains plain at𝑤, as depicted in Figure 6. But if both 𝛼 and 𝑒2 are
notched at 𝑤, then flipping 𝛼 produces 𝛼′ plain at 𝑤 while 𝑒2 remains notched
at 𝑤. The taggings at 𝑣 and 𝑥 are unchanged by the flip.
Since the tags are all the same at 𝑣, we denote the tagging of any arc ending at

𝑣 simply by 𝑡𝑣, and similarly we use 𝑡𝑥 for 𝑥. At 𝑤, we have 𝑡𝑤(𝛼) = 𝑡𝑤(𝑒2), but
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Figure 6. In Case 2, two type A puzzle pieces are glued along
two edges, and the one labeled 𝛼 is flipped. The cluster muta-
tion is 𝛼𝛼′ = 𝑒1 + 𝑒3.

𝑡𝑤(𝑒2) ≠ 𝑡𝑤(𝛼
′) and 𝑡𝑣(𝛼) + 𝑡𝑣(𝛼

′) = 1. So 𝜌(𝛼𝛼′) = 𝑤𝑣𝑡𝑣𝑥𝑡𝑥𝛼𝛼′. Furthermore,
note that 𝛼′ = 𝑒2, and by the puncture-skein relation in Definition 2.1, we have
𝑤𝛼𝑒2 = 𝑒1 + 𝑒3. Thus,

𝜌(𝛼𝛼′) = 𝑤𝑣𝑡𝑣𝑥𝑡𝑥𝛼𝑒2 = 𝑣𝑡𝑣𝑥𝑡𝑥 (𝑒1 + 𝑒3) = 𝑣𝑡𝑣𝑥𝑡𝑥𝑒1 + 𝑣𝑡𝑣𝑥𝑡𝑥𝑒3 = 𝜌(𝑒1 + 𝑒3).

Case 3. The arc 𝛼 is one of three common edges of two puzzle pieces of type
A.
In this case, Σ𝑔,𝑛 = Σ0,3, which is excluded by assumption.
Case 4. The arc 𝛼 is the unique common edge of two puzzle pieces of type A

and B.
The result of gluing the two puzzle pieces is shown in Figure 7.
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Figure 7. In Case 4, a type A puzzle piece is glued to a type B
puzzle piece along exactly one edge, 𝛼. The exchange relation
from flipping 𝛼 is 𝛼𝛼′ = 𝑒1𝑒4𝑒5 + 𝑒2𝑒3.

Again by compatibility, we denote the tagging of any arc ending at 𝑣, 𝑤, and
𝑥 by 𝑡𝑣, 𝑡𝑤, and 𝑡𝑥, respectively. Also, exactly one of 𝑒4 and 𝑒5 is notched at 𝑦.
Thus 𝜌(𝛼𝛼′) = 𝑣𝑡𝑣𝑤2𝑡𝑤𝑥𝑡𝑥𝛼𝛼′, 𝜌(𝑒1𝑒4𝑒5) = 𝑣𝑡𝑣𝑥𝑡𝑥𝑤2𝑡𝑤𝑦𝑒1𝑒4𝑒5, and 𝜌(𝑒2𝑒3) =
𝑣𝑡𝑣𝑤2𝑡𝑤𝑥𝑡𝑥𝑒2𝑒3.
In 𝒞(Σ𝑔,𝑛), application of a skein relation implies 𝛼𝛼′ = 𝑒1𝛾

𝑤
𝑦 + 𝑒2𝑒3, where

𝛾𝑤𝑦 is the envelope of the dangle 𝑑𝑤𝑦 (Definition 3.8). Lemma 2.5 further shows
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𝛾𝑤𝑦 = 𝑦𝑒4
2, and since the underlying curves of 𝑒4 and 𝑒5 are the same, in fact

𝛾𝑤𝑦 = 𝑦𝑒4 𝑒5. It follows that

𝜌(𝛼𝛼′) = 𝑣𝑡𝑣𝑤2𝑡𝑤𝑥𝑡𝑥𝛼𝛼′ = 𝑣𝑡𝑣𝑤2𝑡𝑤𝑥𝑡𝑥 (𝑒1 𝑦𝑒4𝑒5 + 𝑒2𝑒3) = 𝜌(𝑒1𝑒4𝑒5 + 𝑒2𝑒3).

Case 5. The arc 𝛼 is one of two common edges of two puzzle pieces of type
A and B.
Figure 8 shows the two puzzle pieces glued along 𝛼.
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Figure 8. In Case 5, a type A puzzle is glued to a type B puzzle
along two edges, and we flip the one labeled 𝛼. The exchange
relation is 𝛼𝛼′ = 𝑒1 + 𝑒3𝑒4.

Note that 𝛼 and 𝛼′ have different tags at 𝑣, and 𝑒3 and 𝑒4 have different tags
at 𝑥. The puncture-skein relation and Lemma 2.5 imply that 𝑣𝛼𝛼′ = 𝑒1 + 𝑥𝑒3

2.
Since 𝑒3 = 𝑒4, it follows that

𝜌(𝛼𝛼′) = 𝑣𝑤2𝑡𝑤𝛼𝛼′ = 𝑤2𝑡𝑤𝑒1 + 𝑥𝑤2𝑡𝑤𝑒3𝑒4 = 𝜌(𝑒1 + 𝑒3𝑒4).

Case 6. The arc 𝛼 is the common edge of two puzzle pieces of type A and C.
Figure 9 shows the two puzzle pieces. Similarly to the previous cases,
𝜌(𝛼𝛼′) = 𝑤3𝑡𝑤𝑧𝑡𝑧𝛼𝛼′ = 𝑤3𝑡𝑤𝑧𝑡𝑧(𝑒1𝛾

𝑤
𝑥 + 𝑒2𝛾

𝑤
𝑦 ) = 𝑤3𝑡𝑤𝑧𝑡𝑧(𝑒1𝑥𝑒3

2 + 𝑒2𝑦𝑒5
2)

= 𝑤3𝑡𝑤𝑧𝑡𝑧(𝑒1𝑥𝑒3𝑒4 + 𝑒2𝑦𝑒5𝑒6) = 𝜌(𝑒1𝑒3𝑒4 + 𝑒2𝑒5𝑒6).
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Figure 9. In Case 6, a type A puzzle piece is glued to a type C
puzzle piece along exactly one arc 𝛼. The exchange relation is
𝛼𝛼′ = 𝑒1𝑒3𝑒4 + 𝑒2𝑒5𝑒6.
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Case 7. The arc 𝛼 is the common edge of two puzzle pieces of type B.
There are two possibilities. The first one is identical to the right figure in

Figure 9, but where 𝛼′ plays the role of 𝛼. The exchange relation is the same
as in Case 6, since the cluster mutation is involutive. Thus the argument from
Case 6 applies in this case.
The second possibility is the one shown in Figure 10. Then

𝜌(𝛼𝛼′) = 𝑣2𝑡𝑣𝑤2𝑡𝑤𝛼𝛼′ = 𝑣2𝑡𝑣𝑤2𝑡𝑤 (𝑒1𝑒2 + 𝛾𝑣𝑥𝛾
𝑤
𝑦 ) = 𝑣2𝑡𝑣𝑤2𝑡𝑤 (𝑒1𝑒2 + (𝑥𝑒3

2)(𝑦𝑒6
2))

= 𝑣2𝑡𝑣𝑤2𝑡𝑤 (𝑒1𝑒2 + 𝑥𝑦𝑒3𝑒4𝑒5𝑒6) = 𝜌(𝑒1𝑒2 + 𝑒3𝑒4𝑒5𝑒6).
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Figure 10. In Case 7, two puzzle pieces of type B are glued
along 𝛼. In one xe depicted here, the exchange relation is 𝛼𝛼′ =
𝑒1𝑒2 + 𝑒3𝑒4𝑒5𝑒6.

Case 8. The arc 𝛼 is one of two common edges of two puzzle pieces of type
B.
Two puzzle pieces glue together to produce a triangulation for Σ0,4. We dis-

tinguish between two subcases, as depicted in Figures 11 and 12.
In subcase I shown in Figure 11, we have

𝜌(𝛼𝛼′) = 𝑣𝑤2𝑡𝑤𝛼𝛼′ = 𝑤2𝑡𝑤 (𝛾𝑤𝑥 + 𝛾𝑤𝑦 ) = 𝑤2𝑡𝑤 (𝑥𝑒1𝑒2 + 𝑦𝑒3𝑒4) = 𝜌(𝑒1𝑒2 + 𝑒3𝑒4).

Note that 𝛼𝛼′ = 𝛾𝑤𝑥 +𝛾
𝑤
𝑦 because it is on Σ0,4. In subcase II shown in Figure 12,

we have
𝜌(𝛼𝛼′) = 𝑣2𝑡𝑣𝑤2𝑡𝑤𝛼𝛼′ = 𝑣2𝑡𝑣𝑤2𝑡𝑤 (𝛾𝑣𝑥𝛾

𝑤
𝑦 + 𝑒1

2)

= 𝑣2𝑡𝑣𝑤2𝑡𝑤 (𝑥𝑒2𝑒3𝑦𝑒4𝑒5 + 𝑒1
2) = 𝜌(𝑒2𝑒3𝑒4𝑒5 + 𝑒2

1
).

w e5

e1

e4
x

e2

e3y v
α

⟶ w e5

e1

e4
x

e2

e3y v
α'

Figure 11. In subcase I of Case 8, two puzzle pieces are glued
to produce a triangulation for Σ0,4, and the exchange relation
from flipping 𝛼 is 𝛼𝛼′ = 𝑒1𝑒2 + 𝑒3𝑒4.
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w

e1

e3

e4
x

e2
e5

y
α

v ⟶ w

e1

e3

e4
xe2e5

y v
α'

Figure 12. In subcase II of Case 8, again a triangulation for
Σ0,4 is obtained, and the exchange relation is𝛼𝛼′ = 𝑒2

1
+𝑒2𝑒3𝑒4𝑒5.

The result of the flip is again a union of two puzzle pieces of
type B.

Case 9. The arc 𝛼 is the common edge of two puzzle pieces of type B and C.
See Figure 13. We have

𝜌(𝛼𝛼′) = 𝑤4𝑡𝑤𝛼𝛼′ = 𝑤4𝑡𝑤 (𝛾𝑤𝑥 𝛾
𝑤
𝑧 + 𝑒1𝛾

𝑤
𝑦 )

= 𝑤4𝑡𝑤 (𝑥𝑒2𝑒3𝑧𝑒6𝑒7 + 𝑒1𝑦𝑒4𝑒5) = 𝜌(𝑒2𝑒3𝑒6𝑒7 + 𝑒1𝑒4𝑒5).

w

e1

e3

e4

x

e2

α

e5

e7

y

e6
z

⟶

w

e1

e3

e4

x

e2

e5

e7

y

e6
z

α'

Figure 13. In Case 9, two puzzle pieces of type B and C are
glued along only one edge 𝛼. The exchange relation is 𝛼𝛼′ =
𝑒1𝑒4𝑒5 + 𝑒2𝑒3𝑒6𝑒7.

Case 10. The arc 𝛼 is the common edge of two puzzle pieces of type C.
In this situation, the surface must be Σ0,5. See Figure 14. Then

𝜌(𝛼𝛼′) = 𝑣4𝑡𝑣𝛼𝛼′ = 𝑣4𝑡𝑣 (𝛾𝑣𝑥𝛾
𝑣
𝑧 + 𝛾𝑣𝑦𝛾

𝑣
𝑤)

= 𝑣4𝑡𝑣 (𝑥𝑒1𝑒2𝑧𝑒5𝑒6 + 𝑦𝑒3𝑒4𝑤𝑒7𝑒8) = 𝜌(𝑒1𝑒2𝑒5𝑒6 + 𝑒3𝑒4𝑒7𝑒8).

Step 2. Suppose that 𝛼 is on a dangle.
Any dangle must be contained inside one of the tagged puzzle pieces in Fig-

ure 4. Suppose first that 𝛼 is notched at the jewel. Themutation of 𝛼 in a puzzle
of type B is the inverse of the flip described in Case 2 and Figure 6 (and 𝛼′ in
Figure 6 plays the role of 𝛼). Since the mutation is an involution, the compat-
ibility follows from Case 2. In the case of a puzzle of type C, the mutation is
the inverse of the flip in Case 5 and Figure 8. In the case of type D, it is the
inverse of the flip in subcase I of Case 8 and Figure 11. This takes care of all
situations where 𝛼 is on a dangle. If 𝛼 is tagged plainly at the jewel, then the
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e3
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e6 z
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v
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Figure 14. In Case 10, two puzzle pieces of type C are glued
along two edges, and the one labeled 𝛼 is flipped. The exchange
relation is 𝛼𝛼′ = 𝑒1𝑒2𝑒5𝑒6 + 𝑒3𝑒4𝑒7𝑒8.

only difference is that, in the flipped diagram, one needs to change the tagging
at the vertex which was the jewel. The rest of the computation is identical. □

Remark 4.4. By tensoring a commutative ring 𝑅, we obtain

𝜌𝑅 ∶ 𝒜(Σ𝑔,𝑛)𝑅 → 𝒞(Σ𝑔,𝑛)𝑅.

We complete the proof of Compatibility Lemma by showing that 𝜌 is injec-
tive. Indeed, we will show that for any integral domain 𝑅, 𝜌𝑅 in Remark 4.4 is
injective.
Roger-Yang’s homomorphism Φ ∶ 𝒞(Σ𝑔,𝑛) → 𝐶∞(𝒯𝑑(Σ𝑔,𝑛)) will factor in

our proofs coming up. We here present a slightly different version that we find
easier to apply. See [28, Section 3] for details.

Lemma 4.5. Let 𝑅 be an integral domain. Suppose 𝒯 is an ideal triangulation
of Σ𝑔,𝑛, and let 𝐸 = {𝑒𝑖}

𝑚
𝑖=1

denote its set of edges. Then there is a well-defined
homomorphism Φ̂𝑅 ∶ 𝒞(Σ𝑔,𝑛)𝑅 → 𝑄(𝑅)(𝑒𝑖), where 𝑄(𝑅) is the field of fractions of
𝑅.

Proof. We first consider 𝑅 = ℤ case. The map Φ sends each arc 𝑒𝑖 in 𝒯 to the
function 𝜆𝑖 on the decorated Teichmüller space𝒯𝑑(Σ𝑔,𝑛) that gives the lambda-
length of 𝑒𝑖. It follows by [28, Lemma 3.3] thatΦ factors throughΦ ∶ 𝒞(Σ𝑔,𝑛) →

ℤ[𝜆
±1

𝑖
]. By tensoring a general integral domain 𝑅, we obtain a similar map

Φ𝑅 ∶ 𝒞(Σ𝑔,𝑛)𝑅 → 𝑅[𝜆
±1

𝑖
].

The decorated Teichmüller space 𝒯𝑑(Σ𝑔,𝑛) is homeomorphic toℝ𝑚
>0
and the

homeomorphismmaps each decorated hyperbolic metric (𝑚, 𝑟) to the lambda-
lengths {𝜆𝑖} of {𝑒𝑖} [34, Theorem 3.1]. Thus, 𝒯𝑑(Σ𝑔,𝑛) is a Zariski-dense semi-
algebraic set in an 𝑛-dimensional complex torus Specℂ[𝜆±

𝑖
] ≅ (ℂ∗)𝑚. There-

fore, {𝜆𝑖} is a set of algebraically independent elements. Hence there is a well-
defined, canonical isomorphism 𝜏 ∶ ℤ[𝜆

±

𝑖
] ≅ ℤ[𝑒

±

𝑖
] that maps 𝜆𝑖 to 𝑒𝑖. By

tensoring 𝑅, we obtain 𝜏𝑅 ∶ 𝑅[𝜆
±

𝑖
] ≅ 𝑅[𝑒

±

𝑖
]. Then composition of 𝜏𝑅 and Φ𝑅

followed by the canonical inclusion 𝑅[𝑒±
𝑖
] ⊂ 𝑄(𝑅)(𝑒𝑖) yields Φ̂𝑅. □



1672 HAN-BOMMOON AND HELENWONG

Proposition 4.6. Let𝑅 be an integral domain. The algebra homomorphism 𝜌𝑅 ∶

𝒜(Σ𝑔,𝑛)𝑅 → 𝒞(Σ𝑔,𝑛)𝑅 is injective.

Proof. We fix an ordinary triangulation 𝒯 on Σ𝑔,𝑛. Let 𝐸 = {𝑒𝑖} be the set of
edges in 𝒯. There is a commutative diagram

𝒜(Σ𝑔,𝑛)𝑅
𝜌𝑅 //

𝜄
&&

𝒞(Σ𝑔,𝑛)𝑅

Φ̂𝑅yy

𝑄(𝑅)(𝑒𝑖).

Here 𝜄 is the natural inclusion of the cluster algebra𝒜(Σ𝑔,𝑛)𝑅 into its field of frac-
tions, and 𝜌𝑅 is the homomorphism in Remark 4.4. The map Φ̂𝑅 is the Roger-
Yang homomorphism from Lemma 4.5. For each 𝑒𝑖, we have 𝜄(𝑒𝑖) = Φ̂𝑅◦𝜌(𝑒𝑖).
It follows that 𝜄 = Φ̂𝑅◦𝜌𝑅, since all of the elements of𝒜(Σ𝑔,𝑛)𝑅 can be written as
a Laurent polynomial with respect to the cluster variables 𝑒𝑖 in a fixed cluster.
Since 𝜄 is injective, 𝜌𝑅 must also be injective. □

5. Integrality of 𝒞(𝚺𝒈,𝒏) and its implications

This section is mainly devoted to a proof of integrality of 𝒞(Σ𝑔,𝑛) using the
injective homomorphism 𝜌 ∶ 𝒜(Σ𝑔,𝑛) → 𝒞(Σ𝑔,𝑛) and techniques from algebraic
geometry, in particular dimension theory. For the definition and basic proper-
ties of the dimension of algebraic varieties, see [14, Section 8]. We will need the
following lemma from commutative algebra.
Let 𝑘 be a field and let 𝑅 be a 𝑘-algebra, which is an integral domain. The

(Krull) dimension of 𝑅, denoted by dim𝑅, is the maximal length 𝓁 of the strictly
increasing chain of prime ideals 0 = 𝑃0 ⊊ 𝑃1 ⊊ 𝑃2 ⊊ ⋯ ⊊ 𝑃𝓁 of 𝑅. For
the associated affine scheme Spec 𝑅, its dimension is defined as dimSpec 𝑅 =

dim𝑅.

Lemma 5.1. Let 𝑘 be a field and let 𝑅 be a 𝑘-algebra, which is an integral do-
main. Let 𝑄(𝑅) be its field of fractions. Suppose that the transcendental degree
trdeg

𝑘
𝑄(𝑅) of 𝑄(𝑅) is𝑚. Then dim𝑅 ≤ 𝑚.

Proof. When 𝑅 is a finitely generated algebra, the statement is well known [14,
Theorem A, p.221]. We assume that 𝑅 is not finitely generated.
Take a chain of prime ideals 0 = 𝑃0 ⊊ 𝑃1 ⊊ 𝑃2 ⊊ ⋯ ⊊ 𝑃𝓁 of 𝑅. For each

1 ≤ 𝑖 ≤ 𝓁, pick 𝑥𝑖 ∈ 𝑃𝑖 ⧵ 𝑃𝑖−1. Let 𝑅′ be the subalgebra of 𝑅 generated by
{𝑥𝑖}, and 𝑄(𝑅′) ⊂ 𝑄(𝑅) be its field of fractions. Since 𝑅′ is a finitely generated
algebra, dim𝑅′ ≤ trdeg

𝑘
𝑄(𝑅′) ≤ trdeg

𝑘
𝑄(𝑅) = 𝑚.

On the other hand, if we set 𝑃′
𝑖
= 𝑃𝑖 ∩ 𝑅

′, the sequence 𝑃′
0
⊂ 𝑃′

1
⊂ 𝑃′

2
⊂

⋯ ⊂ 𝑃′
𝑘
is an increasing sequence of prime ideals, and it is strictly increasing

as 𝑥𝑖 ∈ 𝑃′
𝑖
⧵ 𝑃′

𝑖−1
. Therefore, dim𝑅′ ≥ 𝓁, so we have 𝓁 ≤ 𝑚. This is valid for

arbitrary increasing chains of prime ideals, we obtain the desired result. □

We are now ready for the proof of integrality.
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Theorem 5.2. Suppose that 𝜒(Σ𝑔,𝑛) = 2 − 2𝑔 − 𝑛 < 0 and 𝑛 > 0. Then 𝒞(Σ𝑔,𝑛)
is an integral domain.

Proof. To start, assume that Σ𝑔,𝑛 is not a 3-puncture sphere, so that 𝒜(Σ𝑔,𝑛) is
defined. As before, we fix an ordinary ideal triangulation 𝒯 on Σ𝑔,𝑛, and let
𝐸 = {𝑒𝑖} denote the edges of the triangulation.
By [28, Lemma 3.2], every element in 𝒞(Σ𝑔,𝑛) can be written as a rational

function (indeed a Laurent polynomial) with respect to the edge classes {𝑒𝑖} in
𝒯. In particular, for any 𝑥 ∈ 𝒞(Σ𝑔,𝑛) ⧵ 𝜌(𝒜(Σ𝑔,𝑛)), there is a rational function
𝑓(𝑒𝑖)∕𝑔(𝑒𝑖) with respect to {𝑒𝑖}, such that 𝑥 = 𝑓(𝑒𝑖)∕𝑔(𝑒𝑖). Indeed, the numera-
tor 𝑓 is not a zero polynomial, because it is given by the trace of a product ofma-
trices whose coefficients are edge classes [39, Theorem 3.22]. Then we can con-
struct a ring extension𝒜(Σ𝑔,𝑛)′ ∶= 𝒜(Σ𝑔,𝑛)[𝑡]∕(𝑡−𝑓∕𝑔) and an extended homo-
morphism 𝜌′ ∶ 𝒜(Σ𝑔,𝑛)

′ → 𝒞(Σ𝑔,𝑛), which maps 𝑡 ↦ 𝑥. Since 𝑡 = 𝑓∕𝑔 ∈ ℚ(𝑒𝑖),
𝒜(Σ𝑔,𝑛)

′ is also a subring of ℚ(𝑒𝑖). We may repeat this procedure and extend
the algebra𝒜(Σ𝑔,𝑛)′ further, until the extended map is surjective. Since 𝒞(Σ𝑔,𝑛)
is a finitely generated algebra (Theorem 2.8), this procedure is terminated in
finitely many steps. Therefore, we obtain a ring extension𝒜(Σ𝑔,𝑛) of𝒜(Σ𝑔,𝑛) in
ℚ(𝑒𝑖) and a surjective homomorphism 𝜌 ∶ 𝒜(Σ𝑔,𝑛) → 𝒞(Σ𝑔,𝑛).
Combined with the Roger-Yang homomorphism from Lemma 4.5 (with ℤ-

coefficient), we have the commutative diagram

𝒜(Σ𝑔,𝑛)

��

𝜌
// 𝒞(Σ𝑔,𝑛)

Φ̂

��

𝒜(Σ𝑔,𝑛)

𝜌
::

// ℚ(𝑒𝑖).

Note that 𝒜(Σ𝑔,𝑛) is an integral domain, as it is a subring of ℚ(𝑒𝑖). So is
𝒜(Σ𝑔,𝑛)ℂ ∶= 𝒜(Σ𝑔,𝑛) ⊗ℤ ℂ ⊂ ℚ(𝑒𝑖) ⊗ℤ ℂ = ℂ(𝑒𝑖). So the associated affine
scheme𝒜(Σ𝑔,𝑛)ℂ is integral (irreducible and reduced). If we denote the number
of edges in𝒯 by𝑚, then the transcendental degree is trdeg

ℂ
(ℂ(𝑒𝑖)) = 𝑚. Since

thefield of fractions of𝒜(Σ𝑔,𝑛)ℂ is alsoℂ(𝑒𝑖), by Lemma5.1, dimSpec𝒜(Σ𝑔,𝑛)ℂ ≤

𝑚.
Since 𝜌 ∶ 𝒜(Σ𝑔,𝑛) → 𝒞(Σ𝑔,𝑛) is a surjective homomorphism, so is 𝜌ℂ ∶

𝒜(Σ𝑔,𝑛)ℂ ∶= 𝒜(Σ𝑔,𝑛)⊗ℤℂ → 𝒞(Σ𝑔,𝑛)ℂ. Ifwe denoteker 𝜌ℂ = 𝐼, then𝒜(Σ𝑔,𝑛)ℂ∕𝐼
≅ 𝒞(Σ𝑔,𝑛)ℂ. Then Spec 𝒞(Σ𝑔,𝑛)ℂ is a closed subscheme of Spec𝒜(Σ𝑔,𝑛)ℂ, defined
by the ideal 𝐼. Thus

dimSpec𝒞(Σ𝑔,𝑛)ℂ ≤ dimSpec𝒜(Σ𝑔,𝑛)ℂ ≤ 𝑚

and if 𝐼 is nontrivial, then dimSpec𝒞(Σ𝑔,𝑛)ℂ < dimSpec𝒜(Σ𝑔,𝑛)ℂ.
Recall from the proof of Lemma 4.5 that Φ̂ℂ ∶ 𝒞(Σ𝑔,𝑛)ℂ → ℂ(𝑒𝑖) is a composi-

tion of the map 𝒞(Σ𝑔,𝑛)ℂ → ℂ[𝜆
±

𝑖
] → ℂ[𝑒

±

𝑖
] ⊂ ℂ(𝑒𝑖). Every element in 𝒞(Σ𝑔,𝑛)ℂ

can be written as a Laurent polynomial with respect to {𝑒𝑖} [28, Lemma 3.2],
so if we denote 𝑆 by the multiplicative set of monomials with respect to {𝑒𝑖},
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then there is a localized morphism 𝑆−1𝒞(Σ𝑔,𝑛)ℂ → ℂ[𝜆
±

𝑖
], which turns out to

be an isomorphism [28, Lemma 3.4]. The localization of a ring corresponds
to taking an open subset of the associated scheme. Thus Spec 𝒞(Σ𝑔,𝑛)ℂ has a
(Zariski) open subset Spec 𝑆−1𝒞(Σ𝑔,𝑛)ℂ ≅ Specℂ[𝜆

±1

𝑖
] ≅ Specℂ[𝑒

±

𝑖
] ≅ (ℂ∗)𝑚.

In particular, Spec 𝒞(Σ𝑔,𝑛)ℂ has an irreducible component, which has an open
dense subset isomorphic to the algebraic torus of dimension 𝑚. Therefore,
dimSpec𝒞(Σ𝑔,𝑛)ℂ ≥ 𝑚.
The only possibility is dimSpec𝒞(Σ𝑔,𝑛)ℂ = 𝑚 and ker 𝜌 = 𝐼 is the trivial

ideal. Therefore 𝒞(Σ𝑔,𝑛)ℂ ≅ 𝒜(Σ𝑔,𝑛)ℂ and hence is an integral domain. Since
𝒞(Σ𝑔,𝑛) has no torsion (Remark 2.3), 𝒞(Σ𝑔,𝑛) ⊂ 𝒞(Σ𝑔,𝑛)ℂ and it is also an integral
domain.
Now the only remaining case is Σ0,3 where𝒜(Σ0,3) is undefined. But wemay

formally set 𝒜(Σ0,3) = ℤ[𝑒𝑖]1≤𝑖≤3 and define 𝜌 ∶ 𝒜(Σ0,3) → 𝒞(Σ0,3) as 𝜌(𝑒𝑖) =
𝛽𝑖𝑖+1 (see Theorem 2.9 for the notation). Then we can follow the same line of
proof. □

Remark 5.3. If 𝜒(Σ𝑔,𝑛) ≥ 0 (so 𝑔 = 0 and 𝑛 = 1, 2), 𝒞(Σ𝑔,𝑛) is no longer an
integral domain [2, Remark 6.3].

The following statement immediately follows from Theorem 5.2 and [28,
Theorem C].

Theorem 5.4. Suppose that 𝜒(Σ𝑔,𝑛) < 0 and 𝑛 > 0. Then 𝒮𝑞(Σ𝑔,𝑛) is a non-
commutative domain.

Remark 5.5. Thang Le kindly informed us that with his collaborators, they
also proved Theorem 5.4 with an independent method [7]. In addition, their
proof covers the case that 𝑞 is not a formal variable.

Proofs of Theorem A and Theorem B. Theorem A of [28] states that if
𝒞(Σ𝑔,𝑛) is an integral domain, Φ must be injective. Thus, we obtain Theorem
A. In the last part of the proof of 5.2, we showed that 𝒜(Σ𝑔,𝑛)ℂ ≅ 𝒞(Σ𝑔,𝑛)ℂ, so
they have the same field of fractions. Since𝒜(Σ𝑔,𝑛)ℂ is an algebraic extension of
𝒜(Σ𝑔,𝑛)ℂ in its field of fractions, they have the same field of fractions, too. Thus,
we can conclude that 𝒮𝑞(Σ𝑔,𝑛) can be understood as a deformation quantization
of 𝒜(Σ𝑔,𝑛). □

6. Implications for 𝒜(𝚺𝒈,𝒏)

The compatibility of the curve algebra 𝒞(Σ𝑔,𝑛) and cluster algebra 𝒜(Σ𝑔,𝑛)
provides us new insight to some questions on the structure of cluster algebras.
In this section, we investigate two questions regarding the finite generation of
𝒜(Σ𝑔,𝑛) (TheoremC) and the comparison of𝒜(Σ𝑔,𝑛)with𝒰(Σ𝑔,𝑛) (TheoremD).
We still assume that 𝜒(Σ𝑔,𝑛) < 0.

6.1. Non-finite generation for 𝒈 ≥ 𝟏. It was observed in [24, Proposition
1.3], following [29, Proposition 11.3], that 𝒜(Σ𝑔,1) is not finitely generated for



COMPATIBILITY OF SKEIN ALGEBRA AND CLUSTER ALGEBRA 1675

all 𝑔 ≥ 1. It is plausible to believe that𝒜(Σ𝑔,𝑛) ismore complicated than𝒜(Σ𝑔,1).
Thus one may guess that 𝒜(Σ𝑔,𝑛) is not finitely generated for all 𝑛. However,
the lack of a functorial morphism𝒜(Σ𝑔,𝑛) → 𝒜(Σ𝑔,1)makes it difficult to prove
the non-finite generation of 𝒜(Σ𝑔,𝑛) in general. We suggest a new approach to
resolve this issue, using invariant theory and ‘mod 2 reduction.’
The first key technical ingredient is Nagata’s theorem [13, Theorem 3.3] and

its extension to arbitrary base ring by Seshadri [40]. For a finitely generated
𝑘-algebra 𝐴, it is not true that its subalgebra 𝐵 ⊂ 𝐴 is finitely generated. How-
ever, if 𝐴 is equipped with a reductive group 𝐺-action, Nagata’s theorem tells
us that the invariant subalgebra 𝐴𝐺 is finitely generated. For our purpose, the
following consequence of the Seshadri-Nagata’s theorem is handy.

Lemma 6.1. Let 𝑘 be a field. Let 𝐴 be a finitely generated ℤ𝑟-graded 𝑘-algebra,
so 𝐴 ≅

⨁

𝐚∈ℤ𝑟 𝐴𝐚 such that 𝐴𝐚𝐴𝐛 ⊂ 𝐴𝐚+𝐛. Then 𝐴𝟎 is finitely generated.

Proof. Recall that an affine group scheme 𝔾𝑟
𝑚 ∶= Spec 𝑘[𝑥

±

𝑖
]1≤𝑖≤𝑟-action on

Spec𝐴 is given by a 𝑘-linear map
𝐴 → 𝐴⊗𝑘 𝑘[𝑥

±

𝑖
],

which makes 𝐴 as a comodule under the coalgebra 𝑘[𝑥±
𝑖
]. We may set

𝐴𝐚 ∶= {𝑟 ∈ 𝐴 | 𝑟 ↦ 𝑟 ⊗
∏

𝑥
𝑎𝑖
𝑖
}.

Then it is straightforward to check that the above coalgebra strucure is equiva-
lent to aℤ𝑟-grading structure on𝐴. Now𝐴𝟎 ≅ 𝐴𝔾𝑟𝑚 , which is finitely generated
by [40, Remark 4, p.242]. □

Remark 6.2. The group action in the proof of Lemma 6.1 should be understood
as an affine group scheme action, not a set-theoretic one. We will consider the
𝑘 = ℤ2 case. But then the set of ℤ2-valued points of 𝔾𝑟

𝑚 = Specℤ2[𝑥
±

𝑖
] has

only one point (1, 1,⋯ , 1). Thus, set-theoretically, it is a trivial group.

Remark 6.3. Primarily, we will use the contrapositive of Lemma 6.1. If 𝐴𝟎 is
not finitely generated, then 𝐴 is not finitely generated.

Proposition 6.4. Let𝑅 be an integral domain. Then𝒜(Σ𝑔,𝑛)𝑅 and𝒞(Σ𝑔,𝑛)𝑅 have
ℤ𝑛-graded ring structure.

Proof. Wemay impose𝒞(Σ𝑔,𝑛)𝑅 as aℤ𝑛-graded algebra structure in the follow-
ing way. Let 𝑉 = {𝑣𝑖} be the vertex set. For an arc 𝛼 connecting 𝑣𝑖 and another
vertex 𝑣𝑗 (we allow 𝑖 = 𝑗), the grade of 𝛼 is defined as 𝐞𝑖 + 𝐞𝑗, where {𝐞𝑖} is the
standard basis ofℤ𝑛. For any loop, its grade is 𝟎. Finally, the grade of the vertex
class 𝑣𝑖 is−2𝐞𝑖 (hence the grade of 𝑣−1𝑖 is 2𝐞𝑖). It is straightforward to check that
all skein relations in Definition 2.1 are homogeneous. Thus, it is well-defined.
Since𝒜(Σ𝑔,𝑛)𝑅 ⊂ 𝒞(Σ𝑔,𝑛)𝑅 is generated by homogeneous elements,𝒜(Σ𝑔,𝑛)𝑅

is also a ℤ𝑛-graded algebra. □

Remark 6.5. For each vertex 𝑣𝑖, we may impose a ℤ-graded algebra structure
on 𝒞(Σ𝑔,𝑛)𝑅 (and on 𝒜(Σ𝑔,𝑛)𝑅), by composing the grade map with the 𝑖-th pro-
jection 𝑝𝑖 ∶ ℤ𝑛 → ℤ.
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The following proposition is proved by Ladkani in [24, Proposition 1.3], over
ℤ coefficients. The same proof works for arbitrary base ring, but we provide a
sketch for the sake of completeness.

Proposition 6.6 (Ladkani). For any integral domain 𝑅 and 𝑔 ≥ 1, 𝒜(Σ𝑔,1)𝑅 is
not finitely generated.

Proof. By definition when 𝑛 = 1, 𝒜(Σ𝑔,1)𝑅 is generated by ordinary arcs only,
and all exchange relations are homogeneous of degree two with respect to the
ℤ-grading in Proposition 6.4. Therefore, a cluster variable cannot be expressed
as a polynomial with respect to the other cluster variables. On the other hand,
there are infinitely many non-isotopic arc classes on Σ𝑔,1, so there are infinitely
many cluster variables. Thus, 𝒜(Σ𝑔,1)𝑅 cannot be finitely generated. □

Overℤ2-coefficient, we may reduce the proof of the non-finite generation to
𝑛 = 2 case.

Proposition 6.7. Let𝑛 ≥ 2. If𝒜(Σ𝑔,𝑛)ℤ2
is not finitely generated, then𝒜(Σ𝑔,𝑛+1)ℤ2

is not finitely generated.

Proof. We think of𝒜(Σ𝑔,𝑛) as a subalgebra of𝒞(Σ𝑔,𝑛). Thus, instead of arcs and
tagged arcs, we will describe all elements as a combination of arcs and vertices.
We construct amorphism between curve algebras induced from 𝜄 ∶ Σ𝑔,𝑛+1 →

Σ𝑔,𝑛 which forgets a vertex 𝑣. With respect to 𝑣, note that 𝒞(Σ𝑔,𝑛+1)𝑅 and
𝒜(Σ𝑔,𝑛+1)𝑅 have a ℤ-graded structure (Remark 6.5). Let 𝒞(Σ𝑔,𝑛+1)𝑅,0 be the
grade 0 subalgebra of 𝒞(Σ𝑔,𝑛+1)𝑅.
We claim that when 𝑅 = ℤ2, there is a well-defined surjective homomor-

phism 𝜓 ∶ 𝒞(Σ𝑔,𝑛+1)ℤ2,0
→ 𝒞(Σ𝑔,𝑛)ℤ2

. Indeed, 𝒞(Σ𝑔,𝑛+1)ℤ2,0
is generated by the

following elements:
(1) vertex classes 𝑣±

1
, 𝑣

±

2
,⋯ , 𝑣

±
𝑛 (except 𝑣);

(2) loop classes;
(3) tagged arcs disjoint from 𝑣;
(4) 𝑣𝛼1𝛼2 where each 𝛼1, 𝛼2 are arcs connecting 𝑣 with other vertices;
(5) 𝑣𝛽 where 𝛽 is an arc connecting 𝑣 and itself.
For each case, by applying a puncture-skein relation, we can find a repre-

sentative which is disjoint from 𝑣. For (1), (2), and (3), this is clear. For (4),
by the puncture-skein relation, we can resolve the crossing of 𝑣𝛼1𝛼2 to get the
sum of two arcs disjoint from 𝑣, which we call 𝛾1 and 𝛾2. Now if we forget 𝑣,
then as isotopy classes on Σ𝑔,𝑛, we have 𝛾1 = 𝛾2. Thus 𝑣𝛼1𝛼2 = 𝛾1+𝛾2 = 2𝛾1 =

0 ∈ 𝒞(Σ𝑔,𝑛)ℤ2
. The case of (5) is similar. Since we only used the puncture-skein

relation, the map 𝜓 is well-defined. The surjectivity is immediate.
By composition, we obtain a map

𝒜(Σ𝑔,𝑛+1)ℤ2,0
→ 𝒞(Σ𝑔,𝑛+1)ℤ2,0

𝜓
→ 𝒞(Σ𝑔,𝑛)ℤ2

.

The cluster algebra 𝒜(Σ𝑔,𝑛+1)ℤ2,0
is generated by multiples of tagged arcs, and

the image of them by the map 𝜓 is still a multiple of tagged arcs on Σ𝑔,𝑛. The
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only exception is a multiple of 𝑣𝛽, where 𝛽 is an arc whose both ends are 𝑣.
(Note that two ends of 𝛽 ∈ 𝒜(Σ𝑔,𝑛+1), whose underlying curve is 𝛽, must be
tagged in the same way, so 𝛽 = 𝛽 or 𝛽 = 𝑣2𝛽.) In this case, after applying
the puncture-skein relation at the endpoint of 𝛽, 𝑣𝛽 becomes a multiple of the
sum of two loops 𝓁1 and 𝓁2. Once we forget the vertex, then in 𝒞(Σ𝑔,𝑛)ℤ2

we
have 𝓁1 + 𝓁2 = 2𝓁1 = 0. In summary, the image of 𝒜(Σ𝑔,𝑛+1)ℤ2,0

by 𝜓 is still
tagged arcs on Σ𝑔,𝑛. Therefore, if 𝑛 ≥ 2, the image is in 𝒜(Σ𝑔,𝑛)ℤ2

, and we have
a morphism 𝜓 ∶ 𝒜(Σ𝑔,𝑛+1)ℤ2,0

→ 𝒜(Σ𝑔,𝑛)ℤ2
.

It is straightforward to check that 𝜓 ∶ 𝒜(Σ𝑔,𝑛+1)ℤ2,0
→ 𝒜(Σ𝑔,𝑛)ℤ2

is surjec-
tive. Therefore, if 𝒜(Σ𝑔,𝑛)ℤ2

is not finitely generated, then 𝒜(Σ𝑔,𝑛+1)ℤ2,0
is not

finitely generated. By Lemma 6.1,𝒜(Σ𝑔,𝑛+1)ℤ2
is not finitely generated, too. □

Remark 6.8. On the other hand, when 𝑛 = 1, 𝒜(Σ𝑔,1)ℤ2
is generated by or-

dinary arcs only. Thus 𝜓 ∶ 𝒜(Σ𝑔,2)ℤ2,0
→ 𝒞(Σ𝑔,1)ℤ2

does not factor through
𝒜(Σ𝑔,1)ℤ2

in general.

Remark 6.9. The reductionmapΨ ∶ 𝒜(Σ𝑔,𝑛+1)𝑅,0 → 𝒜(Σ𝑔,𝑛)𝑅 does not behave
well for a general base ring 𝑅. For example, both the punctured loop 𝓁 around
𝑣 and a trivial loop 𝓁′ near 𝑣 both map to the same trivial loop under the map
that forgets 𝑣. Thus 𝓁−𝓁′ = 4 but after the forgetful mapΨ(4) = Ψ(𝓁−𝓁′) = 0.
In particular, if the base ring 𝑅 is a field of characteristic ≠ 2, Ψ is a zero map.

Proof of Theorem C for 𝑔 ≥ 1. Step 1. First of all, observe that to show the
non-finite generation of 𝒜(Σ𝑔,𝑛), it is sufficient to show that 𝒜(Σ𝑔,𝑛)ℤ2

is not
finitely generated, as there is a surjective morphism 𝒜(Σ𝑔,𝑛) → 𝒜(Σ𝑔,𝑛)ℤ2

.
Step 2. Let 𝒞(Σ𝑔,𝑛)+ ⊂ 𝒞(Σ𝑔,𝑛) be a subalgebra generated by arcs, loops, and

vertices, but not the inverses of vertices. By Definition 4.1, we know that the
homomorphism 𝜌 ∶ 𝒜(Σ𝑔,𝑛) → 𝒞(Σ𝑔,𝑛) indeed factors through 𝒞(Σ𝑔,𝑛)+. By
taking the tensor product with ℤ2, we obtain a homomorphism

𝜌 ∶ 𝒜(Σ𝑔,𝑛)ℤ2
→ 𝒞(Σ𝑔,𝑛)

+

ℤ2
.

We have a similar variant for the map 𝜓 ∶ 𝒞(Σ𝑔,𝑛+1)
+

ℤ2
→ 𝒞(Σ𝑔,𝑛)

+

ℤ2
.

Step 3. We specialize to (𝑔, 𝑛) = (1, 1). For the vertex 𝑣 that is forgotten
by 𝜄 ∶ Σ1,2 → Σ1,1, we impose the associated ℤ-grading structure on 𝒞(Σ1,2)ℤ2

,
𝒞(Σ1,2)

+

ℤ2
, and on 𝒜(Σ1,2)ℤ2

(Remark 6.5). Consider the composition

𝒜(Σ1,2)ℤ2,𝟎
→ 𝒞(Σ1,2)

+

ℤ2,𝟎
→ 𝒞(Σ1,1)

+

ℤ2

and denote it by 𝜓.
We claim that the image of 𝜓 ∶ 𝒜(Σ1,2)ℤ2

→ 𝒞(Σ1,1)
+

ℤ2
is 𝒜(Σ1,1)ℤ2

. Indeed,
if we denote the unique vertex by 𝑤, then the image of 𝜓 is generated by 𝛽
and 𝑤2𝛽 for an ordinary arc 𝛽. Applying the puncture-skein relation, we have
𝑤𝛽 = 𝛾1 + 𝛾2 for two loops. But any loop in Σ1,1 is a (𝑝, 𝑞)-torus knot for two
relatively prime integers 𝑝 and 𝑞, and 𝛾1 = 𝛾2 because they are realized by
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the same (𝑝, 𝑞). Thus, 𝑤𝛽 = 2𝛾1 = 0 ∈ 𝒞(Σ1,1)
+

ℤ2
and so is 𝑤2𝛽. Therefore,

the image of 𝜓 is generated by ordinary arcs only, so im 𝜓 = 𝒜(Σ1,1)ℤ2
is not

finitely generated by Proposition 6.6. Therefore, 𝒜(Σ1,2)ℤ2,𝟎
and 𝒜(Σ1,2)ℤ2

are
not finitely generated by Lemma 6.1. By Proposition 6.7, 𝒜(Σ1,𝑛) for all 𝑛 ≥ 1

are not finitely generated.
Step 4. Now we consider 𝑔 ≥ 2. Recall that there is a 𝑔-to-1 branched cov-

ering 𝜏 ∶ Σ𝑔 → Σ1, branched at two points. This induces a covering map 𝜏 ∶
Σ𝑔,2 → Σ1,2 that sends two punctures to the corresponding two punctures. By
taking the image of every curve class, we obtain amap 𝜏∗ ∶ 𝒞(Σ𝑔,2)𝑅 → 𝒞(Σ1,2)𝑅,
which is clearly surjective. This map induces a surjective map 𝜏∗ ∶ 𝒜(Σ𝑔,2)𝑅 →
𝒜(Σ1,2)𝑅. Since𝒜(Σ1,2)ℤ2

is not finitely generated and 𝜏∗ is surjective,𝒜(Σ𝑔,2)ℤ2

is also not finitely generated. Applying Proposition 6.7, we get the desired re-
sult. □

Remark 6.10. Another way to think about the special property of Σ1,1 is the
following. For a fixed triangulation 𝒯, one may write the vertex class 𝑤 as a
Laurent polynomial with respect to the edges in 𝒯. An explicit formula can
be found, for example, in [31, Definition 5.2]. Σ1,1 is the only case that 𝑣 is a
multiple of two.

6.2. Finite generation for 𝒈 = 𝟎. The situation is entirely different when
𝑔 = 0. The finite generation of𝒜(Σ0,𝑛) follows from the presentation of 𝒞(Σ0,𝑛)
in Theorem 2.9.

Proof of Theorem C for 𝑔 = 0. The proof is essentially identical to that of [2,
Prop 3.2], but for the reader’s convenience, we sketch the proof here.
Recall that, without loss of generality, we assume that the 𝑛 punctures lie on

a small circle 𝐶 ⊂ 𝑆2, and 𝛽𝑖,𝑗 is the simple arc connecting 𝑣𝑖 and 𝑣𝑗 in the disk
bounded by 𝐶.
Let 𝛼 ∈ 𝒜(Σ0,𝑛) be a tagged arc. So 𝛼 connects two (not necessarily different)

punctures. If 𝛼 is inside of 𝐶, then 𝛼 is isotopic to one of 𝛽𝑖𝑗 (if 𝛼 connects two
distinct vertices) or 0 (if two ends of 𝛼 are the same). So 𝛼 is either zero or one
of 𝛽𝑖𝑗, 𝑣𝑖𝛽𝑖𝑗, 𝑣𝑗𝛽𝑖𝑗, or 𝑣𝑖𝑣𝑗𝛽𝑖𝑗, depending on the tagging.
If 𝛼 is outside of𝐶, thenwe can ‘drag into’ 𝛼 and use the puncture-skein rela-

tion to break the curve at the vertices. Thenwe can describe 𝛼 as a combination
of tagged arcs which meet the outside a smaller number of times. Now wemay
apply induction and get the desired result. □

We believe that by the virtue of Theorem 2.9, the following is an interesting
and approachable problem.

Question 6.11. Find a presentation of 𝒜(Σ0,𝑛).

6.3. Comparisonwith theupper cluster algebra. Wefinish this paperwith
some remarks on the upper cluster algebra 𝒰(Σ𝑔,𝑛). Recall that 𝒞(Σ𝑔,𝑛)′ is the
subalgebra of 𝒞(Σ𝑔,𝑛) generated by isotopy classes of loops, arcs and decorated
arcs (Definition 2.10).
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Lemma 6.12. There are inclusions of algebras

𝒜(Σ𝑔,𝑛) ⊂ 𝒞(Σ𝑔,𝑛)
′ ⊂ 𝒰(Σ𝑔,𝑛).

Proof. TheCompatibility Lemmaand the fact that the image of𝜌 factor through
𝒞(Σ𝑔,𝑛)

′ imply the first inclusion. There are two extra classes of generators of
𝒞(Σ𝑔,𝑛)

′ that are not in 𝒜(Σ𝑔,𝑛): loop classes, and elements of the form 𝑣𝛽,
where 𝛽 is an arc class with two ends both at 𝑣. (Note that 𝛽 and 𝑣2𝛽 are in
𝒜(Σ𝑔,𝑛), if 𝑛 ≥ 2.) We obtain that 𝑣𝛽 is a sum of two loop classes by applying
the puncture-skein relation. For an ordinary triangulation 𝒯 with edge set 𝐸,
it has been proven several times ([15, Section 12], [32, Theorem 4.2], and [39,
Theorem 3.22]) that a loop class is a Laurent polynomial with respect to the
edges in a triangulation. The case of a tagged triangulation 𝒯⋈ is reduced to
the case of an ordinary triangulation, by [31, Proposition 3.15]. Thus, we con-
clude that any element in 𝒞(Σ𝑔,𝑛)′ can be written as a Laurent polynomial with
respect to the edges in a fixed tagged ideal triangulation.
If we show that this expression is unique, then set theoretically, 𝒞(Σ𝑔,𝑛)′ ⊂

𝒰(Σ𝑔,𝑛) and we are done. This is because the three rings in the statement share
isomorphic field of fractions. For a nonzero element 𝛼 ∈ 𝒞(Σ𝑔,𝑛)

′, if there are
two Laurent polynomial expressions 𝑓 and 𝑔 for 𝛼, then 𝑓 − 𝑔 provides an al-
gebraic relation in their field of fractions generated by edge classes in a fixed
triangulation. Since their field of fractions are purely transcendentally gener-
ated by edge classes, this is impossible. □

Proof of Theorem D. Suppose that 𝒜(Σ𝑔,𝑛) = 𝒰(Σ𝑔,𝑛). Lemma 6.12 implies
that 𝒜(Σ𝑔,𝑛) = 𝒞(Σ𝑔,𝑛)

′. By Theorem 2.11, 𝒞(Σ𝑔,𝑛)′ is finitely generated, but
𝒜(Σ𝑔,𝑛) is not finitely generated. □

Remark 6.13. When 𝑔 = 0, all loop classes are generated by tagged arc classes,
as proved in [9, Proposition 2.2] and as evidenced byTheorem2.9. Thus,𝒜(Σ0,𝑛)
= 𝒞(Σ0,𝑛)

′.

Remark 6.14. If 𝑛 ≥ 2, 𝒞(Σ𝑔,𝑛) is not a subalgebra of 𝒰(Σ𝑔,𝑛), because of the
vertex classes. For a fixed ordinary triangulation 𝒯 and its edge set 𝐸 = {𝑒𝑖},
a vertex class 𝑣 can be written as a Laurent polynomial with respect to 𝐸 (see
the proof of [28, Lemma 3.2]). However, this is no longer true for a tagged
triangulation𝒯⋈. On the other hand, when 𝑛 = 1, we do not consider a tagged
triangulation, so 𝑣 ∈ 𝒰(Σ𝑔,𝑛) and hence 𝒞(Σ𝑔,𝑛) ⊂ 𝒰(Σ𝑔,𝑛).

Remark 6.15. In a recent breakthrough in [20], for each combinatorial data
defining a cluster algebra, Gross, Hacking, Keel, and Kontsevich defined yet
another algebra motivated from mirror symmetry, the so-calledmid-cluster al-
gebra (mid(𝑉) in their terminology). For 𝒜(Σ𝑔,𝑛), the mid-algebra is indeed
equal to 𝒞(Σ𝑔,𝑛)′ and it admits a canonical basis parametrized by the tropical
points of the dual cluster variety ([26, Theorem 1.3], [15, Section 12]).

To the authors’ knowledge, it is unknownwhether𝒞(Σ𝑔,𝑛)′ = 𝒰(Σ𝑔,𝑛) or not.
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Conjecture 6.16. (1) 𝒞(Σ𝑔,1) = 𝒰(Σ𝑔,1).
(2) If 𝑛 ≥ 2, 𝒞(Σ𝑔,𝑛)′ = 𝒰(Σ𝑔,𝑛). In particular, if 𝑛 ≥ 4,𝒜(Σ0,𝑛) = 𝒰(Σ0,𝑛).
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