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First integral cohomology group of the pure
mapping class group of a non-orientable

surface of infinite type

Jesús Hernández Hernández and Cristhian E. Hidber

Abstract. In this work we compute the first integral cohomology of the
pure mapping class group of a non-orientable surface of infinite topological
type and genus at least 3. To this purpose, we also prove several other results
already known for orientable surfaces such as the existence of an Alexan-
der method, the fact that the mapping class group is isomorphic to the au-
tomorphism group of the curve graph along with the topological rigidity of
the curve graph, and the structure of the pure mapping class group as both a
Polish group and a semi-direct product.
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Introduction
Let 𝑁 be a connected surface with empty boundary and define the mapping

class group of 𝑁, denoted as Map(𝑁), as the group of isotopy classes of self-
homeomorphisms of 𝑁. If 𝑁 is orientable, this is often called the extended

Received July 28, 2023.
2020 Mathematics Subject Classification. 57K20 (primary); 20J06(secondary); 20F65

(secondary).
Key words and phrases. Non-orientable surface; big mapping class groups; first cohomology

group.
The first authorwas supported during the creation of this article by the research project grants

UNAM-PAPIIT IA104620 and UNAM-PAPIIT IN102018. The second author received support
from a CONAHCYT Posdoctoral Fellowship and from UNAM-PAPIIT-IN105318. Both authors
were supported during the creation of this article by the CONAHCYT Ciencia de Frontera 2019
research project grant CF 217392.

ISSN 1076-9803/2024

1705

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2024/Vol30.htm


1706 JESÚS HERNÁNDEZ HERNÁNDEZ AND CRISTHIAN E. HIDBER

mapping class group. The mapping class group has been studied for several
decades now, and the most-commonly used tools for its study are the curves
on the surface. This leads to the definition of the curve graph of 𝑁, denoted
as 𝒞(𝑁): The curve graph is defined as the simplicial graph whose vertices are
isotopy classes of essential simple closed curves on 𝑁. See Section 1 for more
details on these definitions. Given that Map(𝑁) naturally acts on 𝒞(𝑁), a lot
of information and properties ofMap(𝑁) have been obtained by studying this
action.
If 𝑁 is an orientable surface of finite (topological) type, i.e. 𝑁 has finitely

generated fundamental group, some of the results that have been proved are
the following:

(1) There exists a collection of finitely many curves that completely deter-
mine a homeomorphism of 𝑁 up to isotopy. See Chapter 2 of Farb and
Margalit [8].

(2) For all but finitely many surfaces, the action is rigid: every automor-
phism of 𝒞(𝑁) is induced by an element of Map(𝑁). See Ivanov [11],
Korkmaz [12], Luo [13].

(3) For all but finitelymany surfaces, the first integral homology groups are
finite groups depending on the surface. This implies that the first inte-
gral cohomology groups are trivial. See [8] and the reference therein.

If𝑁 is a non-orientable surface of finite type, the same results are valid. How-
ever, in most of these cases either slight modifications of the proofs are needed
as in (1), or whole new proofs are needed as in (2) and (3), and as such different
papers have been dedicated to these results. See Paris [14], Atalan andKorkmaz
[4], Stukow [19].
On the other hand, for infinite-type surfaces there is a lot of work left to be

done, particularly on the non-orientable case.
If 𝑁 is an orientable surface of infinite type, the same results as above have

been proved recently: In Hernández Hernández, Morales and Valdez [10], it
is proved that there exists a locally finite collection of curves on 𝑁 that deter-
mine a homeomorphism up to isotopy. In Hernández Hernández, Morales and
Valdez [9], and Bavard, Dowdall and Rafi [5] the respective authors proved in-
dependently that there is action rigidity along with topological rigidity. In Ara-
mayona, Patel and Vlamis [2], the respective authors compute the first integral
cohomology group of the pure mapping class group (the subgroup of Map(𝑁)
that acts trivially on the ends of the surface, denoted by PMap(𝑁); see Section
1 for more details) for the case that 𝑁 has genus at least two.
In this work, we prove the analogous results. As mentioned before, many

of the techniques used in this work are analogous to the orientable case. That
said, in several cases the non-orientable nature of the surface forces the proofs
to be different (particularly for the computation of the first integral cohomology
group).
As such, the main results of our work are the following.
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TheoremA (Alexandermethod). Let𝑁 be a (possibly non-orientable) connected
surface of infinite topological type. There exists a locally finite collection of es-
sential, simple, closed curves Γ = {𝛾𝑖}0≤𝑖<𝜔 that satisfies the following: If ℎ ∈

Homeo(𝑁) is such that for all 𝑖 ≥ 0, ℎ(𝛾𝑖) is isotopic to 𝛾𝑖 , then ℎ is isotopic to the
identity.

This theorem is the analogue of Theorem 1.1 in [10]. For the proof, we del-
egate the case when 𝑁 is orientable to the aforementioned theorem, and focus
only on the non-orientable case. That said, the proof in this case is analogous,
as such we only sketch the proofs of the related lemmata and theorems, while
highlighting the differences.
Also, see Shapiro [17] for amore complete approach to theAlexanderMethod

of infinite-type surfaces.

Theorem B. Let𝑁1 and𝑁2 be two connected (possibly non-orientable) surfaces
of infinite topological type, and let 𝜑 ∶ 𝒞(𝑁1) → 𝒞(𝑁2) be an isomorphism. Then
𝑁1 is homeomorphic to𝑁2, and 𝜑 is induced by a homeomorphism𝑁1 → 𝑁2.

This theorem is the analogue of Theorem 1.1 in [9] and Theorem 1.3 in [5].
The proof is analogue to the proof of Theorem 1.1 in [9], and as such we only
sketch the proofs of the related lemmata and theorems, while highlighting the
differences both in arguments and in references needed.
UsingTheoremAandTheoremB,we obtain the following classical corollary.

Corollary C. Let 𝑁 be a connected (possibly non-orientable) surface of infinite
topological type. Then the natural mapΨ ∶ Map(𝑁) → Aut(𝒞(𝑁)) is an isomor-
phism.

This corollary is the analogue of Theorem 1.2 in [9].
Now, as in the orientable case,Map(𝑁) has a natural topology which makes

it a topological group: We equip Homeo(𝑁) with the compact-open topology
and thenMap(𝑁) has the quotient of said topology.
On the other hand, Corollary C tells us that pulling the permutation topology

of Aut(𝒞(𝑁)), we can endowMap(𝑁) with a topology which makes it a Polish
(separable and completely metrizable) topological group.
Using the same arguments as in the orientable case (see Aramayona, Patel

and Vlamis [2], Aramayona and Vlamis [3]), we can see these two topologies
coincide, and as such we have the following corollary.

Corollary D. Let 𝑁 be a connected surface of infinite topological type. Arming
Map(𝑁) with the quotient of the compact-open topology, andAut(𝒞(𝑁)) with the
permutation topology, then the natural map Ψ ∶ Map(𝑁) → Aut(𝒞(𝑁)) is an
isomorphism of topological groups. In particular,Map(𝑁) is a Polish group with
the compact-open topology.

Then, to compute the first cohomology group of the pure mapping class
group of 𝑁, we follow the ideas of [2], and thus we need to understand more
the topology and the topological generators of PMap(𝑁). For this we need to
recall some definitions.



1708 JESÚS HERNÁNDEZ HERNÁNDEZ AND CRISTHIAN E. HIDBER

A handle-shift is in essence taking an infinite strip connecting two ends of
the surface with genus, and shifting said genus by one. The precise definition
is given in Subsection 4.2.
The compactly supported mapping class group, denoted by PMap

𝑐
(𝑁), is the

subgroup ofMap(𝑁) composed of themapping classes that have representatives
with compact support.

Theorem E. Let 𝑁 be a connected (possibly non-orientable) surface of infinite
topological type. If𝑁 has atmost one endaccumulated by genus, thenPMap(𝑁) =
PMap

𝑐
(𝑁). If𝑁 has at least two ends accumulated by genus, then there exist a con-

stant 1 ≤ 𝑟 ≤ 𝜔 and a collection {ℎ𝑖}0≤𝑖<𝑟 of handle-shifts, such that PMap(𝑁) =
⟨PMap

𝑐
(𝑁), {ℎ𝑖}0≤𝑖<𝑟⟩ and ⟨{ℎ𝑖}0≤𝑖<𝑟⟩ is isomorphic to ℤ𝑟 as a topological group.

The general outline of the proof of this theorem is to follow the proof of The-
orem 4 in Patel and Vlamis [15], and prove that the compactly supported map-
ping class group and the set of all handle-shifts topologically generate the pure
mapping class group. Then, we refine that result with the use of the collection
{ℎ𝑖}0≤𝑖<𝑟. This collection is obtained via a basis of 𝐻

𝑠𝑒𝑝

1
(𝑁̂; ℤ), and as such 𝑟 is

the dimension of 𝐻𝑠𝑒𝑝

1
(𝑁̂; ℤ), where 𝑁̂ is the surface obtained from 𝑁 by “for-

getting” all the planar ends of 𝑁, and 𝐻𝑠𝑒𝑝

1
( ⋅ ; ℤ) is the subgroup of 𝐻1( ⋅ ; ℤ)

generated by the homology classes that can be represented by separating sim-
ple closed curves.
One of the main difference between {ℎ𝑖}0≤𝑖<𝑟 and the similar collection ob-

tained in Theorem 3 in [2] is that if 𝑁 is non-orientable, there are bases of
𝐻
𝑠𝑒𝑝

1
(𝑁̂; ℤ) that we cannot use for our proof. For example, for some surfaces we

can produce a basis for𝐻𝑠𝑒𝑝

1
(𝑁̂; ℤ) such that it is not clear how to topologically

generate all the handle-shifts of 𝑁; see Subsection 4.5 for more details and an
example of this pheonomenon. Thus, we construct what we call a “good basis”
for𝐻𝑠𝑒𝑝

1
(𝑁̂; ℤ), which in turn produces the collection {ℎ𝑖}0≤𝑖<𝑟 that satisfies the

theorem. Also, due to the conclusion of Theorem E, we denote ⟨{ℎ𝑖}0≤𝑖<𝑟⟩ by∏

0≤𝑖<𝑟

⟨ℎ𝑖⟩ to emphasize the fact that this group is isomorphic to ℤ𝑟 as a topolog-

ical group.
A direct consequence of TheoremE and the well-known fact that closed sub-

groups of Polish groups are Polish, is the following corollary.

Corollary F. Let 𝑁 be a connected (possibly non-orientable) surface of infinite
topological type. ThenMap(𝑁), PMap(𝑁) and PMap

𝑐
(𝑁) are Polish groups with

their respective topologies.

Now, using the previous results we can define a homomorphism from
PMap(𝑁) to

∏

0≤𝑖<𝑟

⟨ℎ𝑖⟩, which we use to give a semi-direct product structure to

PMap(𝑁).
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Theorem G. Let 𝑁 be a connected (possibly non-orientable) surface of infinite
topological type with at least two ends accumulated by genus. Then, we have that:

PMap(𝑁) = PMap
𝑐
(𝑁) ⋊

∏

0≤𝑖<𝑟

⟨ℎ𝑖⟩.

Finally, using Theorems E andG, along with the results from Stukow in [19],
Dudley in [7], Specker in [18] and Blass and Göbel in [6], we obtain the follow-
ing corollary.

Corollary H. Let 𝑁 be a connected (possibly non-orientable) surface of infinite
topological type with genus at least 3. If 𝑁 has at most one end accumulated by
genus, then𝐻1(PMap(𝑁);ℤ) is trivial. If𝑁 has at least two ends accumulated by
genus, then𝐻1(PMap(𝑁);ℤ) = 𝐻1(ℤ𝑟; ℤ) =

⨁

0≤𝑖<𝑟

ℤ.

This phenomenon belongs solely to the infinite-type surfaces, since if a sur-
face𝑁 is of finite type then (except in finitely-many cases) the abelianisation of
PMap(𝑁) is either trivial or finite, which implies that𝐻1(PMap(𝑁);ℤ) is trivial.
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1. Preliminaries
A curve is a topological embedding of the unit circle into 𝑁. We often abuse

notation and call “curve” the embedding, its image on 𝑁 or its isotopy class.
The context makes clear which use we mean.
A curve is essential if it is not isotopic to a boundary curve and if it does not

bound a disk, a punctured disk or a Möbius band. Unless otherwise stated, all
curves are assumed to be essential.
The (geometric) intersection number of two isotopy classes of essential curves

𝛼 and 𝛽 is defined as:

𝑖(𝛼, 𝛽) ∶= min{|𝑎 ∩ 𝑏| ∶ 𝑎 ∈ 𝛼, 𝑏 ∈ 𝛽}.

We say two curves 𝛼 and 𝛽 are in minimal position if 𝛼 ∩ 𝛽 = 𝑖([𝛼], [𝛽]).
It is a well-known result (see [8]) that if 𝑁 is endowed with a hyperbolic

metric, then in every isotopy class of a curve, there exists a unique geodesic
representative. Also (see [8]), any two geodesic representatives are in minimal
position.
A set of curves 𝒢 is locally finite if for every compact subset 𝐾, the set {𝛼 ∈

𝒢 ∶ 𝛼 ∩ 𝐾 ≠ ∅} is finite. A set of isotopy classes of curves Γ is locally finite if
there exists a set of representatives 𝒢 that is locally finite.
A multicurve is a locally finite set of pairwise disjoint and pairwise non-

isotopic curves. We often abuse notation and call “multicurve” the set of curves,
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their images on 𝑁 or its set of isotopy classes. The context makes clear which
use we mean.
In thiswork, unless otherwise stated, by a subsurfaceΣ of𝑁wemean a closed

subsurface of𝑁 such that every connected component of 𝜕Σ is compact, and the
natural inclusion Σ ↪ 𝑁 is 𝜋1-injective.
A pair of pants is a closed subsurface whose interior is homeomorphic to a

thrice-punctured sphere. With this, a pants decomposition of 𝑁 is a maximal
multicurve 𝑃, and its name comes from the fact that 𝑁∖𝑃 is the disjoint union
of pair of pants.
A curve𝛼 is separating if𝑁⧵𝛼 is disconnected. It isnon-separating otherwise.
Now we are ready for the following definition.

Definition 1.1. An increasing sequence of subsurfaces Σ0 ⊂ Σ1 ⊂ ⋯ ⊂ 𝑁 is a
principal exhaustion if it satisfies the following:

(1) For each 𝑗 ≥ 0, Σ𝑗 is a finite-type subsurface such that each of its bound-
ary curves are essential separating curves in 𝑁 (recall that 𝜕𝑁 = ∅).

(2) For each 𝑗 ≥ 0, every connected component of𝑁⧵Σ𝑗 is an infinite type
surface.

(3) For each 𝑗 ≥ 0 and taking Σ−1 = ∅, we have that each connected com-
ponent of Σ𝑗 ⧵ Σ𝑗−1 satisfies one of the following conditions:
∙ If it is an orientable subsurface of genus 𝑔, 𝑛 punctures and 𝑏 bound-
ary components, then 3𝑔 − 3 + 𝑛 + 𝑏 ≥ 5.

∙ If it is a non-orientable subsurface of genus 𝑔, 𝑛 punctures and 𝑏
boundary components, then 𝑔 + 𝑛 + 𝑏 ≥ 8.

(4)
⋃

0≤𝑗<𝜔

Σ𝑗 = 𝑁.

(5) Finally, we define 𝐵𝑗 as the set of boundary curves of Σ𝑗 and the set
𝐵 =

⋃

0≤𝑗<𝜔
𝐵𝑗. Note that𝐵 is amulticurve of𝑁 composed of separating

curves.

1.1. The genus of a surface. For a finite-type surface 𝑁, the genus can be
defined as the number of projective planes needed for the connected sum to be
homeomorphic to𝑁 (possibly after puncturing and deleting interiors of dsijoint
discs from the connected sum). This gives a lot of freedom to how the surface
can “look”. A classic trick to change the look/model of the surface is to remem-
ber that the connected sum of three projective planes is homeomorphic to the
connected sum of a torus and one projective plane. This allows all the surfaces
in Figure 1 to be homeomorphic. That said, note that the parity of the number
of projective planes (cross-caps) does not change.
For an infinite-type surface 𝑁, the genus can be defined as the supremum

of the genus of its finite-type subsurfaces. Thus, it can be either finite or in-
finite. Moreover, if the genus is infinite, it could very well happen that there
are non-orientability of the surface is “restricted” to a finite-type subsurface. If
this happens, we say that𝑁 is finitely non-orientable, but we can further divide
this case into two subcases depending on whether this (non-unique) finite-type
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Figure 1. The three surfaces are homeomorphic and repre-
sents a non-orientable surface of genus 5. Each ⊗ represents
a cross-cap.

surface has even or odd genus. This division is well-defined since if we change
the subsurface, while the genus of this subsurfacemight be different, it will still
have the same parity. See Subsection 1.2 for more information on the possible
orientabilities of a surface.
That said, note that given any non-orientable surface𝑁, we cannot truly de-

fine the “number of cross-caps” or the “number of tori” in the surface, since
one could always “exchange” three cross-caps for one torus and a cross-cap.

1.2. Ends and orientability. In this subsection, we recall the definition of
ends and the classification of infinite type surfaces, for details we refer to [20],
[16] and [3]. First, we make a small note on the notation of the genus of a
surface. By the classification of finite type surfaces, an orientable surface 𝑆 of
genus 𝑔 is homeomorphic to the connected sum of 𝑔 tori minus 𝑛 points and 𝑏
open disks, or equivalently it is homeomorphic to a sphere with 𝑛 punctures,
𝑏 holes and 𝑔 handles. We say that each handle adds one orientable genus or
positive genus. If 𝑁 is a non-orientable surface of genus 𝑔 then it is homeo-
morphic to the connected sum of 𝑔 real projective planes minus 𝑛 points and 𝑏
open disks or equivalently homeomorphic to a sphere with 𝑔 cross-caps minus
𝑛 points and 𝑏 open disks. We say that each cross-cap adds one non-orinetable
genus or one negative genus. When we say infinite genus we think that an infi-
nite number of handles or cross-caps have been added. Below there is a precise
definition.
Let 𝑁 be an infinite type surface, an exiting sequence is a sequence {𝑈𝑖}0≤𝑖<𝜔

of connected open subsets of 𝑁 such that
∙ 𝑈𝑖 ⊂ 𝑈𝑗 whenever 𝑗 < 𝑖;
∙ 𝑈𝑖 is not relatively compact for all 0 ≤ 𝑖 < 𝜔;
∙ 𝑈𝑖 has compact boundary for all 0 ≤ 𝑖 < 𝜔;
∙ any relatively compact subset of𝑁 is disjoint from all but finitely many
𝑈𝑖’s.

See Figure 2
Let {𝑈𝑖}0≤𝑖<𝜔 be an exiting sequence. We say that an element 𝑈𝑖 is planar if

it has genus zero.
We say that two exiting sequences are equivalent if every element of the first

sequence is eventually contained in some element of the second, and vice versa.
An equivalent class of an exiting sequence is called an end. We denote the set
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Figure 2. 𝑈𝑖 is the open subsurface that contains all the curves
𝑎𝑗 with 𝑗 > 𝑖 and have 𝑎𝑖 as its boundary.

of ends by ℰ(𝑁). The space of ends ℰ(𝑁) can be equipped with a topology that
makes it a totally disconnected, separable and compact set, and is therefore
homeomorphic to a closed subset of the Cantor set 𝒞 (see Proposition 3 in [16]).
We say that

∙ An end {𝑈𝑖}0≤𝑖<𝜔 is orientable accumulated by genus (or simply orient-
able) if 𝑈𝑖 is orientable and has infinite orientable genus for all 𝑖.

∙ Anend {𝑈𝑖}0≤𝑖<𝜔 isnon-orientable accumulated by genus (or simply non-
orientable) if 𝑈𝑖 is non-orientable for all 𝑖.

∙ An end {𝑈𝑖}0≤𝑖<𝜔 is planar if 𝑈𝑖 is planar for all but finitely many 𝑖.
We denote by ℰ∞(𝑁) the subspace of orientable and non-orientable ends ac-

cumulated by genus, and by ℰ−(𝑁) the subspace of non-orientable ends. The
sets ℰ∞(𝑁) and ℰ−(𝑁) are closed subsets of ℰ(𝑁).
Recall that one can exchange three cross-caps for a cross-cap and a torus,

thus even if one exchanges infinitely many cross-caps, one cannot turn a non-
orientable end accumulated by genus into an orientable end accumulated by
genus.
Note that an infinitely non-orientable surface is also of infinite genus. It can

happen that 𝑁 is of infinite genus and non-orientable but not infinitely non-
orientable, in this case we say that 𝑁 is odd or even non-orientable according
to whether every sufficiently large compact subsurface is non-orientable of odd
or even genus, respectively (or, equivalently has an odd or an even number
of cross-caps). With these definitions, we have four orientability classes: ori-
entable, infinitely non-orientable, odd non-orientable and evennon-orientable.
Richards (see [16]) showed that the homeomorphism type of a surface is de-

terminated by its genus, number of boundaries, orientability class and the triple
of spaces

(ℰ(𝑁), ℰ∞(𝑁), ℰ−(𝑁)) .



𝐻1(PMap(𝑁);ℤ) FOR 𝑁 NON-ORIENTABLE AND INFINITE-TYPE 1713

2. The Alexander method
In this section, we will prove the analogue of Theorem 1.1 in [10] for non-

orientable surfaces. To do this, we first recall what an application of theAlexan-
der method is for finite-type surfaces (see [8]). Then we follow the general idea
of the proof for the case of orientable infinite-type surfaces, highlighting the
differences.

2.1. Finite type. A very well-known application of the Alexander method is
the following:

Theorem 2.1 (Application of the Alexander method for finite-type surfaces).
Let Σ be a finite-type surface of genus 𝑔, 𝑛 punctures and 𝑏 boundary components.
If Σ is orientable, assume that 3𝑔 − 3 + 𝑛 + 𝑏 ≥ 4. If Σ is non-orientable assume
that 𝑔 + 𝑛 + 𝑏 ≥ 5. Then there exists a finite set of curves and arcs Γ, such that if
ℎ ∈ Homeo(Σ; 𝜕Σ) fixes the isotopy class of every element in Γ, then ℎ is isotopic
to the identity.

For the sake of completeness we give a very short sketch of the proof.

Sketch of the proof. First suppose that Σ is orientable and has empty bound-
ary. Then, let Γ be the set of curves as exemplified in Figure 3 satisfy the hy-
potheses for Proposition 2.8 in [8]. Thus, if ℎ ∈ Homeo(Σ; 𝜕Σ) fixes the isotopy
classes of every element in Γ, by construction and a quick analysis, the induced
map on the graph given by the curves in Γ on Σ fixes each vertex and edge with
orientation. Thus, by (2) in Proposition 2.8 in [8], ℎ is isotopic to the identity
if it preserves orientation. Since ℎ fixes every vertex and edge with orientation
of ∪Γ, a quick analysis shows that the complements of ∪Γ cannot be permuted.
This coupled with ℎ preserving the orientation of the edges of ∪Γ, implies that
ℎ preserves orientation and thus is isotopic to the identity.
Analogously, if Σ is orientable and has non-empty boundary, and we label

the boundary components by 𝑐1, … , 𝑐𝑏, then we can obtain Γ as follows: For
each 𝑖 = 1, … , 𝑏, let 𝛼𝑖 be an essential arc that starts and finishes at 𝑐𝑖, and also
let Γ′ be the set obtained from Theorem 2.1 for int(Σ); then Γ can be taken to be
Γ′ ∪ {𝛼𝑖}

𝑏
𝑖=1
. See Figure 3.

Finally, if Σ is non-orientable, let Γ be the set of curves and arcs exemplified
in Figure 3 and let ℎ ∈ Homeo(Σ; 𝜕Σ) fix the isotopy classes of every element
in Γ. Following the same ideas as in the proof of Proposition 2.8 in [8], we can
assume that ℎ fixes ∪Γ. Then, by construction of Γ, ℎ has to fix every vertex and
edge with orientation of the induced graph given by the curves in Γ on Σ. More-
over, ℎ has to map each cross-cap to itself. Thus, after an isotopy, the support
of ℎ has to be in the complement of the cross-caps, which is an orientable sur-
face. By construction, the curves and arcs in Γ are precisely those given for the
orientable-with-boundary case above. Thus, ℎ is isotopic to the identity. □

Note that if Σ has empty boundary, then Γ does not contain arcs.
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Figure 3. Two examples of a set of curves (in green) and arcs
(in red) that determine homeomorphisms up to isotopy. On the
left, an orientable surface (genus 2, 3 boundary components
and 1 puncture), while on the right a non-orientable surface
(genus 5 and 3 boundary components).

2.2. Infinite type. To prove Theorem A the general idea is to follow these
steps:

(1) Let ℎ ∈ Homeo(𝑁) and a principal exhaustion of the surface.
(2) Prove that ℎ can be isotoped to a homeomorphism that fixes the bound-

ary curves of the subsurfaces of the principal exhaustion.
(3) Apply Theorem 2.1 to each subsurface.
So, to be able to prove step (2) above, we first need the following lemma,

recalling that an ambient isotopy of 𝑁 is a homeomorphism isotopy starting at
the identity of 𝑁.

Lemma 2.2. Let 𝑘 ≥ 0, and let Γ1 = {𝛼0, … , 𝛼𝑘} and Γ2 = {𝛽0, … , 𝛽𝑘} be two
collections of curves on𝑁 that satisfy the following:

(1) For each 𝑖 = 0, … , 𝑘, 𝛼𝑖 is isotopic to 𝛽𝑖 , and
(2) for each 𝑗 = 1, 2, Γ𝑗 is a collection of pairwise disjoint curves.

Then, there exists 𝑓 ∈ Homeo(𝑁) isotopic to the identity such that for all 𝑖 =
0, … , 𝑘, 𝑓(𝛼𝑖) = 𝛽𝑖 . Moreover, 𝑓 can be chosen to be the end homeomorphism of
an ambient isotopy of𝑁, i.e. there exists an isotopy𝐻 ∶ 𝑁 × [0, 1] → 𝑁 such that
𝐻|𝑁×{0} = 𝑖𝑑𝑁 and𝐻|𝑁×{1} = 𝑓.

Proof. If |Γ1| = |Γ2| = 1, let 𝑉0 be a finite-type subsurface such that 𝛼0 and
𝛽0 are both contained in the interior of 𝑉0 and they are isotopic in 𝑉0. Then,
there exists an ambient isotopy 𝐻̃0 ∶ 𝑉0 × 𝐼 → 𝑉0 that deforms 𝛼0 into 𝛽0,
and that restricts to the identity on the boundary of 𝑉0. We can then extend
𝐻̃0 to an ambient isotopy 𝐻0 ∶ 𝑁 × 𝐼 → 𝑁 using the identity on 𝑁∖𝑉0; the
homeomorphism 𝑓 ∶= 𝐻0(⋅, 1) is the desired homeomorphism.
We now proceed by induction. Suppose that there exists an ambient isotopy

𝐻𝑛 ∶ 𝑁×𝐼 → 𝑁 such that 𝑓𝑛 ∶= 𝐻𝑛(⋅, 1)maps each 𝛼𝑖 to 𝛽𝑖 for 𝑖 ≤ 𝑛. Note that
the collection 𝑓𝑛(Γ1) = {𝛽0, … , 𝛽𝑛, 𝑓𝑛(𝛼𝑛+1),⋯ , 𝑓𝑛(𝛼𝑘)} is again a collection of
pairwise disjoint curves; in particular, 𝑓𝑛(𝛼𝑛+1) and 𝛽𝑛+1 are both disjoint from
all the curves in {𝛽0, … , 𝛽𝑛}.
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Let 𝑉𝑛+1 be a finite-type subsurface such that 𝑓𝑛(𝛼𝑛+1) and 𝛽𝑛+1 are both
contained in the interior of 𝑉𝑛+1, they are isotopic in 𝑉𝑛+1 and 𝑉𝑛+1 is disjoint
from all the curves in {𝛽0, … , 𝛽𝑛}; the existence of this subsurface is justified as
follows:

(1) 𝑓(𝛼𝑛+1) and 𝛽𝑛+1 are disjoint from and non-isotopic to all the curves in
{𝛽0, … , 𝛽𝑛}, so we can take an isotopy between 𝑓(𝛼𝑛+1) and 𝛽𝑛+1 with
image disjoint from all the curves in {𝛽0, … , 𝛽𝑛} (otherwise we can use
the Bigon Criterion to argue that 𝑓(𝛼𝑛+1) is either non-essential or iso-
topic to some 𝛽𝑖 with 1 ≤ 𝑖 ≤ 𝑛),

(2) then we can take 𝑉𝑛+1 as a finite-type subsurface of 𝑁∖{𝛽1, … , 𝛽𝑛} con-
taining the image of the isotopy between these two curves (which in
particular implies 𝑓(𝛼𝑛+1) and 𝛽𝑛+1 are isotopic in 𝑉𝑛+1),

(3) since both of them are essential in𝑁, 𝑉𝑛+1 can always be taken to have
them as essential curves (and in particular they are in the interior of
𝑉𝑛+1).

We then obtain an ambient isotopy 𝐻̃𝑛+1 ∶ 𝑉𝑛+1 × 𝐼 → 𝑉𝑛+1 as above. Ex-
tending 𝐻̃𝑛+1 by the identity on𝑁∖𝑉𝑛+1 and doing an isotopy compositionwith
𝐻𝑛, we obtain an ambient isotopy 𝐻𝑛+1 ∶ 𝑁 × 𝐼 → 𝑁 that deforms 𝛼𝑖 into 𝛽𝑖
for all 𝑖 ≤ 𝑛 + 1. We finish the proof by defining 𝑓𝑛+1 as𝐻𝑛+1(⋅, 1). □

Given a principal exhaustion of 𝑁, {𝑁𝑖}0≤𝑖<𝜔, the first step for the construc-
tion of Γ is the following: For each 0 ≤ 𝑖, we define 𝐵𝑖 as the set of boundary
curves of 𝑁𝑖. Also, we define 𝐵 =

⋃

0≤𝑖<𝜔
𝐵𝑖; we call 𝐵 the set boundaries of the

principal exhaustion.

Lemma 2.3 (cf. Lemma 3.5 in [10]). Let 𝑁0 ⊂ 𝑁1 ⊂ ⋯ ⊂ 𝑁 be a principal
exhaustion of 𝑁, 𝐵 the set of boundaries of this principal exhaustion, and ℎ ∈

Homeo(𝑁) be such that for all 𝛽 ∈ 𝐵, ℎ(𝛽) is isotopic to 𝛽. Then there exists
𝑔 ∈ Homeo(𝑁) isotopic to ℎ such that 𝑔|𝐵 = id|𝐵.

Proof. For this proof, we use Lemma 2.2 to define a sequence of homeomor-
phisms 𝑔𝑖 that satisfy the conclusion of the lemma for the set 𝐵𝑖 instead of 𝐵.
Then we define the desired 𝑔 from this sequence.
For 𝐵0, by Lemma 2.2 there exists a homeomorphism 𝑓0 ∶ 𝑆 → 𝑆 such that

𝑓 is isotopic to id and 𝑓0|𝐵0 = ℎ|𝐵0 . Then, we define 𝑔0 ∶= 𝑓−1
0
◦ℎ; this implies

that 𝑔0 is isotopic to ℎ and 𝑔0|𝐵0 = id|𝐵0 . Note that 𝑔0(𝑁0) = 𝑁0 since 𝑔0 and id
coincide in the boundary of 𝑁0.
For 𝐵1, we define 𝑔0 ∶= 𝑔0|𝑁∖int(𝑁0)

. Using Lemma 2.2 again for the surface
𝑁∖int(𝑁0), there exists 𝑓1 ∶ 𝑁∖int(𝑁0) → 𝑁∖int(𝑁0) such that 𝑓1 is isotopic
to id|𝑁∖int(𝑁0)

and 𝑓1|𝐵1 = 𝑔0|𝐵1 . We can then extend 𝑓1 to the whole surface
using the identity on 𝑁0, i.e. we define 𝑓1 as follows:

𝑓1(𝑠) = {
𝑠 𝑠 ∈ 𝑁0

𝑓1(𝑠) otherwise ,

which in particular implies that 𝑓1 is isotopic to id relative to 𝑁0.
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Afterwards, we define 𝑔1 ∶= 𝑓−1
1
◦𝑔0. Thus, 𝑔0 is isotopic to 𝑔1 relative to 𝑁0

and 𝑔1|𝐵0∪𝐵1 = id|𝐵0∪𝐵1 .
Inductively, following the same procedure for the definition of 𝑔1, we define

for any 𝑖 ≥ 2 a homeomorphism 𝑔𝑖 ∶ 𝑁 → 𝑁 such that 𝑔𝑖|∪0≤𝑘≤𝑖𝐵𝑘 = id|∪0≤𝑘≤𝑖𝐵𝑘 ,
and for 𝑖 < 𝑗 we have that 𝑔𝑖 is isotopic to 𝑔𝑗 relative to 𝑁𝑖.
Thus, themap 𝑔 ∶ 𝑁 → 𝑁 with 𝑠 ↦ 𝑔𝑖(𝑠) for 𝑠 ∈ 𝑁𝑖 is a well-defined homeo-

morphism. Also, by construction, 𝑔|𝐵 = id|𝐵. Moreover, if𝐻𝑖 ∶ 𝑁 × [0, 1] → 𝑁

is the isotopy from 𝑔𝑖 to 𝑔𝑖+1 relative to 𝑁𝑖, then let 𝐻𝑖 be the rescaling of 𝐻𝑖 to
the interval [ 𝑖

𝑖+1
,
𝑖+1

𝑖+2
]; thus, defining 𝐻 ∶ 𝑁 × [0, 1] → 𝑁 as the concatenation

of the 𝐻𝑖, and as 𝑔 = 𝐻|𝑁×{1}, we obtain an isotopy from 𝑔1 to 𝑔. Therefore, by
transitivity 𝑔 is isotopic to ℎ, finishing the proof. □

Proof of Theorem A. Let {𝑁𝑖}0≤𝑖<𝜔 be a principal exhaustion of 𝑁, let 𝐵 be
its boundaries. Let {Σ𝑗}0≤𝑗<𝜔 be the collection of subsurfaces Σ𝑗 of 𝑁, corre-
sponding to the connected components of 𝑁∖𝐵. Note that for all 𝑗 ≥ 0, Σ𝑗 has
complexity at least 5 if it is orientable, and if 𝑔 is its genus and it has 𝑛 punc-
tures, then 𝑔+𝑛 ≥ 8 if it is non-orientable. Also, if we denote by Σ𝑗 the closure
of Σ𝑗 in 𝑁, then all the boundary curves of Σ𝑗 are elements of 𝐵.
Now, for each 𝛽 ∈ 𝐵, let 𝛽∗ be a curve on 𝑁 such that:

∙ 𝑖([𝛽], [𝛽∗]) ≥ 2.
∙ For all 𝛾 ∈ 𝐵∖{𝛽}, 𝛽∗ is disjoint from 𝛾.
∙ For all 𝛼, 𝛽, 𝛾 ∈ 𝐵, at least one of the following is zero:

𝑖(𝛼∗, 𝛽∗), 𝑖(𝛼∗, 𝛾∗), 𝑖(𝛽∗, 𝛾∗).

Note that the choice of 𝛽∗ is arbitrary, and while for every 𝛽 ∈ 𝐵, there exist
infinitely many possible choices for 𝛽∗, once the choice is made, we fix 𝛽∗ for
the rest of the proof. We define 𝐵∗ = {𝛽∗ ∶ 𝛽 ∈ 𝐵}.
Then, let Γ𝑗 be a finite set of curves in Σ𝑗 such that it satisfies the Alexan-

der method for Σ𝑗 along with the arcs obtained from the elements of 𝐵∗ when
restricted to Σ𝑗 (see Theorem 2.1).
We claim that the set:

Γ = 𝐵 ∪ 𝐵∗ ∪
⎛

⎜

⎝

⋃

0≤𝑗<𝜔

Γ𝑗

⎞

⎟

⎠

,

satisfies Theorem A.
To prove this, let ℎ ∈ Homeo(𝑁) be such that ℎ(𝛾) is isotopic to 𝛾 for all

𝛾 ∈ Γ. Due to Lemma 2.3, we can suppose that ℎ|𝐵 = id|𝐵. This implies that
ℎ|

Σ𝑗
∈ Homeo(Σ𝑗; 𝜕Σ𝑗) for each 0 ≤ 𝑗 < 𝜔.

By definition of the Γ𝑗 and Theorem 2.1, ℎ|Σ𝑗 is isotopic to the identity in Σ𝑗.
Thus, doing these isotopies independently, ℎ is isotopic to a homeomorphism
𝑓 that is the identity in N except in annular neighbourhoods of the elements
in 𝐵. However, by construction for each 0 ≤ 𝑗 < 𝜔 and every boundary curve
𝛽 of Σ𝑗, the curves 𝛽∗ plays the roll of arcs connecting the different boundary
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curve of the annular neighbourhood of 𝛽, namely 𝑁(𝛽). Then, for each 𝛽, we
can do an isotopy 𝐻𝛽 from 𝑓|𝑁(𝛽) to 𝑖𝑑𝑁(𝛽). Finally, we define an isotopy from
𝑓 to the identity by defining it as the identity outside

⋃

𝛽∈𝐵
𝑁(𝛽) and then as

𝐻𝑏 on each 𝑁(𝛽). □

3. Isomorphisms between curve graphs
In this section, we prove Theorem B, which says that any isomorphism be-

tween curve graphs is induced by a homeomorphism between the underlying
surfaces. Our proof of this theorem is almost the same as the proof of Theo-
rem 1.1 in [9], with the proofs being essentially the same (simply substituting
auxiliary lemmata and results in the orientable case with the corresponding
lemmata and results in the possibly non-orientable case); thus, while we refer
the reader to [9] for more detailed proofs, for the sake of completeness we also
sketch the proofs.
Throughout this section, we let 𝑁, 𝑁1 and 𝑁2 be connected, possibly non-

orientable surfaces of infinite type with empty boundary.
Recalling from Section 1 that in hyperbolic surfaces geodesic representatives

of curves are always in minimal position, we know that for 𝑁 there exists a set
𝒮 of representatives of the isotopy classes of all essential curves on𝑁 such that
any two elements of 𝒮 are in minimal position. With this in mind, we have the
following lemma.

Lemma 3.1 (cf. Lemma 2.5 in [9]). Let𝑁 be an infinite-type surface and 𝒮 be a
set of representatives of the isotopy classes of all essential curves on𝑁 such that any
two elements of 𝒮 are in minimal position. Let also Γ be a set of isotopy classes of
curves and𝒢 ⊂ 𝒮 be a set of representatives ofΓ. Then the following are equivalent:

(1) 𝒢 is locally finite.
(2) Γ is locally finite.
(3) For every curve 𝛼 the set {𝛾 ∈ Γ ∶ 𝑖(𝛼, 𝛾) ≠ 0} is finite.

Since this lemma is actually more general than the analogous in [9], we give
a more detailed proof.

Proof. (1) ⇒ (2): This is obvious by the definition of a set of isotopy classes
being locally finite.
(2) ⇒ (3): Let 𝒳 be a set of representatives of Γ that is locally finite, 𝛼 be a

curve of 𝑁 and 𝑎 be a representative of 𝛼. Then, we have the following:

{𝛾 ∈ Γ ∶ 𝑖(𝛼, 𝛾) ≠ 0} ⊂ {[𝑐] ∈ Γ ∶ 𝑐 ∈ 𝒳, 𝑎 ∩ 𝑐 ≠ ∅}.

Since the latter set is finite, then we obtain (3).
(3) ⇒ (1): We prove this by contrapositive. Suppose 𝒢 is not locally finite.

Then there exists a compact set 𝐾 and an infinite collection {𝛾𝑖}0≤𝑖<𝜔 ⊂ 𝒢 such
that for all 𝑖 we have that 𝐾 ∩ 𝛾𝑖 ≠ ∅. There exists a finite-type subsurface Σ
that satisfies the following:

(1) Σ contains 𝐾 in its interior.
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(2) If {𝑐1, … , 𝑐𝑏} are all the boundary curves of Σ, then {𝑐1, … , 𝑐𝑏} ⊂ 𝒮.
Then we have that for all 𝑖, Σ ∩ 𝛾𝑖 ≠ ∅, and we can divide the proof into two

cases:
Case 1, there exists an infinite subcollection {𝛾𝑖𝑛 }0≤𝑛<𝜔 contained in Σ: Let

𝑃 ⊂ 𝒮 be a pants decomposition of Σ. Since 𝑃 is a maximal set of pairwise
disjoint and pairwise non-isotopic curves of Σ, by the pigeonhole principle,
there is a curve 𝛼 ∈ 𝑃 that intersects infinitely many elements of {𝛾𝑖𝑛 }0≤𝑛<𝜔.
Given that all the elements in 𝒮 are in minimal position, we have that the set
{𝛾 ∈ Γ ∶ 𝑖(𝛼, 𝛾) ≠ 0} is infinite.
Case 2, only finitelymany elements of {𝛾𝑖}0≤𝑖<𝜔 are contained in Σ: If all (but

finitelymany of) the elements of {𝛾𝑖}0≤𝑖<𝜔 were disjoint from all the elements of
{𝑐1, … , 𝑐𝑏}, then they would not intersect 𝐾. Thus, by the pigeonhole principle,
there exists a boundary curve 𝑐𝑖 of Σ and a subsequence {𝛾𝑖𝑛 }0≤𝑛<𝜔, such that
they every 𝛾𝑖𝑛 intersects 𝑐𝑖. Given that the elements of𝒮 are inminimal position,
this implies that the set {𝛾 ∈ Γ ∶ 𝑖([𝑐𝑖], 𝛾) ≠ 0} is infinite. □

Lemma 3.2 (cf. Corollary 2.6 in [9]). Let𝑁1,𝑁2 be two connected (possibly non-
orientable) surfaces of infinite type,𝑀 be a multicurve on 𝑁1, and 𝜑 ∶ 𝒞(𝑁1) →

𝒞(𝑁2) be an isomorphism. Then, 𝜑(𝑀) is a multicurve. In particular, if 𝑃 is a
pants decomposition of𝑁1, then 𝜑(𝑃) is a pants decomposition.

Sketch of the proof. Note that if 𝜑 is an isomorphism and𝑀 is a multicurve,
by Lemma 3.1𝑀 is a complete subgraph satisfying (3) in Lemma 3.1, thus 𝜑(𝑀)

is also a complete subgraph satisfying (3), which again by Lemma 3.1 implies
that 𝜑(𝑀) is a multicurve.
Moreover, if 𝑃 is a pants decomposition, then it is a maximal multicurve.

Then, by the argument above, 𝜑(𝑃) is a multicurve, andmaximality is obtained
by the surjectivity of 𝜑. □

We say a set𝑀 of locally finite, pairwise disjoint curves bounds a closed sub-
surface Σ ⊂ 𝑁 if the set of boundary curves of Σ that are not boundary curves
of 𝑁 is exactly𝑀.
Now, let 𝑃 be a pants decomposition of 𝑁 and 𝛼1, 𝛼2 ∈ 𝑃 be different. For

each 𝑖 = 1, 2, let 𝛽𝑖 be 𝛼𝑖 if 𝛼𝑖 is two-sided; otherwise, let 𝛽𝑖 be the boundary
curve of the Möbius band that is the regular neighborhood of 𝛼𝑖 (note that in
this case, 𝛽𝑖 is not essential). We say that 𝛼1 and 𝛼2 are adjacent with respect to
𝑃 if there exists a set𝑀 ⊃ {𝛽1, 𝛽2} that bounds a pair of pants. See Figure 4.

Lemma 3.3. Let 𝛼, 𝛽 ∈ 𝑃. Then, 𝛼 and 𝛽 are adjacent with respect to 𝑃 if and
only if there exists a curve 𝛾 such that 𝑖(𝛼, 𝛾) ≠ 0 ≠ 𝑖(𝛽, 𝛾) and 𝑖(𝛿, 𝛾) = 0 for all
𝛿 ∈ 𝑃∖{𝛼, 𝛽}.

Proof. If 𝛼 and 𝛽 are adjacent with respect to 𝑃, then we can find a curve 𝛾
satisfying the lemma as is shown in Figure 5.
If𝛼 and𝛽 are not adjacentwith respect to𝑃, then there exist finite-type closed

subsurfaces Σ1 and Σ2 such that:
(1) They have disjoint interiors.
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Figure 4. An example of a pants decomposition 𝑃. The curve
𝛼1 is adjacent to 𝛼2 and 𝛼3 with respect to 𝑃. The curve 𝛼1 is not
adjacent to 𝛼4 with respect to 𝑃.

Figure 5. Examples for Lemma 3.3.

(2) They are bounded by elements in 𝑃∖{𝛼, 𝛽}.
(3) Σ1 contains 𝛼 and Σ2 contains 𝛽.

Thus, any curve that intersects 𝛼 and 𝛽 has to intersect some curves in the
boundary of Σ1 and Σ2. □

Note that, Lemma 3.3 implies thatwe can simplicially characterise adjacency
with respect to 𝑃.

Lemma 3.4. Let 𝑁1, 𝑁2 be two connected (possibly non-orientable) surface of
infinite type, 𝑃 be a pants decomposition on 𝑁1, and 𝜑 ∶ 𝒞(𝑁1) → 𝒞(𝑁2) be an
isomorphism. Then, 𝛼, 𝛽 ∈ 𝑃 are adjacent with respect to 𝑃 if and only if 𝜑(𝛼)
and 𝜑(𝛽) are adjacent with respect to 𝜑(𝑃).

Proof. This follows immediatly from Lemma 3.3 and the fact that 𝜑 is an iso-
morphism. □

Let 𝑃 be a pants decomposition; we define its adjacency graph, denoted𝒜(𝑃),
to be the simplicial graph whose vertices correspond to the curves in 𝑃, and
two vertices span an edge if they are adjacent with respect to 𝑃. Note that by
Lemma 3.2, if 𝜑 ∶ 𝒞(𝑁1) → 𝒞(𝑁2) is an isomorphism, then 𝜑(𝑃) is a pants
decomposition; thus, we induce a map 𝜑𝑃 ∶ 𝒜(𝑃) → 𝒜(𝜑(𝑃)) defined as 𝛼 ↦

𝜑(𝛼). Then, the following corollary follows from Lemmata 3.2 and 3.4.
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Corollary 3.5 (cf. Proposition 3.1 in [9]). Let𝑁1,𝑁2 be two connected (possibly
non-orientable) surface of infinite type, 𝑃 be a pants decomposition on 𝑁1, and
𝜑 ∶ 𝒞(𝑁1) → 𝒞(𝑁2) be an isomorphism. Then, 𝜑𝑃 is an isomorphism between
𝒜(𝑃) and𝒜(𝜑(𝑃)).

A separating curve is called outer if it bounds a twice-punctured disk, while
it is called non-outer otherwise.
Recall that if Γ is a simplicial graph and 𝑣 ∈ 𝑉(Γ), we say 𝑣 is a cut vertex if

Γ∖𝑣 has more connected components than Γ.

Lemma 3.6. If 𝑃 is a pants decomposition, then non-outer separating curves are
exactly the cut vertices of𝒜(𝑃). Moreover, if𝑀 ⊂ 𝑃 is a finite set of non-outer sep-
arating curves, then𝑀 bounds a finite-type closed subsurface of 𝑁 if and only if
there is a finite subgraph of𝒜(𝑃) delimited exactly by the cut vertices correspond-
ing to𝑀 in𝒜(𝑃).

Proof. Let 𝛼 ∈ 𝑃 be a non-outer separating curve in 𝑁. Then, there 𝑁 =

Σ1 ∪ Σ2 where Σ1 and Σ2 are closed subsurfaces with disjoint interior such that
𝛼 is exactly their intersection. Since 𝛼 is non-outer, we have that there exist
curves from 𝑃 in both Σ1 and Σ2. In particular, any curve from 𝑃 in Σ1 cannot
be adjacent with respect to 𝑃 to any curve from 𝑃 in Σ2. Thus, 𝛼 is a cut vertex
of 𝒜(𝑃).
If 𝛼 ∈ 𝑃 is a cut vertex of 𝒜(𝑃), then 𝒜(𝑃)∖𝛼 has at least two connected

components Γ1 and Γ2. Then, by definition of adjacency with respect to 𝑃, we
have that Γ1 and Γ2 are pants decompositions of 𝑁∖𝛼. Thus, since none of the
curves in Γ1 are adjacent to any of the curves in Γ2, we have that 𝑁∖𝛼 has to
be disconnected. Also, given that neither Γ1 nor Γ2 are empty graphs, we have
that 𝛼 is a non-outer separating curve.
The rest of the lemma follows applying the same argument as above for each

element of𝑀. □

Lemma 3.7 (cf. Lemma 3.2 in [9]). Let 𝑁1, 𝑁2 be two connected (possibly non-
orientable) surface of infinite type, and 𝜑 ∶ 𝒞(𝑁1) → 𝒞(𝑁2) be an isomorphism.
Then, 𝛼 is a non-outer separating curve if and only if 𝜑(𝛼) is a non-outer separat-
ing curve.

Proof. This follows fromLemma 3.6 and the fact that𝜑 is an isomorphism. □

Now, to prove Theorem B we use the following theorem, which is an amal-
gamation of Theorems 1 and 2 in [4] (by Atalan and Korkmaz), Theorem 1 in
[11] (by Ivanov), Theorem 1 in [12] (by Korkmaz), and Theorem (a) in [13] (by
Luo).

Theorem3.8. Let𝑁1 and𝑁2 be two finite-type surfaces such that neither of them
is homeomorphic to any of the following surfaces: 𝑆0,4, 𝑆1,1, 𝑆0,5, 𝑆1,2, 𝑆0,6, 𝑆2,0. If
𝜙 ∶ 𝒞(𝑁1) → 𝒞(𝑁2) is an isomorphism, then𝑁1 and𝑁2 are homeomorphic and
𝜙 is induced by a homeomorphism𝑁1 → 𝑁2.

Proof. See the articles cited above. □
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Proof of Theorem B. Let Σ0 ⊂ Σ1 ⊂ ⋯𝑁1 be a principal exhaustion of 𝑁1, 𝐵
be the set of boundaries of this principal exhaustion, and for each 0 ≤ 𝑖 < 𝜔 let
𝐵𝑖 the boundary curves of Σ𝑖.
Since for each 0 ≤ 𝑖 < 𝜔, 𝐵𝑖 is a set of non-outer separating curves, then

𝜑(𝐵𝑖) is composed solely of non-outer separating curves.
Then, let 𝑃 ⊃ 𝐵 be a pants decomposition of 𝑁1; for each 𝑖 ∈ ℤ+, note the

following two facts:
(1) The set of curves from𝑃∖𝐵 contained inΣ𝑖 forms a pants decomposition

of Σ𝑖. We denote this pants decomposition as 𝑃𝑖.
(2) By Lemma 3.6 there is a finite subgraph of𝒜(𝑃) delimited exactly by the

cut vertices corresponding to 𝐵𝑖, and this finite subgraph corresponds
to 𝑃𝑖.

Given that for each 0 ≤ 𝑖 < 𝜔, the set 𝜑(𝐵𝑖) is composed solely of non-outer
separating curves, and using Lemma 3.2, Corollary 3.5 and point (2) above,
there exists (for each 0 ≤ 𝑖 < 𝜔) a finite subgraph 𝜑(𝑃𝑖) in 𝒜(𝜑(𝑃)) delimited
exactly by the cut vertices corresponding to 𝜑(𝐵𝑖). Again for each 0 ≤ 𝑖 < 𝜔, by
Lemma 3.6, there exists a finite-type closed subsurface Σ′

𝑖
bounded by 𝜑(𝐵𝑖).

Recalling that for any 𝑖 = 1, 2 and any finite-type subsurface Σ ⊂ 𝑁𝑖, there
is a natural embedding 𝒞(Σ) ↪ 𝒞(𝑁𝑖) induced by the inclusion, we denote the
image of this inclusion in 𝒞(𝑁𝑖) also as 𝒞(Σ). With this, for any 𝛼 ∈ 𝑉(𝒞(Σ𝑖)),
either 𝛼 ∈ 𝑃𝑖 or there exists 𝛽 ∈ 𝑃𝑖 such that 𝑖(𝛼, 𝛽) ≠ 0. Since this is preserved
by 𝜑, we can induce a map 𝜑𝑖 ∶ 𝒞(Σ𝑖) → 𝒞(Σ′

𝑖
), defined as 𝛼 ↦ 𝜑(𝛼); given that

𝜑 is an isomorphism, we have that𝜑𝑖 is also an isomorphism for each 0 ≤ 𝑖 < 𝜔.
Using Theorem 3.8, we have that (for each 0 ≤ 𝑖 < 𝜔), Σ𝑖 is homeomorphic

to Σ′
𝑖
and there exists a homeomorphism 𝑓𝑖 ∶ int(Σ𝑖) → int(Σ′

𝑖
) such that 𝜑𝑖

is induced by 𝑓𝑖. Given that for any 𝑖 < 𝑗 we have that 𝜑𝑖 = 𝜑𝑗|𝒞(𝑁𝑖)
, by the

Alexander method, we obtain that 𝑓𝑖 = 𝑓𝑗|int(𝑁𝑖)
. With this, we can define a

map 𝑓 ∶ 𝑁1 → 𝑁2 as 𝑥 ↦ 𝑓𝑖(𝑥) if 𝑥 ∈ int(Σ𝑖). By construction this map is a
homeomorphism that induces 𝜑. □

4. Topological generation of 𝐏𝐌𝐚𝐩(𝑵)

The groupHomeo(𝑁)with the compact-open topology is a topological group;
thus, Map(𝑁) inherits a very natural topological group structure via the quo-
tient of the compact-open topology. In this work, we abuse language and refer
to this topology ofMap(𝑁) as the “compact-open topology” too.
In the finite-type surface case, it not hard to see thatMap(𝑁) becomes a dis-

crete group with this topology (the Alexander Method is a simple way of see-
ing this). However, in the infinite-type case this does not happen; moreover,
Map(𝑁) is not even locally compact (see [3]). As such, Map(𝑁) (and its sub-
groups) becomes much more interesting from a topological-group viewpoint.
In this section, we obtain several results considering Map(𝑁) with this topol-
ogy; all these results have analogues in the orientable-surface case, and their
proofs here are essentially the same but with subtle differences (see [15] and
[2]).
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4.1. 𝐌𝐚𝐩(𝑵) is Polish. Recall that a Polish group is a topological groupwhose
underlying space is Polish (a separable and completely metrizable space). We
verify thatMap(𝑁) is a Polish group.
Let Γ be a graph with a countable set of vertices. We define a topology on

Aut(Γ) as follows: for any finite vertex subset 𝐴 of the vertex set of Γ define

𝑈𝐴 = {𝑓 ∈ Aut(Γ) ∶ 𝑓(𝑎) = 𝑎 for all 𝑎 ∈ 𝐴}.

Then, the permutation topology on Aut(Γ) is defined as the topology with basis
the translated sets 𝑓 ⋅ 𝑈𝐴, where 𝐴 is a finite set of vertex of Γ and 𝑓 ∈ Aut(Γ).
With this topology, Aut(Γ) is separable and; moreover, it is a Polish group (see
Lemma 2.2 in [2], and [3]).
The curve graph 𝒞(𝑁) of an infinite type surface 𝑁 (orientable or not) has a

countable set of vertices. A simple way of seeing this is to consider a principal
exhaustion; each curve graph of these subsurfaces has a countable set of ver-
tices and the union of all these sets of vertices is equal to the set of vertices of
𝒞(𝑁). Hence, we can equip Aut(𝒞(𝑁)) with the permutation topology. From
Corollary C we have that Map(𝑁) ≅ Aut(𝒞(𝑁)), and using the isomorphism
Ψ we can pullback the permutation topology toMap(𝑁). We call this topology
the permutation topology onMap(𝑁). Recall that this topology has as basis the
Map(𝑁)-translates of the sets

𝑈𝐴 = {𝑓 ∈ Map(𝑁) ∶ 𝑓(𝑎) = 𝑎 for all 𝑎 ∈ 𝐴},

where 𝐴 is any finite set of the vertices of 𝒞(𝑁). Then, we have thatMap(𝑁) is
a Polish group with the permutation topology.
Using the Alexander method for finite surfaces (see Theorem 2.1), it can be

proved that the compact-open topology is the same as the permutation topology
onMap(𝑁), the proof for orientable surfaces (see Proposition 2.4 in [2]) works
for the non-orientable ones too. For the sake of completeness, we include a
sketch here.
First wemake the following observation. Let𝐾 and𝑈 respectively be a com-

pact set and an open set in 𝑁. Recall that in the compact-open topology in
Homeo(𝑁), the set

[𝐾,𝑈] ∶= {𝑓 ∈ Homeo(𝑁) ∶ 𝑓(𝐾) ⊂ 𝑈}

is a sub-basic open set. As such, the set

[[𝐾,𝑈]] ∶= {𝑓 ∈ Map(𝑁) ∶ ∃𝐹 ∈ 𝑓, 𝐹(𝐾) ⊂ 𝑈}

is a sub-basic open set ofMap(𝑁).
For the sake of completeness, we give an example of a sub-basic open neigh-

bourhood of the identity. Let 𝐾,𝑈 ⊂ 𝑁 be respectively a compact set and an
open set in 𝑁 such that 𝐾 can be isotoped inside 𝑈, i.e. there exists an ambi-
ent isotopy of 𝑁 such that it deforms 𝐾 inside of 𝑈. Then [[𝐾,𝑈]] is an open
neighbourhood of the identity, and it consists of all mapping classes that (up
to isotopy) keep 𝐾 inside of 𝑈. Of particular interest is when 𝐾 is the image
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of a curve, and 𝑈 is its regular neighbourhood, which leaves with an open set
consisting of all mapping classes that fix the curve up to isotopy.

Lemma 4.1. Let 𝑁 be a connected (possibly non-orientable) surface of infinite
topological type. Then, the compact-open topology and the permutation topology
inMap(𝑁) coincide.

Sketch of proof. Let 𝜏 be the compact-open topology and 𝜏′ be the permuta-
tion topology. Let𝐴 = {𝛼1, … , 𝛼𝑛} be a finite set of vertices in𝒞(𝑁), and𝑈𝐴 ∈ 𝜏′

be a basic open neighbourhood of the identity 𝑖𝑑𝒞(𝑁). Consider for each 𝛼𝑖 ∈ 𝐴

the basic open 𝑉𝑖 = [[𝛼𝑖, 𝑁(𝛼𝑖)]] where 𝑁(𝛼𝑖) is a regular neighborhood of 𝛾𝑖.
Let 𝑉 = 𝑉1 ∩ ⋯ ∩ 𝑉𝑛, the set 𝑉 is a basic open neighbourhood of [𝑖𝑑𝑁] in 𝜏,
and 𝑉 = 𝑈𝐴. Then 𝜏′ ⊂ 𝜏.
Conversely, let 𝑈 ∈ 𝜏 be a sub-basic open neighbourhood of [𝑖𝑑𝑁], we have

that 𝑈 = [[𝐾, 𝑉]] with 𝐾 and 𝑉 compact and open subsets of 𝑁 respectively.
Let Σ be a connected, compact subsurface of 𝑁 such that 𝐾 ⊂ Σ. Let 𝐴 be
a finite set of curves such that 𝐴 ∩ Σ is collection of arcs and curves in Σ that
satisfies the Alexandermethod for finite-type surfaces (see Theorem 2.1). From
the Alexander method, we have that each 𝑓 ∈ 𝑈𝐴 is isotopic to the identity in
Σ. In particular, there exists 𝐹 ∈ 𝑓 such that 𝐹(𝐾) = 𝐾 ⊂ 𝑉, hence 𝑈𝐴 ⊂ 𝑈.
Therefore, 𝜏 = 𝜏′. □

Now follows from Lemma 4.1 that the natural isomorphism Ψ ∶ Map(𝑁) →

Aut(𝒞(𝑁)) is an isomorphism between topological groups, which is precisely
Corollary D.To finish this subsection, we make a small note on convergence in
Map(𝑁).
Given Σ a compact subsurface of𝑁 and 𝑓 ∈ Map(𝑁), the set { 𝑔 ∈ Map(𝑁) ∣

𝑔|Σ = 𝑓|Σ } is open. Let 𝑓 ∈ Map(𝑁) and (𝑓𝑖)0≤𝑖<𝜔 be a sequence inMap(𝑁).
By definition of the topology, the sequence (𝑓𝑖)0≤𝑖<𝜔 converges to 𝑓 if and only
if for all open neighborhoods 𝑉 of 𝑓 there exists 𝑁 ≥ 0 such that 𝑓𝑖 ∈ 𝑉 for
all 𝑖 ≥ 𝑁. Then, if Σ1 ⊂ Σ2 ⊂ ⋯𝑁 is a principal exhaustion and (𝑓𝑖)0≤𝑖<𝜔
converges to 𝑓, for all 𝑖 there exists an 𝑛𝑖 such that for all 𝑗 ≥ 𝑛𝑖 we have that
𝑓𝑗|Σ𝑖 = 𝑓|Σ𝑖 .

4.2. Handle-shifts. The concept of a handle-shift was introduced in [15], and
intuitively it is moving/shifting the genera between two ends of 𝑁 that are ac-
cumulated by genus. Here we recall their definition of a handle-shift. Let 𝑜Σ
the surface obtained by taking ℝ × [−1, 1], removing the interior of each disk
of radius 1

4
with center in (𝑘, 0) for each 𝑘 ∈ ℤ, and attaching a torus with one

boundary component to the boundary left by removing each such a disk. If in-
stead of a torus we attach projective planes with one boundary component, we
obtain a surface denoted by 𝑛Σ. See Figure 6.
Let 𝜎 ∶ 𝑜Σ → 𝑜Σ be the isotopy class of the homeomorphism determined by

requiring
(1) 𝜎(𝑥, 𝑦) = (𝑥 + 1, 𝑦) for (𝑥, 𝑦) ∈ ℝ× [−1 + 𝜖, 1 − 𝜖] for some 𝜖 > 0 and
(2) 𝜎(𝑥, 𝑦) = (𝑥, 𝑦) for (𝑥, 𝑦) ∈ ℝ × {−1, 1}.
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Figure 6. The surface 𝑜Σ above and the surface 𝑛Σ below.

Similarly, let 𝑛𝜎 ∶ 𝑛Σ → 𝑛Σ be the homeomorphism determined by similar
conditions to that of 𝜎.

Consider a surface𝑁 with at least two non planar ends and let ℎ ∶ 𝑁 → 𝑁 be
a homemorphism. If there is an embedding 𝜄 ∶ 𝑜Σ ↪ 𝑁 inducing an injection
𝜄∗ ∶ ℰ(𝑜Σ) ↪ ℰ(𝑁) such that

ℎ(𝑥) = {
(𝜄◦𝜎◦𝜄−1)(𝑥) if 𝑥 ∈ 𝜄(𝑜Σ),

𝑥 otherwise,

we say that ℎ is:
(1) an orientable handle-shift if both elements of 𝜄∗(ℰ(𝑜Σ)) are orientable,
(2) a semi-orientable handle-shift if exactly one element of 𝜄∗(ℰ(𝑜Σ)) is ori-

entable,
(3) a pseudo-orientable handle-shift if both elements of 𝜄∗(ℰ(𝑜Σ)) are not

orientable.1

Finally, we say that a homeomorphism ℎ ∶ 𝑁 → 𝑁 is a non-orientable
handle-shift if there exists an embedding 𝜄 ∶ 𝑛Σ → 𝑁 inducing an injection
𝜄∗ ∶ ℰ(𝑛Σ) → ℰ(𝑁) and such that

ℎ(𝑥) = {
(𝜄◦𝑛𝜎◦𝜄−1)(𝑥) if 𝑥 ∈ 𝜄(𝑛Σ),

𝑥 otherwise.

We call the mapping class associated to a handle-shift a handle-shift as well.
Notice that a power of a handle-shift is not a handle-shift; this can be proved
using the Alexandermethod. Also notice that in all cases, the homeomorphism
ℎ has an attracting and a repelling end denoted by ℎ+ and ℎ− respectively, and
they are invariant under isotopies (see [2]).
Now, let the ends graph of 𝑁, denoted by 𝐸𝐺(𝑁), be the simplicial graph

whose vertex set is ℰ∞(𝑁), and such that two vertices 𝑥, 𝑦 span an edge if there

1The naming for this mapping class comes from the fact that even though its support is ori-
entable, it “comes and goes” between non-orientable ends.
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Figure 7. The surfaces 𝑆 and 𝑁 are homeomorphic.

exists a handle-shift ℎ with {𝑥, 𝑦} = {ℎ+, ℎ−}. Note that with the discourse
above and Figure 7, it is clear that 𝐸𝐺(𝑁) is a complete graph. This graph is
used below in Subsection 4.5.3.
More recently, Abbott, Miller and Patel in [1] have defined “shift maps” as

homeomorphisms constructed as above but with the difference that they con-
sider 𝑜Σ to be possibly obtained by gluing to the infinite bandℝ× [−1, 1] other
surfaces besides a torus/projective plane with one boundary component.

4.3. Type of curves in 𝑵. To have a better idea of how the following proofs
work, we give a small note on the different (topological) types of curves that
exist in a non-orientable surface. Thus, for this section let𝑁 be a non-orientable
surface with compact boundary (hence 0 ≤ 𝑏 < ∞ boundary components), 𝛼
be an essential curve in 𝑁, 𝑉 a regular neighbourhood of 𝛼 that is either an
annulus (if 𝛼 is two-sided) or a Möbius band (if 𝛼 is one-sided), and 𝑁′ be the
essential subsurface defined as 𝑁′ = 𝑁∖𝑉.
To ease the notation, we say 𝛼 is orienting if𝑁′ is orientable, and we say it is

non-orienting otherwise.

4.3.1. 𝑵 is of finite type. Let 𝑁 be a finite-type surface. Then, 𝑁 can be
thought as the connected sum of 𝑔 > 1 projective planes with 𝑛 ≥ 0 punctures
and 𝑏 ≥ 0 boundary components.
The first thing to notice is that 𝛼 can be either separating or non-separating,

and these classes of curves can be further divided into subclasses depending on
𝑁′. Using an easy Euler characteristic argument one can prove the following
facts.

(1) 𝛼 is separating. In this case, 𝑁′ = 𝑁1 ⊔ 𝑁2, and let (𝑔1, 𝑔2), (𝑛1, 𝑛2)
and (𝑏1 + 1, 𝑏2 + 1) be the respective genus, punctures and boundary
components of 𝑁1 and 𝑁2.
Since both 𝑁1 and 𝑁2 have a boundary component induced by 𝑉, we
have that 𝛼 is always a two-sided curve.



1726 JESÚS HERNÁNDEZ HERNÁNDEZ AND CRISTHIAN E. HIDBER

Figure 8. Topological types of separating curves on a non-
orientable surface.

(a) If both 𝑁1 and 𝑁2 are non-orientable surfaces, then not only are
{𝑛1, 𝑛2} and {𝑏1, 𝑏2} partitions of 𝑛 and 𝑏, but also 𝛼 induces a par-
tition {𝑔1, 𝑔2} of 𝑔with 𝑔1, 𝑔2 > 1. See Figure 8 (1.𝑎) for an example.

(b) If 𝑁1 is orientable and 𝑁2 is non-orientable, then not only are
{𝑛1, 𝑛2} and {𝑏1, 𝑏2} partitions of 𝑛 and 𝑏, but also 𝛼 induces a par-
tition {2𝑔1, 𝑔2} of 𝑔 with 𝑔2 > 1. See Figure 8 (1.𝑏) for an example.

Thus, the possible topological types of𝛼 depend on the above partitions.
(2) 𝛼 is non-separating. In this case,𝑁′ is connected, has genus 𝑔′, 𝑛 punc-

tures and 𝑏′ boundary components.
(a) If 𝛼 is two-sided, then 𝑉 is an annulus and 𝑏′ = 𝑏 + 2. Now, this

case is subdivided analogously to case (1) depending on the ori-
entability of 𝑁′.
(i) If 𝛼 is orienting, then 2𝑔′ = 𝑔 − 2. In particular, this case is

only possible if 𝑔 is even and at least 2. See Figure 9 (2.𝑎.𝑖)
for an example.

(ii) If 𝛼 is non-orienting, then 0 < 𝑔′ = 𝑔 − 2. In particular, this
case only exists if 𝑔 is at least 3. See Figure 9 (2.𝑎.𝑖𝑖) for an
example.

Hence, 𝛼 can be two-sided only when then genus of𝑁 is at least 2.
(b) If 𝛼 is one-sided, then 𝑉 is a Möbius band and 𝑏′ = 𝑏 + 1. We

subdivide this case depending on the orientability of 𝑁′.
(i) If 𝛼 is orienting, then 2𝑔′ = 𝑔 − 1. In particular, this case

only exists if 𝑔 is odd. See Figure 9 (2.𝑏.𝑖) for an example.
(ii) If 𝛼 is non-orienting, then 0 < 𝑔′ = 𝑔 − 1. In particular, 𝑔 is

at least 2. See Figure 9 (2.𝑏.𝑖𝑖) for an example.
With thiswe can conclude the following: In contrastwith the orientable
case, depending on the surface, not all non-separating curves have the
same topological type.
If 𝑔 = 1, then every non-separating is a one-sided orienting curve and
there is exactly one topological type of non-separating curves.
If 𝑔 = 2, then there are exactly two topological types of non-separating
curves: a non-separating curve 𝛼 can be either a two-sided orienting
curve or a one-sided non-orienting curve.
If 𝑔 ≥ 3, then there exists exactly 3 topological types of non-separating
curves (cases (2.a.i) and (2.b.i) cannot exist at the same time).



𝐻1(PMap(𝑁);ℤ) FOR 𝑁 NON-ORIENTABLE AND INFINITE-TYPE 1727

Figure 9. Topological types of non-separating curves on a
non-orientable surface.

4.3.2. 𝑵 is of infinite type. Let 𝑁 be an infinite-type surface of genus 𝑔 ∈

ℕ ∪ {∞}, 𝑏 ≥ 0 boundary components and triple of ends spaces2

(ℰ(𝑁), ℰ∞(𝑁), ℰ−(𝑁)) .

As in the previous subsubsection, the first thing to notice is that 𝛼 can be
either separating or non-separating, and that these classes of curves can be fur-
ther subdivided. By taking a non-orientable finite-type essential subsurface of
𝑁 that contains 𝛼 as an essential curve, one can verify the following facts.

(1) 𝛼 is separating. In this case, as it happens in Subsubsection 4.3.1, 𝛼 in-
duces a partition of the boundary components and the genus. However,
in contrast, in this case 𝛼 also induces a partition of the triple of ends
spaces. This partition could be trivial, i.e. one of the connected compo-
nents of 𝑁′ is compact. With this in mind, in the case where 𝑏 = 0 the
partition is trivial if and only if 𝛼 is trivial in the integer homology of𝑁.

(2) 𝛼 is non-separating. In this case, 𝑁′ is a connected surface of genus
𝑔′ and 𝑏′ boundary components. It is clear however that the triple of
ends spaces of 𝑁 and 𝑁′ are homeomorphic, thus the only differences
between𝑁 and𝑁′ are the boundary components (𝑏′ > 𝑏), possibly the
genus and possibly the orientability. Having this inmind, it is clear why
in the orientable case there exists exactly one topological type of non-
separating curves. Now, as in the previous case, the following facts can
be easily deduced from taking an essential finite-type subsurface that
contains 𝛼 as an essential curve.
(a) If 𝛼 is two-sided, then 𝑏′ = 𝑏 + 2.

(i) If𝛼 is orienting, then𝑁 has to be finitely even non-orientable
and in particular 𝑔 has to be either finite, even and 2𝑔′ =
𝑔 − 2, or infinite.

(ii) If 𝛼 is non-orienting, then 𝑔 is at least 3 and 𝑔′ = 𝑔 − 2.

2Recall that these are the set of all ends, the set of all ends accumulated by genus, and the set
of all non-orientable ends.
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(b) If 𝛼 is one-sided, then 𝑏′ = 𝑏 + 1.
(i) If 𝛼 is orienting, then𝑁 has to be finitely odd non-orientable

and in particular 𝑔 has to be either finite, odd and 2𝑔′ = 𝑔−1,
or infinite.

(ii) If 𝛼 is non-orienting, then 𝑔 is at least 2 and 𝑔′ = 𝑔 − 1.
As in the finite-type case, this means that the number of topological
types can differ depending on the surface:
If 𝑔 = 1, then every non-separating curve is one-sided and orienting.
If 𝑔 = 2, then a non-separating curve can be either two-sided orienting
or one-sided non-orienting.
If 𝑔 ≥ 3 and is finite, then a non-separating curve has three options for
its topological type.
If 𝑔 = ∞ but 𝑁 is finitely odd non-orientable, then a non-separating
curve can be:
∙ two-sided non-orienting,
∙ one-sided orienting, and
∙ one-sided non-orienting.

If 𝑔 = ∞ but 𝑁 is finitely even non-orientable, then a non-separating
curve can be:
∙ two-sided orienting,
∙ two-sided non-orienting, and
∙ one-sided non-orienting.

If 𝑔 = ∞ and𝑁 is infinitely non-orientable, then a non-separating curve
has to be either two-sided non-orienting or one-sided non-orienting.

4.4. 𝐏𝐌𝐚𝐩(𝑵) as a closed subgroup. In this section, we prove that PMap(𝑁)
is a closed subgroup, following closely the proof by Patel-Vlamis for the ori-
entable case in [15]. However, for the proof to work on the non-orientable case,
the following lemma is needed. As a reminder, recall that a curve 𝛼 is called
one-sided if its closed regular neighborhood is homeomorphic to aMöbius band,
and it is called two-sided it if its closed regular neighborhood is an annulus.

Lemma 4.2. If 𝛼 is a non-separating curve in 𝑁 and 𝑓 ∈ PMap(𝑁), then there
exists an essential finite-type subsurface Σ ⊂ 𝑁 such that:

(1) 𝛼 and 𝑓(𝛼) are contained in Σ and they have the same topological type in
Σ,

(2) each boundary curve of Σ is an essential separating curve in𝑁,
(3) all the connected components of𝑁∖Σ share at least one end with𝑁, and
(4) if𝑁 has exactly one end accumulated by genus, then exactly one connected

component of𝑁∖Σ has positive genus.

Proof. Let Σ′ be a subsurface that contains 𝛼 and 𝑓(𝛼), and satisfies (2) - (4).
This can be obtained by taking an essential subsurface that contains 𝛼 and 𝑓(𝛼)
as essential curves, then adding orientable subsurfaces of genus 0 so that the
resulting union has every boundary curve as a separating curve in 𝑁. Call Σ′′
the resulting subsurface. After that, if any of the boundary curves of Σ′′ are not
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Figure 10. The subsurfaceΣ′with the curves𝛼 and𝑓(𝛼) being
orienting and non-orienting in Σ′, respectively.

essential, add the corresponding punctured disc or disc; this way the resulting
subsurface satisfies (2). Call Σ′′′ the resulting subsurface. Then, add any finite-
type connected component of 𝑁∖Σ′′′; the resulting subsurface satisfies (3) and
(4). The resulting subsurface is Σ′.
Now, Σ′ is a finite-type subsurface with boundary curves being essential sep-

arating curves in 𝑁. Thus, 𝛼 and 𝑓(𝛼) have to be non-separating curves in
Σ′. Moreover, 𝛼 and 𝑓(𝛼) have to be either both one-sided or both two-sided.
Hence, by the discussion in Subsubsection 4.3.1, the topological types of 𝛼 and
𝑓(𝛼) in Σ′ might differ only in whether 𝛼 and 𝑓(𝛼) are either orienting in Σ′ or
non-orienting in Σ′.
If both 𝛼 and 𝑓(𝛼) coincide in being orienting or non-orienting in Σ′, then

Σ′ satisfies (1) and we make Σ = Σ′.
Otherwise, without loss of generality we can assume that 𝛼 is orienting in Σ′

while 𝑓(𝛼) is non-orienting in Σ′. Since 𝛼 and 𝑓(𝛼) have the same topological
type in 𝑁, then there exists at least one cross-cap in some connected compo-
nent of𝑁∖Σ′. Moreover, there exists a subsurface𝑀 of genus 1 and two bound-
ary components with both boundary curves as essential separating curves in
𝑁, such that 𝑀 and Σ′ share one boundary component. Let Σ be the surface
obtained by the union of Σ′ and 𝑀; see Figure 10. Therefore, Σ satisfies (1) -
(4). □

Theorem 4.3. Let𝑁 be a connected (possibly non-orientable) surface of infinite
topological type, and let𝐻 be the set of all handle-shifts of 𝑁. Then, PMap(𝑁) =
⟨PMap

𝑐
(𝑁) ∪ 𝐻⟩.

Proof. The proof of this theorem is essentially the same that Patel-Vlamis have
for orientable surfaces in Proposition 6.2 of [15]. We just need to take in account
the following observations:
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Figure 11. A pants decomposition of a non-orientable surface
that contains one-sided curves.

(1) A pants decomposition of a non-orientable surface𝑁may contain one-
sided curves, and one-sided curves bound exactly one pair of pants (in-
stead of two pair of pants as two-sided curves may). See Figure 11

(2) One-sided curves are not separating curves.
(3) A key step on Patel-Vlamis’ proof is that in the orientable case, any two

non-separating curves on a finite type surface always have the same
topological type. We substitute this argument with Lemma 4.2.

(4) Some steps of Patel-Vlamis proof involve comparing two subsurfaces of
𝑁, say 𝑉 and𝑊. They do it by comparing their genus. In the general
case, it is better to see whether 𝑉 and𝑊 are homeomorphic or not.

(5) In the last paragraph of Patel-Vlamis proof, for the general case, it is a
good idea to consider the subsurfaces 𝑉 and 𝑊 as connected sums of
a torus plus zero, one or two projective planes. In this way, it becomes
more obvious which composition of handle-shifts is the mapping class
ℎ. □

4.5. Definition of {𝒉𝒊}𝟎≤𝒊<𝒓. The purpose of this subsection is to construct a
collection {ℎ𝑖}0≤𝑖<𝑟 of handle-shifts that satisfies Theorem E, which we recall
below.

Theorem (E). Let𝑁 be a connected (possibly non-orientable) surface of infinite
topological type. If𝑁 has atmost one endaccumulated by genus, thenPMap(𝑁) =
PMap

𝑐
(𝑁). If𝑁 has at least two ends accumulated by genus, then there exist a con-

stant 1 ≤ 𝑟 ≤ 𝜔 and a collection {ℎ𝑖}0≤𝑖<𝑟 of handle-shifts, such that PMap(𝑁) =
⟨PMap

𝑐
(𝑁), {ℎ𝑖}0≤𝑖<𝑟⟩ and ⟨{ℎ𝑖}0≤𝑖<𝑟⟩ is isomorphic to ℤ𝑟 as a topological group.

Using Theorem 4.3, we have that if 𝑁 has at most one end accumulated by
genus, then PMap(𝑁) = PMap

𝑐
(𝑁), proving the first part of Theorem E. Thus,

for the rest of this section, we assume that𝑁 has at least two ends accumulated
by genus, unless otherwise stated.
The construction of the {ℎ𝑖}0≤𝑖<𝑟 is inspired by the one made in the proof

of Theorem 3 in [2]: Given a surface Σwith either empty boundary or compact
boundary, we define Σ̂ as the surface obtained by forgetting the planar ends and
capping the boundary components with disks. The idea is to find a collection
of separating simple closed curves {𝛾𝑖}0≤𝑖<𝑟 such that their homology classes
generate𝐻𝑠𝑒𝑝

1
(𝑁̂; ℤ) and assign to each of these curves a handle-shift.
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Figure 12. 𝐻𝑠𝑒𝑝

1
(𝑁;ℤ) can be generated by the homology

classes of the curves {𝛾1, 𝛾2} or equivalently by the homology
classes of the curves {𝛾1, 𝛾3}. In 𝑎), we can associate to 𝛾1 a non-
orientable handle-shift and to 𝛾2 a semi-orientable one. In 𝑏),
we can only associate to 𝛾𝑖 semi-orientable handle-shifts.

In [2], the curves {𝛾𝑖}0≤𝑖<𝑟 satisfy that the components of the surface Σ′ ob-
tained by taking Σ̂ and removing disjoint regular neighborhoods of each 𝛾𝑖 is
one-ended and has infinite genus. Then to each 𝛾𝑖 is associated a handle shift
ℎ𝑖 such that the attracting end ℎ+𝑖 is in one of the components of Σ

′ containing
a boundary component 𝑏1 homotopic to 𝛾𝑖 and the repelling end ℎ−𝑖 is in the
other component of Σ′ containing a boundary component 𝑏2 homotopic to 𝛾𝑖.
However, unlike the orientable case treated in [2], if 𝑁 is a surface with at

least one orientable end and two non-orientable ends, we cannot take just any
such a collection of curves. The problem is that it is not clear how to build non-
orientable handle-shifts using only PMap

𝑐
(𝑁) and pseudo-orientable, semi-

orientable and orientable handle-shifts, see Figure 12. So we need to choose
a good basis of 𝐻𝑠𝑒𝑝

1
(𝑁̂; ℤ) in order to have in {ℎ𝑖}0≤𝑖<𝑟 the minimum num-

ber of non-orientable handle-shifts needed to generate all the non-orientable
handle-shifts.

4.5.1. A fixed model for𝑵. Recalling that if𝑁 is a non-orientable surface of
genus at least 3, we can exchange 3 cross-caps for one torus and one cross-cap,
and thus change the model. So, we start this subsubsection by fixing a model
of a given infinite-type surface 𝑁. Recall the following theorem of I. Richards.

Theorem 4.4 (cf. Theorem 2 in [16]). Given a triple (𝑋, 𝑌, 𝑍) of compact, sep-
arable, totally disconnected spaces 𝑍 ⊂ 𝑌 ⊂ 𝑋, there is a surface Σ whose ends
(ℰ(Σ), ℰ∞(Σ), ℰ−(Σ)) are topologically equivalent to the triple (𝑋, 𝑌, 𝑍).
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In the proof of Theorem 4.4, Richards gives an explicit construction of the
surface Σ. So, given an infinite-type surface 𝑁 and using Richards’ construc-
tion, we obtain a surface Σ homeomorphic to 𝑁. Abusing notation, we also
denote it by 𝑁. We recall Richards’ construction here.
The idea is to construct the surface𝑁 from a sphere 𝑆 by first removing from

𝑆 a set 𝑋 homeomorphic to ℰ(𝑁), then removing the interiors of a finite or
infinite sequence of non-overlapping closed discs in 𝑆 − 𝑋 and finally suitably
identifying the boundaries of these discs in pairs to form handles and/or cross-
caps (see Theorem 3 in [16]). The non-overlapping discs "converge" to 𝑋 in a
sense that will be clear form the description below. See Figure 13.
Recall that ℰ(𝑁) is homeomorphic to a subset of the Cantor set 𝒞. Embed

the cantor set 𝒞 in the one point compactification of the plane as the set of all
points (𝑥, 0) such that 0 ≤ 𝑥 ≤ 1 and 𝑥 admits a triadic expansion which does
not involve the digit 1. Let 𝒟′ be the collection of all closed disks in the plane
whose diameters are the intervals in the 𝑥 axis

⎡
⎢
⎢

⎣

𝑛 −
1

3

3𝑚
,

𝑛 +
4

3

3𝑚

⎤
⎥
⎥

⎦

,

with 𝑚, 𝑛 ∈ ℤ such that 𝑚 ≥ 1, 0 ≤ 𝑛 ≤ 3𝑚 and 𝑛 admits a triadic expansion
free from 1’s. Let 𝒟 be the subcollection consisting of all disks in 𝒟′ which
contain at least one point of ℰ(𝑁). For each disk 𝜅 ∈ 𝒟, let 𝜅1 and 𝜅2 the two
largest disks in𝒟′ properly contained in 𝜅. Choose two circles𝐶+(𝜅) and𝐶−(𝜅)
contained in the interior of 𝜅 such that:

(1) 𝐶+(𝜅) is contained in the upper half-plane and 𝐶−(𝜅) is contained in
the lower half-plane.

(2) 𝐶+(𝜅) and 𝐶−(𝜅) do not intersect 𝜅1 and 𝜅2.
(3) 𝐶+(𝜅) and 𝐶−(𝜅) are symmetric with respect to the 𝑥 axis.

Remove the interior of 𝐶±(𝜅) for all 𝜅 ∈ 𝒟 such that 𝜅 ∩ ℰ∞(𝑁) ≠ ∅. If 𝜅 ∩
ℰ−(𝑁) = ∅, then identify the boundaries of𝐶+(𝜅) and𝐶−(𝜅) by reflecting𝐶+(𝜅)
in the 𝑥 axis preserving orientation, i.e. add a handle. If 𝜅 ∩ ℰ−(𝑁) ≠ ∅, then
identify 𝐶+(𝜅) and 𝐶−(𝜅) by translating 𝐶+(𝜅) onto 𝐶−(𝜅), i. e. add a Klein
bottle.
If the surface 𝑁 is of finite genus orientable or non-orientable, in the above

construction, add the finite number of handles or cross-caps that are needed.
Similarly, if 𝑁 is of infinite genus but odd or even non-orientable, add one or
two cross-caps respectively.

4.5.2. A family of curves ℋ. Let 𝑁 be an infinite-type surface (with empty
boundary). With the model of a surface described in Subsubsection 4.5.1, we
construct a family of pairwise disjoint and non-homologous separating simple
closed curves ℋ = {𝛾𝑖}0≤𝑖<𝑟, with 1 ≤ 𝑟 ≤ 𝜔 and such that each connected
component of the surface 𝑁′ obtained from 𝑁 by removing pairwise disjoint
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Figure 13. The red points are the set ℰ(𝑁). The punctured
circles are boundaries of discs in𝒟′. The disc with boundary 𝛼
belongs to 𝒟′ but not to 𝒟. The disc with boundary 𝛾 belongs
to 𝒟. The interiors of the shadow discs are removed and the
boundaries are identified in pairs to form handles and cross-
caps.

regular neighborhoods of each 𝛾 ∈ ℋ, has exactly one end accumulated by
genus (orientable or non-orientable).
We remind the reader that while given any surface Σ with at most one end,

any separating curve is null-homologous, if Σ has at least two ends, there exists
separating curves that are not null-homologous. See Figure 14.
Recall that𝐻𝑠𝑒𝑝

1
(𝑁;ℤ) denotes the subgroup of𝐻1(𝑁;ℤ) that is generated by

homology classes that can be represented by separating simple closed curves
on the surface. Notice that Lemma 4.2 of [2] is also valid for non-orientable
surfaces, for the sake of completeness we enounce here this lemma.

Lemma 4.5. If {𝑁𝑖}0≤𝑖<𝜔 is a principal exhaustion of𝑁, then

𝐻
𝑠𝑒𝑝

1
(𝑁;ℤ) = lim

𝑖→∞
𝐻
𝑠𝑒𝑝

1
(𝑁𝑖; ℤ).

In particular, there exists 0 ≤ 𝑛,𝑚 < 𝜔 such that every non-zero element 𝜈 ∈

𝐻
𝑠𝑒𝑝

1
(𝑁;ℤ) can be written as

𝜈 =

𝑚∑

𝑘=1

𝑎𝑘𝜈𝑘

where 𝑎𝑘 ∈ ℤ and 𝜈𝑘 can be represented by a peripheral curve on𝑁𝑛.

Keeping inmind that 𝑁̂ is the surface obtained by “filling” all the planar ends
of 𝑁, it follows from Lemma 4.5 and the fact that 𝐻𝑠𝑒𝑝

1
(𝑁̂; ℤ) is a free abelian

group, that there exists a collection of pairwise disjoint and non-homologous
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Figure 14. In the surface 𝑁1, any separating curve is null-
homologous. In the surface 𝑁2, the curve 𝛾 is not null-
homologous.

separating simple closed curves {𝛾𝑖}0≤𝑖<𝑟 on 𝑁̂ such that

𝐻
𝑠𝑒𝑝

1
(𝑁̂; ℤ) =

⨁

0≤𝑖<𝑟

⟨𝜈𝑖⟩

where 𝜈𝑖 denotes the homology class of 𝛾𝑖.

Remark 4.6.
(1) We can choose the curves 𝛾𝑖 such that they do not intersect the bound-

aries and planar ends of 𝑁.
(2) Notice that 𝑟 could be 𝜔, i.e. 𝐻𝑠𝑒𝑝

1
(𝑁̂; ℤ) could be not finitely generated.

(3) If 𝑁′ is the surface obtained by taking 𝑁̂ and removing pairwise dis-
joint regular neighborhoods of each 𝛾𝑖, then each component of 𝑁′ is
one-ended and has infinite genus. This follows from the fact that each
separating curve in 𝑁′ bounds a compact surface.

(4) Recalling that we can represent 𝑁 as in Subsubsection 4.5.1, we can
choose each 𝛾 such that it is the boundary of a disk 𝜅 ∈ 𝒟.

With this remark in mind, if the surface 𝑁 is one of the following types
∙ orientable,
∙ even or odd non-orientable,
∙ non-orientable and ℰ∞(𝑁) = ℰ−(𝑁),

we defineℋ as the family of pairwise disjoint and non-homologous separating
simple closed curves such that their homology classes generate 𝐻𝑠𝑒𝑝

1
(𝑁̂; ℤ). In

these three cases, with this definition ofℋ we do not have situations as in Fig-
ure 12 𝑏). If 𝑁 is not one of these cases, then ℰ−(𝑁) ≠ ∅ and ℰ∞(𝑁) ≠ ℰ−(𝑁).
We defineℋ for this type of surfaces in the following paragraphs.
Suppose the set of ends of 𝑁 satisfies that ℰ−(𝑁) ≠ ∅ and ℰ∞(𝑁) ≠ ℰ−(𝑁).

Consider a model for 𝑁 as the one described in Subsubsection 4.5.1 and for
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simplicity suppose 𝑁̂ = 𝑁. See Figure 15 for an example. We choose any non-
orientable end 𝑒0− ∈ ℰ−(𝑁). Taking 𝒟 as in Subsubsection 4.5.1, let 𝜅0 ∈ 𝒟

be such that 𝑒0− ∈ 𝜅0 and there exist at least one more 𝜅 ∈ 𝒟 with the same
diameter. Let 𝜅1, … 𝜅𝑟1 ∈ 𝒟 be the disks different from 𝜅0 but with the same
diameter and denote by 𝛾0

1,1
, … , 𝛾0

1,𝑟1
their respective boundaries. Define

ℋ0
𝛾,1

= {𝛾0
1,1
, … , 𝛾0

1,𝑟1
}.

By removing from 𝑁 pairwise disjoint regular neighborhoods of each 𝛾0
1,𝑖
∈

ℋ0
𝛾,1
, we obtain a surface𝑁0 with 𝑟1+1 connected components, each of which

has infinite genus and satisfies one of the following:
a) has only orientable ends,
b) has only non-orientable ends,
c) has both orientable and non-orientable ends.

Denote each connected component of 𝑁0 by 𝑁0
1,𝑖
with 1 ≤ 𝑖 ≤ 𝑟1 + 1 and let

𝑡0 be the number of components of𝑁0 that satisfy (c). Denote each component
𝑁0
1,𝑖
, ordering the components such that the first 𝑡0 components are those that

satisfy (c).
If 𝑡0 < 𝑟1 + 1, for each subsurface 𝑁0

1,𝑖
with 𝑡0 < 𝑖 ≤ 𝑟1 + 1 letℋ0

1,𝑖
be a fam-

ily of pairwise disjoint simple closed curves such that their homology classes
generate 𝐻𝑠𝑒𝑝

1
(𝑁̂0

1,𝑖
; ℤ) and such that they are boundary curves of elements in

𝒟 (see Remark 4.6 ). See Figure 15 for an example. Define

ℋ0 = ℋ0
𝛾,1
∪
⎛

⎜

⎝

𝑟1+1⋃

𝑖=𝑡0+1

ℋ0
1,𝑖

⎞

⎟

⎠

.

The collectionℋ0 above does not consider the surfaces satisfying c) because
in this kind of surfaces we have subsurfaces as in Figure 12, so we need to be
more careful when we select curves whose homology classes generate
𝐻
𝑠𝑒𝑝

1
(𝑁̂0

𝑖,𝑗
; ℤ).

To avoid confusion with the subindices, let 𝑛1 = 𝑡0. If 𝑛1 = 0, we are done
and we defineℋ = ℋ0. If 𝑛1 ≥ 1, for 1 ≤ 𝑗 ≤ 𝑛1 rename each surface 𝑁0

1,𝑗
as

𝑁1
𝑗
. Repeating the algorithm, we obtain the following for each 𝑁1

𝑗
:

i) A set
ℋ1

𝛾,𝑗
= {𝛾1

𝑗,1
, … , 𝛾1

𝑗,𝑟𝑗
}

of separating simple closed curves which are boundaries of disks in𝒟.
ii) A family of subsurfaces 𝑁1

𝑗,𝑖
with 1 ≤ 𝑖 ≤ 𝑟𝑗 + 1, and where the first

0 ≤ 𝑡𝑗 ≤ 𝑟𝑗 + 1 satisfy c) and the rest 𝑟𝑗 + 1 − 𝑡𝑗 satisfy either a) or b).
iii) If 𝑡𝑗 < 𝑟𝑗 + 1, for each 𝑁1

𝑗,𝑖
with 𝑡𝑗 < 𝑖 ≤ 𝑟𝑗 + 1, a setℋ1

𝑗,𝑖
of pairwise

disjoint simple closed curves which are boundaries of disks on 𝒟 and
their homology classes generate𝐻𝑠𝑒𝑝

1
(𝑁̂1

𝑗,𝑖
; ℤ).
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Figure 15. The blue points are orientable ends and the red
points are non-orientable ends. 𝐻𝑠𝑒𝑝

1
(𝑁̂1

1,2
; ℤ) is generated by

the homology classes of the curves 𝛽1 and 𝛽2. The red curves
belong toℋ.

For each 1 ≤ 𝑗 ≤ 𝑛1, if 𝑡𝑗 < 𝑟𝑗 + 1 let

ℋ1
𝑗
= ℋ1

𝛾,𝑗
∪
⎛

⎜

⎝

𝑟𝑗+1⋃

𝑖=𝑡𝑗+1

ℋ1
𝑗,𝑖

⎞

⎟

⎠

and if 𝑡𝑗 = 𝑟𝑗 + 1, letℋ1
𝑗
= ℋ1

𝛾,𝑗
. Define

ℋ1 = ℋ0 ∪

𝑛1⋃

𝑗=1

ℋ1
𝑗
.

Let 𝑛2 =
∑𝑛1

𝑗=1
𝑡𝑗. If 𝑛2 = 0 we are done an letℋ = ℋ1. If 𝑛2 > 0, rename

all the subsurfaces 𝑁1
𝑗,𝑖
with 1 ≤ 𝑗 ≤ 𝑛1 and 1 ≤ 𝑖 ≤ 𝑡𝑗 as 𝑁2

𝑗
, with 1 ≤ 𝑗 ≤ 𝑛2.

We can repeat the previous procedure to obtain a set of curvesℋ2. Continuing
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in this way we define

ℋ =
⋃

0≤𝑖≤𝑛

ℋ𝑖

with 0 ≤ 𝑛 ≤ 𝜔. Notice that since this algorithm may not terminate in finite
time, we have to allow for the possibility that 𝑛 = 𝜔. If𝑁 ≠ 𝑁̂, we defineℋ as
the set of curves obtained by applying the above algorithm to 𝑁̂.

4.5.3. Construction of {𝒉𝒊}𝟎≤𝒊<𝒓. In Subsubsection 4.5.2, for any infinite-type
surface 𝑁 we obtained a family of curvesℋ. In this subsection, we associate a
handle-shift to each 𝛾 ∈ ℋ. The association is similar to the one made in the
proof of Theorem 3 in [2]; for the sake of completeness, we include it here.
First denote by 𝑁′ the surface obtained by taking 𝑁̂ and removing pairwise

disjoint regular neighborhoods of each 𝛾 ∈ ℋ.
The idea is the following: For each 𝛾 there exist two components of 𝑁′ that

we denote by 𝑁1 and 𝑁2, and such that 𝛾 is homotopic to a boundary compo-
nent 𝑏1 of 𝑁1 and homotopic to a boundary component 𝑏2 of 𝑁2. If 𝑁1 and 𝑁2

are both orientable, we associate to 𝛾 an orientable handle shift ℎ𝛾 with attract-
ing and repelling ends ℎ−𝛾 and ℎ

+
𝛾 in 𝑁1 and 𝑁2 respectively. If 𝑁1 and 𝑁2 are

both non-orientable, we associate to 𝛾 a non-orientable handle shift ℎ𝛾 with ℎ−𝛾
and ℎ+𝛾 in𝑁1 and𝑁2 respectively. Finally, if𝑁1 is non-orientable and𝑁2 is ori-
entable, we associate to 𝛾 a semi-orientable handle shift ℎ𝛾 with ℎ−𝛾 and ℎ

+
𝛾 in

𝑁1 and 𝑁2 respectively.
We have the following observations:
i) Each closed curve 𝛾 ∈ ℋ is the boundary of a disk 𝜅𝛾 ∈ 𝒟.
ii) The homology classes of the closed curves of ℋ are linearly indepen-

dent and generate𝐻𝑠𝑒𝑝

1
(𝑁̂; ℤ).

iii) Each separating curve in 𝑁′ bounds a compact surface.
iv) Each connected component of 𝑁′ has one end accumulated by genus.
v) If 𝑁 has at least two non-orientable ends, let 𝑁1 be a connected com-

ponent of 𝑁′ with non-orientable end. Then, there exist a connected
component 𝑁2 of 𝑁′, different from 𝑁1, and a curve 𝛾 ∈ ℋ such that:
(a) 𝑁2 has a non-orientable end and,
(b) 𝑁1 and 𝑁2 have a boundary isotopic to 𝛾 in 𝑁.
This happens by construction of the famillyℋ.

For simplicity, suppose 𝑁 = 𝑁̂ and index the curves in ℋ, in other words
ℋ = {𝛾𝑖}0≤𝑖<𝑟 where 1 ≤ 𝑟 ≤ 𝜔. Recall that every connected component of 𝑁′

is classified up to homeomorphism by its orientability class and the number of
boundary components (see [16]).
As is described in [2], let 𝑌 be the surface obtained from [0, 1] × [1,∞) ⊂ ℝ2

by attaching periodically infinitely many tori like in the construction of 𝑜Σ.
Similarly, let 𝑌′ be the surface obtained from [0, 1] × [−1,−∞) ⊂ ℝ2 by at-
taching periodically infinitely many projective planes.
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On the other hand, consider ℝ2 and remove 𝑛 open disks centered along
the horizontal axis. Attaching an infinite number of tori periodically and ver-
tically above each removed disk, we obtain the one-ended infinite-genus ori-
entable surface with 𝑛 boundary components that in [2] is denoted by 𝑍𝑛. If
below each removed disk we also attach, periodically and vertically, an infinite
number of projective planes, we obtain the one-ended infinitely non-orientable
surface with 𝑛 boundary components, 𝑊𝑛. If instead of attaching an infinite
number of projective planes to 𝑍𝑛 we attach an even (respectively odd) num-
ber, we obtain the one-ended infinite-genus even non-orientable (respectively
odd non-orientable) surface with 𝑛 boundary components that we denote by
𝑒𝑍𝑛 (respectively 𝑜𝑍𝑛).
Observe that there are 𝑛 disjoint embeddings of 𝑌 into 𝑍𝑛,𝑊𝑛, 𝑒𝑍𝑛 and 𝑜𝑍𝑛,

respectively such that in each one the image of [0, 1] × {1} ⊂ 𝑌 is contained
in a unique boundary component of the surface under consideration and each
boundary component contains only one of such images. In the surface𝑊𝑛, we
also have 𝑛 disjoint embeddings of 𝑌′ satisfying similar conditions.
Fix 𝛾𝑖 ∈ {𝛾𝑖}0≤𝑖<𝑟 and let 𝑁1 and 𝑁2 be the two connected components of 𝑁′

that have a boundary component homotopic to 𝛾𝑖 in 𝑁. Denote these bound-
aries by 𝑏1 ⊂ 𝑁1 and 𝑏2 ⊂ 𝑁2. We have the following three cases depending on
the orientability of the ends of 𝑁1 and 𝑁2.

(1) If the end of 𝑁1 and 𝑁2 are both orientable, as is done in [2], let 𝑌𝑗
denote the image of 𝑌 in 𝑁𝑗 intersecting 𝑏𝑗, for 𝑗 = 1, 2. The intervals
𝑌1 ∩ 𝑏1 and 𝑌2 ∩ 𝑏2 can be connected with a strip 𝑇 ≅ [0, 1] × [0, 1] in
the regular neighborhood of 𝛾𝑖. The surface 𝑜Σ can be embedded in 𝑁
with image 𝑜Σ𝑖 = 𝑌1 ∪ 𝑇 ∪ 𝑌2. We have two orientable handle-shifts
supported in 𝑜Σ𝑖, choose one and denote it by ℎ𝑖.

(2) If the end of𝑁1 is orientable and the end of𝑁2 is non-orientable (or vice
versa), we also have an embedding of 𝑜Σ with image 𝑜Σ𝑖 = 𝑌1 ∪ 𝑇 ∪𝑌2
but now we have two semi-orientable handle-shifts supported in 𝑜Σ𝑖,
again choose one and denoted it by ℎ𝑖.

(3) If the end of𝑁1 and𝑁2 are both non-orientable, denote by𝑌′
𝑗
the image

of 𝑌′ in𝑁𝑗 intersecting 𝑏𝑗, 𝑗 = 1, 2. Proceeding as in the previous cases
we have now an embedding of 𝑛Σ in𝑁with image 𝑛Σ𝑖 = 𝑌′

1
∪𝑇∪𝑌′

2
and

in consequence we have two non-orientable handle-shifts supported in
𝑛Σ𝑖, choose one and denote it by ℎ𝑖.

To each 𝛾𝑖 ∈ {𝛾𝑖}0≤𝑖<𝑟 we assign it the corresponding handle-shift ℎ𝑖. Notice
that:

(1) The support of ℎ𝑖 intersect 𝛾𝑗 if and only if 𝑖 = 𝑗, hence ⟨ℎ𝑖, ℎ𝑗⟩ is a free
abelian group, and its rank is 2 if and only if 𝑖 ≠ 𝑗.

(2) In the case 3, there are also two pseudo-orientable handle-shifts (see
Figure 16), however we do not choose any one of them because it is not
clear that doing that we can generate all PMap(𝑁).
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Figure 16. [ℎ1ℎ2ℎ3] = 𝑓−1[ℎ5ℎ4]𝑓.

(3) For each ℎ𝑖, the ends ℎ+𝑖 and ℎ
−
𝑖
span an edge of 𝐸𝐺(𝑁)which by abuse

of notationwe also denote by ℎ𝑖. The set of all such ends and edges form
amaximal tree of 𝐸𝐺(𝑁) denoted by 𝑇𝐸𝐺(𝑁). Even more, we give an
arbitrary orientation to 𝐸𝐺(𝑁) with the condition that every edge ℎ𝑖 in
𝑇𝐸𝐺(𝑁) has initial vertex 𝜄(ℎ𝑖) = ℎ−

𝑖
and terminal vertex 𝜏(ℎ𝑖) = ℎ+

𝑖
.

(4) The set of vertices of𝐸𝐺(𝑁) and edges ℎ𝑖 that correspond to non-orient-
able ends and non-orientable handle-shifts respectively, form a sub-
graph of 𝑇𝐸𝐺(𝑁) that we denote by 𝑛𝑇𝐸𝐺(𝑁). By construction and
the previous points, 𝑛𝑇𝐸𝐺(𝑁) is a subtree.

Consider the abelian subgroup topologically generated by the handle-shifts
{ℎ𝑖}0≤𝑖<𝑟 with the subgroup topology. Note that using the permutation topology,
this group is homeomorphic to the group ℤ𝑟 with the product topology.

4.6. Proof of Theorem E. Before we start the proof of Theorem E, consider
the homeomorphic surfaces 𝑁1 and 𝑁2 that are shown in Figure 16. Let 𝑓 be
the homeomorphism that sends a neighborhood of each column of three cross-
caps on𝑁1 to a neighborhound of a handle and a cross-cap in𝑁2 (the ones that
are in the correponding column in Figure 16). It is not hard to convince yourself
that

[ℎ1◦ℎ2◦ℎ3] = 𝑓−1[ℎ5◦ℎ4]𝑓. (4.1)
Note that in𝑁1, [𝑓−1◦ℎ5◦𝑓] is a pseudo-orientable handle-shift and [𝑓−1◦ℎ4◦𝑓]
is a non-orientable handle-shift.

By Theorem 4.3 ⟨PMap
𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩ ⊆ ⟨PMap

𝑐
(𝑁) ∪ 𝐻⟩, then to prove

Theorem E it is enough to prove that 𝐻 is in ⟨PMap
𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩. Given
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ℎ ∈ 𝐻, the idea is to use PMap
𝑐
(𝑁) and {ℎ𝑖}0≤𝑖<𝑟 to build a handle-shift ℎ with

the same ends that ℎ, then using PMap
𝑐
(𝑁)modify such ℎ to get ℎ. We do this

in four cases.

Non-orientable handle-shifts:: Suppose ℎ ∈ 𝐻 is non-orientable. The at-
tracting and repelling ends ℎ+ and ℎ− are non-orientable. Then, in
𝑛𝑇𝐸𝐺(𝑁) there exists a path 𝛾 that goes from ℎ− to ℎ+. Using the
handle-shifts corresponding to edges of 𝛾 and PMap

𝑐
(𝑁), we can con-

struct a non-orientable handle-shift ℎ such that ℎ
+

= ℎ+ and ℎ
−

= ℎ−.
Finally, using PMap

𝑐
(𝑁) we can modify ℎ to obtain ℎ via conjugation

(approximating the support of ℎ to the support of ℎ) and compositions.
Therefore, ℎ ∈ ⟨PMap

𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩.

Pseudo-orientable handle-shifts:: Supposeℎ ∈ 𝐻 is pseudo-orientable. The
attracting and repelling ends ℎ+ and ℎ− are non-orientable. We can
build ℎ by using non-orientable handle-shifts with ends ℎ+ and ℎ−,
PMap

𝑐
(𝑁) and relations of the type (4.1) above. As, by the previous

case, all non-orientable handle-shifts are in ⟨PMap
𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩, we

have that ℎ ∈ ⟨PMap
𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩.

Semi-orientable handle-shifts:: Supposeℎ ∈ 𝐻 is semi-orientable. Without
loss of generality we can suppose that ℎ+ is orientable and ℎ− is non-
orientable. Due to 𝑛𝑇𝐸𝐺(𝑁) being connected, in 𝑇𝐸𝐺(𝑁) there exists a
path 𝛾 from ℎ− to ℎ+ that first consists of non-orientable handle-shifts
in {ℎ𝑖}0≤𝑖<𝑟, followed by one semi-orientable handle-shift ℎ𝛾 ∈ {ℎ𝑖}0≤𝑖<𝑟
and finally followed by orientable handle-shifts in {ℎ𝑖}0≤𝑖<𝑟. Suppose
that ℎ−𝛾 is non-orientable (if not take ℎ−1𝛾 ). Using PMap

𝑐
(𝑁), the ori-

entable handle-shifts of 𝛾, ℎ𝛾 and pseudo-orientable handle-shifts with
ends ℎ− and ℎ−𝛾 we can construct a semi-orientable handle-shift ℎ such

that ℎ
+

= ℎ+ and ℎ
−

= ℎ−. Finally, using PMap
𝑐
(𝑁) we can modify ℎ

to get ℎ. Therefore, ℎ ∈ ⟨PMap
𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩.

Orientable handle-shifts:: Suppose ℎ ∈ 𝐻 is orientable. Let 𝛾 be a path
in 𝑇𝐸𝐺(𝑁) from ℎ− to ℎ+. If all the vertices of 𝛾 are orientable then
all the edges correspond to orientable handle-shifts. By using these
handle-shifts and PMap

𝑐
(𝑁), we can construct an orientable handle-

shift ℎ such that ℎ
+

= ℎ+ and ℎ
−

= ℎ−. By using PMap
𝑐
(𝑁), we

can modify ℎ to get ℎ. If 𝛾 has non-orientable vertices, then it has two
semi-orientable handle-shift ℎ𝛾1 and ℎ𝛾2. Using ℎ𝛾1 and ℎ𝛾2, pseudo-
orientable handle-shifts, and PMap

𝑐
(𝑁), we can build a handle-shift ℎ

with the same “endpoints” as ℎ. Then, as in the non-orientable handle-
shift case, ℎ can be modified, using PMap

𝑐
(𝑁), to get h. Therefore,

ℎ ∈ ⟨PMap
𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩.



𝐻1(PMap(𝑁);ℤ) FOR 𝑁 NON-ORIENTABLE AND INFINITE-TYPE 1741

5. Proofs of Theorem G and Corollary H
This section is dedicated to the proofs of Theorem G and Corollary H, which

we recall here.

Theorem (G). Let𝑁 be a connected (possibly non-orientable) surface of infinite
topological type with at least two ends accumulated by genus. Then, we have that:

PMap(𝑁) = PMap
𝑐
(𝑁) ⋊

∏

0≤𝑖<𝑟

⟨ℎ𝑖⟩.

Corollary (H). Let𝑁 be a connected (possibly non-orientable) surface of infinite
topological type with genus at least 3. If 𝑁 has at most one end accumulated by
genus, then𝐻1(PMap(𝑁);ℤ) is trivial. If𝑁 has at least two ends accumulated by
genus, then

𝐻1(PMap(𝑁);ℤ) = 𝐻1(ℤ𝑟; ℤ) =
⨁

0≤𝑖<𝑟

ℤ.

For Theorem G, we use the collection of handle-shifts {ℎ𝑖}0≤𝑖<𝑟 (constructed
in the previous section) to define a group homomorphism

𝜑 ∶ ⟨PMap
𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩⟶ ℤ𝑟.

The proof of Theorem G is a corollary of the fact that 𝜑 induces a short exact
sequence that splits.
Afterwards, we use the same argument used in [2] to prove Corollary H.

5.1. The homomorphism 𝝋. In the following, we continue using the same
set of curves {𝛾𝑖}0≤𝑖<𝑟 and handle-shifts {ℎ𝑖}0≤𝑖<𝑟 that were defined in the previ-
ous section.
Let 𝐹(PMap

𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟) be the free group generated by PMap𝑐(𝑁) ∪

{ℎ𝑖}0≤𝑖<𝑟, and let 𝑒𝑖 ∈ ℤ𝑟 be the sequence with 1 in the 𝑖-th coordinate and 0
everywhere else. We define a homomorphism

𝜑 ∶ 𝐹(PMap
𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟) → ℤ𝑟,

defining 𝜑(𝑓) = 0⃗ for all 𝑓 ∈ PMap
𝑐
(𝑁), 𝜑(ℎ𝑖) = 𝑒𝑖 for all 0 ≤ 𝑖 < 𝑟, and

extending via the universal property of free groups.
The next lemma is needed to prove that 𝜑 induces a homomorphism

𝜑 ∶ ⟨PMap
𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩⟶ ℤ𝑟.

Lemma 5.1. Let 𝜋 ∶ 𝐹(PMap
𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟) → ⟨PMap

𝑐
(𝑁), {ℎ𝑖}0≤𝑖<𝑟⟩ be the

canonical projection and let 𝑤 be a reduced word in 𝐹(PMap
𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟). If

𝜋(𝑤) = id, then 𝜑(𝑤) = 0⃗.

Proof. Due to Ker(𝜋) being a normal subgroup and that 𝑤 ∈ Ker(𝜋), we can
assume that 𝑤 = 𝑤0ℎ

𝜀1
𝑖1
𝑤1⋯𝑤𝑛ℎ

𝜀𝑛
𝑖𝑛
𝑤𝑛+1 with 𝑤𝑖 ∈ PMap

𝑐
(𝑁) and 𝜀𝑖 = ±1.

Since 𝑤 has finite length, there exists a compact surface Σ that contains the
supports of all 𝑤𝑖’s, such that 𝜋(𝑤)|𝑁⧵Σ = (ℎ

𝜀1
𝑖1
◦⋯◦ℎ

𝜀𝑛
𝑖𝑛
)|𝑁⧵Σ. And given that
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𝜋(𝑤) = id, we have then that (ℎ𝜀1
𝑖1
◦⋯◦ℎ

𝜀𝑛
𝑖𝑛
)|𝑁⧵Σ = id|𝑁⧵Σ. The elements of

{ℎ𝑖}0≤𝑖<𝑟 have pairwise disjoint support. Hence, if for some 𝑖𝑚 we have that
𝜀𝑖𝑚 = ±1 (that is, we are “shifting forward/backwards” in the support of ℎ𝑖𝑚),
then there exists some 𝑖𝑘 for which 𝜀𝑖𝑘 = ∓1 (that is, we are “shifting back-
wards/forward” in the support of ℎ𝑖𝑘 ) and the support of ℎ𝑖𝑚 is equal to the
suport of ℎ𝑖𝑘 (that is ℎ𝑖𝑚 = ℎ𝑖𝑘 ).
Thus, we have the following:

𝜑(𝑤) = 𝜑(𝑤0) + (𝜀1)𝜑(ℎ𝑖1) +⋯+ (𝜀𝑛)𝜑(ℎ𝑖𝑛) + 𝜑(𝑤𝑛)

= (𝜀1)𝜑(ℎ𝑖1) +⋯+ (𝜀𝑛)𝜑(ℎ𝑖𝑛)

= 0⃗.

□

Due to the previous lemma, we have that 𝜑 descends to a homomorphism:
𝜑 ∶ ⟨PMap

𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩ → ℤ𝑟.

Now, for each 0 ≤ 𝑖 < 𝑟, let 𝜓𝑖 ∶= 𝜋𝑖◦𝜑, where 𝜋𝑖 is the canonical projection
to the 𝑖-th coordinate. This is obviously a homomorphism, but before we prove
it is continuous we need an auxiliary lemma and a definition.

Lemma 5.2. Let 0 ≤ 𝑖 < 𝑟 be fixed, and 𝐴 be a finite set of curves such that 𝐴
does not separate the ends of 𝑁 corresponding to the ends of supp(ℎ𝑖). Then for
any 𝑔 ∈ PMap(𝑁), there exists 𝑓 ∈ PMap

𝑐
(𝑁) such that ℎ𝑖|𝑔(𝐴) = 𝑓|𝑔(𝐴).

Proof. Since 𝐴 does not separate the ends of 𝑁 corresponding to the ends of
supp(ℎ𝑖) and 𝑔 ∈ PMap(𝑁), we have that 𝑔(𝐴) does not separate them too. If
𝑔(𝐴) is disjoint from supp(ℎ𝑖), then 𝑓 = id. So, suppose that 𝑔(𝐴) does intersect
supp(ℎ𝑖).
Let 𝐾 be a compact subset in supp(ℎ𝑖) that contains the intersection of 𝑔(𝐴)

with supp(ℎ𝑖) and has exactly one boundary component, and let Σ1 and Σ2 be
two subsurfaces of supp(ℎ𝑖) homeomorphic to either a Möbius strip or a torus
with a boundary component (depending if ℎ𝑖 is non-orientable or not), such
that Σ1 and Σ2 are both disjoint from 𝐾. Finally, let 𝑎 be an arc with endpoints
in the boundary components of Σ1 and Σ2, such that 𝑎 is disjoint from 𝑔(𝐴). See
Figure 17 for an example.
We define 𝑓 as follows: slide Σ2 through 𝑎 while shifting Σ1 once in the

direction that had originally Σ2. See Figure 17. Thus, 𝑓 ∈ PMap
𝑐
(𝑁) and

ℎ𝑖|𝑔(𝐴) = 𝑓|𝑔(𝐴) as desired. □

Recall that given a separating curve 𝛼 in a finite-type surface Σ, the genus of
𝛼 is the minimum of the genus of the connected components of Σ ⧵ 𝛼.

Lemma 5.3. For each 0 ≤ 𝑖 < 𝑟, the homomorphism 𝜓𝑖 ∶ ⟨PMap
𝑐
(𝑁) ∪

{ℎ𝑗}0≤𝑗<𝑟⟩ → ℤ is continuous.

Proof. To prove that 𝜓𝑖 is continuous, it suffices to prove that Ker(𝜓𝑖) is an
open set in ⟨PMap

𝑐
(𝑁) ∪ {ℎ𝑗}0≤𝑗<𝑟⟩ with the subspace topology. To prove that

Ker(𝜓𝑖) is open is suffices to prove that there exists some open neighbourhood
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Figure 17. How to substitute ℎ𝑖 with an element of PMap𝑐(𝑁).

𝑉 of the identity with 𝑉 ⊂ Ker(𝜓𝑖), since then for every 𝑓 ∈ Ker(𝜓𝑖) we have
that 𝑓𝑉 is an open neighbourhood of 𝑓 contained in 𝑓 Ker(𝜓𝑖) = Ker(𝜓𝑖).
Let 𝑉 = [[𝛾𝑖, 𝑉(𝛾𝑖)]] ∩ ⟨PMap

𝑐
(𝑁) ∪ {ℎ𝑗}0≤𝑗<𝑟⟩, where 𝛾𝑖 is the curve used

to define ℎ𝑖 in Subsubsection 4.5.3 and 𝑉(𝛾𝑖) is a regular neighborhood of 𝛾𝑖.
We need to prove that 𝑉 is an open neighborhood of the identity contained in
Ker(𝜓𝑖).
Note that 𝑉 is open in the subset topology, since [[𝛾𝑖, 𝑉(𝛾𝑖)]] is a sub-basic

open set of PMap(𝑁).
Now, let 𝑓 ∈ 𝑉. If 𝑓 ∈ PMap

𝑐
(𝑁) or 𝑓 = ℎ𝑗 with 𝑗 ≠ 𝑖, it is obvious that

𝜓𝑖(𝑓) = 0.
Hence, let 𝑓 be of the form

𝑓 = 𝑤0◦ℎ
𝜀1
𝑖1
◦𝑤1◦⋯◦𝑤𝑛−1◦ℎ

𝜀𝑛
𝑖𝑛
◦𝑤𝑛

with 𝑤1,⋯ ,𝑤𝑛 ∈ PMap
𝑐
(𝑁) and 𝜀𝑗 = ±1 for all 𝑗. To simplify proving that

𝑓 ∈ Ker(𝜓𝑖), we “get rid” of the handle-shifts that are not apporting anything
to 𝜓𝑖(𝑓): Given that 𝛾𝑖 does not separate the ends of the support of ℎ𝑗 for 𝑗 ≠ 𝑖,
by a repeated use of Lemma 5.2 we can define 𝑓 by substituting each ℎ𝑖𝑚 ≠ ℎ𝑖
with an element of PMap

𝑐
(𝑁), obtaining the following properties:

(1) 𝑓 has the form 𝑤0◦ℎ
𝜖1
𝑖
◦⋯◦ℎ

𝜖𝑘
𝑖
◦𝑤𝑘 with 𝜖𝑗 = ±1 for all 𝑗.

(2) 𝜓𝑖(𝑓) = 𝜓𝑖(𝑓).
(3) 𝑓(𝛾𝑖) = 𝑓(𝛾𝑖).
Note that if 𝑘 = 0, we have that 𝑓 ∈ PMap

𝑐
(𝑁), and by (2) above we have

that 𝜓𝑖(𝑓) = 0. So, we suppose that 𝑘 > 0.
Since for any 𝑤 ∈ PMap

𝑐
(𝑁) we have that ℎ𝜖

𝑖
◦𝑤◦ℎ−𝜖

𝑖
= 𝑤′ for some 𝑤′ ∈

PMap
𝑐
(𝑁), we can assume that the form in (1) above satisfies that for all 1 ≤

𝑗 ≤ 𝑘, 𝜖 = 𝜖𝑗 = 𝜖𝑗+1. Thus, |𝜓𝑖(𝑓)| = 𝑘.
We claim that 𝑘 ≠ 0 implies that 𝑓 ∉ 𝑉 (and by (3) above 𝑓 ∉ 𝑉). Note that

this claim immediately implies the lemma.
We prove this claim using induction on |𝑘|:
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If 𝑘 = 1 and 𝑓 ∈ 𝑉, we have that ℎ𝜖
𝑖
◦𝑤1(𝛾𝑖) = 𝑤−1

0
(𝛾𝑖). Let 𝐾 be a com-

pact subsurface that contains 𝛾𝑖 and 𝑤−1
0
(𝛾𝑖) as essential curves, and contains

supp(𝑤0), supp(𝑤1) and ℎ𝜖𝑖 (supp(𝑤1)). Then 𝛾𝑖, 𝑤−1
0
(𝛾𝑖) and 𝑤1(𝛾𝑖) have the

same genus in 𝐾. However, by the definitions of the 𝛾𝑖 and ℎ𝑖, 𝑤1(𝛾𝑖) sepa-
rates the ends of the support of ℎ𝑖. Thus, the difference between the genera of
ℎ𝜖
𝑖
(𝑤1(𝛾𝑖)) and𝑤1(𝛾𝑖) is 1. In particular, ℎ𝜖𝑖 (𝑤1(𝛾𝑖)) and𝑤−1

0
(𝛾𝑖) cannot have the

same genus in 𝐾, reaching a contradiction. Therefore, if 𝑘 = 1, 𝑓 ∉ 𝑉.
Using an analogous observation as in the base case, we have as induction

hypothesis that 𝑘 = 𝑗 ≥ 1 implies that 𝑓 ∉ 𝑉. Suppose that 𝑘 = 𝑗 + 1 and
𝑓 ∈ 𝑉. Let 𝐾 be a compact subsurface that contains

{𝑤−1
0
(𝛾𝑖), 𝛾𝑖, 𝑤𝑗+1(𝛾𝑖), ℎ

𝜖
𝑖
◦𝑤𝑗+1(𝛾𝑖), … , ℎ

𝜖
𝑖
◦𝑤1◦⋯◦𝑤𝑗+1(𝛾𝑖)}

as essential curves, and contains supp(𝑤0), . . . , supp(𝑤𝑗+1) and all possible
translations of them by the elements {ℎ𝜖

𝑖
, 𝑤𝑗◦ℎ

𝜖
𝑖
, … , ℎ𝜖

𝑖
◦𝑤1◦⋯◦𝑤𝑗}. By the in-

duction hypothesis, the genera of 𝑤−1
0
(𝛾𝑖) and 𝑤1◦⋯◦𝑤𝑗+1(𝛾𝑖) are different;

moreover, the difference between their genus is 𝑗. Since 𝑤1◦⋯◦𝑤𝑗+1(𝛾𝑖) sep-
arates the ends of the support of ℎ𝑖, we obtain that the difference between the
genus of ℎ𝜖

𝑖
◦𝑤1◦⋯◦𝑤𝑗+1(𝛾𝑖) and 𝑤1◦⋯◦𝑤𝑗+1(𝛾𝑖) is 1, increasing the differ-

ence between the genus of ℎ𝜖
𝑖
◦𝑤1◦⋯◦𝑤𝑗+1(𝛾𝑖) and 𝑤−1

0
(𝛾𝑖) to 𝑗 + 1 (this is

because all the ℎ𝑖 have the same power). Thus, we reach a contradiction.
This finishes the proof of the claim. □

The next step is to extend the homomorphism 𝜓𝑖, for all 0 ≤ 𝑖 < 𝑟, to the
closure of ⟨PMap

𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩. This is done in the following lemma.

Lemma 5.4. For each 0 ≤ 𝑖 < 𝑟, 𝜓𝑖 extends to a continuous group homomor-
phism:

𝜓
𝑖
∶ ⟨PMap

𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩ → ℤ.

Proof. Let 𝑓 ∈ ⟨PMap
𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩ and (𝑓𝑗)∞𝑗=0 be a sequence of elements

of the group ⟨PMap
𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩ such that

lim
𝑗→∞

𝑓𝑗 = 𝑓.

Let 𝑁(𝑓(𝛾𝑖)) be a regular neighborhood of 𝑓(𝛾𝑖) and consider the open set
[[𝛾𝑖, 𝑁(𝑓(𝛾𝑖))]] in ⟨PMap𝑐(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩. Fix 𝑀 ≥ 0 such that for all 𝑗 ≥ 𝑀

we have that 𝑓𝑗 ∈ [[𝛾𝑖, 𝑁(𝑓(𝛾𝑖))]]; note this implies that for all 𝑗 ≥ 𝑀, 𝑓𝑗(𝛾𝑖) =
𝑓(𝛾𝑖). Then, for all 𝑗 ≥ 𝑀

[[𝛾𝑖, 𝑁(𝑓(𝛾𝑖))]] = [[𝛾𝑖, 𝑁(𝑓𝑗(𝛾𝑖))]]

= 𝑓𝑗 ⋅ [[𝛾𝑖, 𝑁(𝛾𝑖)]].

In particular, [[𝛾𝑖, 𝑁(𝑓(𝛾𝑖))]] = 𝑓𝑀 ⋅ [[𝛾𝑖, 𝑁(𝛾𝑖)]]. As seen in Lemma 5.3,
[[𝛾𝑖, 𝑁(𝛾𝑖)]] ∩ ⟨PMap𝑐(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩ ⊂ Ker 𝜓𝑖, implying that:

𝑓𝑀 ⋅ [[𝛾𝑖, 𝑁(𝛾𝑖)]] ∩ ⟨PMap𝑐(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩ ⊂ 𝑓𝑀 ⋅ Ker 𝜓𝑖.
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Then, for all 𝑗 ≥ 𝑀 the class 𝑓𝑗 is in 𝑓𝑀 ⋅ Ker 𝜓𝑖. Therefore, 𝜓𝑖(𝑓𝑗) = 𝜓𝑖(𝑓𝑀)

for all 𝑗 ≥ 𝑀, and consequently (𝜓𝑖(𝑓𝑗))∞𝑗=0 converges to 𝜓𝑖(𝑓𝑀).

We define 𝜓𝑖(𝑓) as 𝜓𝑖(𝑓𝑀). We claim that the definition of 𝜓𝑖 is indepen-
dent of the the sequence and thus, restricted to ⟨PMap

𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩ is 𝜓𝑖: If

(𝑔𝑗)
∞
𝑗=0

is another sequence of ⟨PMap
𝑐
(𝑁)∪{ℎ𝑖}0≤𝑖<𝑟⟩ that converges to𝑓, then it

is eventually contained in [[𝛾𝑖, 𝑁(𝑓(𝛾𝑖))]] by the same argument as above. This
implies that the sequence {𝑔−1

𝑗
𝑓𝑗} ⊂ ⟨PMap

𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩ is eventually con-

tained in [[𝛾𝑖, 𝑁(𝛾𝑖)]] ∩ ⟨PMap𝑐(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩ ⊂ Ker 𝜓𝑖. Thus, the sequences
(𝜓𝑖(𝑔𝑗))

∞
𝑗=0

and {𝜓𝑖(𝑓𝑗)}∞𝑗=0 are eventually equal, which implies their limits are
the same.
So, we have defined a sequentially continuous function 𝜓𝑖. Given that both

⟨PMap
𝑐
(𝑁) ∪ 𝐻⟩ and ⟨ℎ𝑖⟩ are metrizable, we have that 𝜓𝑖 is continuous. The

fact that it is a group homomorphism is awell-known fact of topological groups.
□

Finally, we define:

𝜑 ∶ PMap(𝑁) = ⟨PMap
𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩ ⟶ ℤ𝑟

𝑓 ⟼
(
𝜓𝑖(𝑓)

)

0≤𝑖<𝑟
.

This is a continuous group homomorphism since ℤ𝑟 has the product topol-
ogy.

5.2. The semi-direct product. With 𝜑 defined, we can have a short exact se-
quence (which naturally splits!), butwe need the following lemma to determine
exactly who Ker(𝜑) is.

Lemma 5.5. The kernel of 𝜑 is exactly PMap
𝑐
(𝑁).

Proof. Some key observations for the proof of this lemma are the following:
(1) PMap

𝑐
(𝑁) is a normal subgroup ofMap(𝑁).

(2) Since the handle shifts {ℎ𝑖}0≤𝑖<𝑟 have disjoint support, they commute.
(3) Due to (1) and (2) above, for any 𝑖, 𝑤𝑗 ∈ PMap

𝑐
(𝑁) and 𝜖 = ±1, we

have that

ℎ𝜖
𝑖
◦𝑤0◦ℎ

𝑛0
𝑖0
◦⋯◦𝑤𝑘−1◦ℎ

𝑛𝑘
𝑖𝑘
◦𝑤𝑘◦ℎ

−𝜖
𝑖
= 𝑤0◦ℎ

𝑛0
𝑖0
◦⋯◦𝑤𝑘−1◦ℎ

𝑛𝑘
𝑖𝑘
◦𝑤𝑘

for some 𝑤𝑗 ∈ PMap
𝑐
(𝑁).

Thus, if𝑓 ∈ Ker(𝜓𝑖)we canwrite𝑓 as aword in (PMap𝑐(𝑁)∪{ℎ𝑗}0≤𝑗<𝑟)⧵{ℎ𝑖}.
Now, by construction of𝜑we have that PMap

𝑐
(𝑁) ⊂ Ker(𝜑), so we only need

to prove that Ker(𝜑) ⊂ PMap
𝑐
(𝑁).

Let 𝑓 ∈ Ker(𝜑), and (𝑓𝑗)∞𝑗=0 ⊂ ⟨PMap
𝑐
(𝑁) ∪ {ℎ𝑖}0≤𝑖<𝑟⟩ be a sequence con-

verging to 𝑓; we prove that 𝑓 ∈ PMap
𝑐
(𝑁) by finding a sequence (𝑓𝑗)∞𝑗=0 ⊂



1746 JESÚS HERNÁNDEZ HERNÁNDEZ AND CRISTHIAN E. HIDBER

PMap
𝑐
(𝑁) that converges to 𝑓, where intuitively the 𝑓𝑗 are obtained from the

𝑓𝑗 by conveniently substituting handle-shifts by elements of PMap𝑐(𝑁).
For each 0 ≤ 𝑖 < 𝑟 we define the following open neighborhoods of 𝑓:

∙ 𝑈0 ∶= Ker(𝜓
0
).

∙ For 𝑖 > 0, 𝑈𝑖 ∶= 𝑈𝑖−1 ∩ Ker(𝜓𝑖).
Since 𝑓𝑗 → 𝑓 as 𝑗 → ∞, for each 𝑖 there exists 𝐿𝑖 ≥ 0 such that for all 𝑗 ≥ 𝐿𝑖

we have that 𝑓𝑗 ∈ 𝑈𝑖. Thus, we have that for 𝐿𝑖 ≤ 𝑗 < 𝐿𝑖+1 we can write 𝑓𝑗 as
a word in PMap

𝑐
(𝑁) ∪ {ℎ𝑚}𝑖+1≤𝑚<𝑟.

Let Σ0 ⊂ Σ1 ⊂ ⋯ ⊂ 𝑁 be a principal exhaustion of 𝑁 (see Section 1 to recall
the definition) such that for all 𝑗 ≥ 0 and all 𝑖 > 𝑗, Σ𝑗 ∩ supp(ℎ𝑖) = ∅. For each
𝑗 ≥ 0, let𝐴𝑗 be a finite set of curves such that𝐴𝑗 ∩Σ𝑗 is a collection of arcs and
curves in Σ𝑗 that satisfies the hypotheses for the Alexander method for finite-
type surfaces (see Theorem 2.1); that is, for any 𝑔, ℎ ∈ Map(𝑁), we have that if
𝑔|𝐴𝑗 = ℎ|𝐴𝑗 , then 𝑔|Σ𝑗 = ℎ|Σ𝑗 . For each 𝑗 ≥ 0, define 𝑉𝑗 = ∩𝛼∈𝐴𝑗 [[𝛼,𝑁(𝑓(𝛼))]],
where 𝑁(𝛼) is a regular neighborhood of 𝛼. Since every 𝐴𝑗 is a finite set, 𝑉𝑗 is
an open set.
For each 𝑖 ≥ 0, we define the open set𝑊𝑖 = 𝑈𝑖 ∩ 𝑉𝑖. For each 𝑖 there exists

𝑀𝑖 ≥ 𝐿𝑖 ≥ 0 such that for all 𝑗 ≥ 𝑀𝑖, we have that 𝑓𝑗 ∈ 𝑊𝑖. This implies that
𝑓𝑗|Σ𝑖 = 𝑓|Σ𝑖 , and 𝑓𝑗 = 𝑤𝑗,0◦⋯◦𝑤𝑗,𝑘𝑗

, where 𝑤𝑗,𝑛 ∈ PMap
𝑐
(𝑁) ∪ {ℎ𝑚}𝑖+1≤𝑚<𝑟

(this is becase, as mentioned above, 𝑓𝑗 can be written as a word in PMap𝑐(𝑁)∪
{ℎ𝑚}𝑖+1≤𝑚<𝑟).
Now, for each 𝑖 ≥ 0 we take 𝑓𝑀𝑖

= 𝑤𝑀𝑖 ,0
◦⋯◦𝑤𝑀𝑖 ,𝑘𝑀𝑖

. We can assume that
𝑤𝑀𝑖 ,𝑘𝑀𝑖

= idwithout any loss in generality, and we perform the following algo-
rithm to obtain 𝑓𝑖:

∙ We start a cycle with 𝑗 = 𝑘𝑀𝑖
, at the end of the instructions decrease 𝑗

by one and the cycle ends when 𝑗 = −1.
– If 𝑤𝑀𝑖 ,𝑗

∈ PMap
𝑐
(𝑁): We define 𝑤𝑖,𝑗 ∶= 𝑤𝑀𝑖 ,𝑗

.
– Else: We have that 𝑤𝑀𝑖 ,𝑗

∈ {ℎ𝑚, ℎ
−1
𝑚 } for some 𝑚 > 𝑖. Recalling

that𝐴𝑖 does not separate the ends of supp(ℎ𝑚), by Lemma 5.2 there
exists ℎ ∈ PMap

𝑐
(𝑁) such that

ℎ|𝑤𝑖,𝑗+1◦⋯◦𝑤𝑖,𝑘𝑀𝑖
(𝐴𝑖)

= 𝑤𝑀𝑖 ,𝑗
|𝑤𝑀𝑖,𝑗+1◦⋯◦𝑤𝑀𝑖,𝑘𝑀𝑖

(𝐴𝑖)
.

Then we define 𝑤𝑖,𝑗 ∶= ℎ. This implies that

𝑤𝑖,𝑗◦⋯◦𝑤𝑖,𝑘𝑀𝑖
|𝐴𝑖 = 𝑤𝑀𝑖 ,𝑗

◦⋯◦𝑤𝑀𝑖 ,𝑘𝑀𝑖
|𝐴𝑖 .

∙ Define 𝑓𝑖 ∶= 𝑤𝑖,0◦⋯◦𝑤𝑖,𝑘𝑀𝑖
.

Note that 𝑓𝑖 ∈ PMap
𝑐
(𝑁) and 𝑓𝑖|𝐴𝑖 = 𝑓𝑀𝑖

|𝐴𝑖 = 𝑓|𝐴𝑖 , which implies that
𝑓𝑖|Σ𝑖 = 𝑓|Σ𝑖 . Hence, 𝑓𝑖 → 𝑓, and 𝑓 ∈ PMap

𝑐
(𝑁). □

So, we have the following short exact sequence of groups

1 // PMap
𝑐
(𝑁) // PMap(𝑁) // ℤ𝑟 ≅ ⟨ℎ𝑖 ∶ 0 ≤ 𝑖 < 𝑟⟩ // 1,
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whichnaturally splits as the product topology ofℤ𝑟 coincideswith the subgroup
topology of

∏𝑟

𝑖=1
⟨ℎ𝑖⟩. Therefore,

PMap(𝑁) = PMap
𝑐
(𝑁) ⋊

𝑟∏

𝑖=1

⟨ℎ𝑖⟩,

finishing the proof of Theorem G.

5.3. The first integral cohomology group. As mentioned at the beginning
of the section, the argument to prove Corollary H is analogous to the one pre-
sented in [2] for the orientable case. For the sake of completeness we present it
anyway:
Let 𝑁 be an infinite-type surface, Σ0 ⊂ Σ1 ⊂ ⋯ ⊂ 𝑁 be a principal exhaus-

tion, and 𝜙 ∶ PMap(𝑁) → ℤ be a homomorphism. We know that PMap
𝑐
(𝑁) =

⟨
⋃

0≤𝑗<𝜔
PMap(Σ𝑗) ⟩. This implies that PMap𝑐(𝑁)𝑎𝑏 = ⟨

⋃

0≤𝑗<𝜔
PMap(Σ𝑗)𝑎𝑏 ⟩.

By the results of Stukow in [19], for all 𝑗 ≥ 0 we have that PMap(Σ𝑗)𝑎𝑏 is a tor-
sion group. Thus, PMap

𝑐
(𝑁)𝑎𝑏 is generated by torsion elements, which implies

that 𝜙|PMap
𝑐
(𝑁) ≡ 0.

Now, since 𝜙 is a homomorphism from a Polish group toℤ, then by Theorem
1 in [7] we have that 𝜙 is continuous. Since the restriction of 𝜙 to PMap

𝑐
(𝑁) is

constantly 0, we have that 𝜙|
PMap

𝑐
(𝑁)

≡ 0.
Then, we have two possible cases depending on the number of ends of 𝑁

accumulated by genus:
∙ If𝑁 has at most one end accumulated by genus, by Theorem Ewe have
thatPMap

𝑐
(𝑁) = PMap(𝑁). So𝐻1(PMap(𝑁);ℤ) = Hom(PMap(𝑁),ℤ)

is trivial.
∙ If𝑁 has at least two ends accumulated by genus, by TheoremGwe have
that PMap(𝑁) = PMap

𝑐
(𝑁)⋊

∏

0≤𝑖<𝑟

⟨ℎ𝑖⟩. Thus, we have an isomorphism

from 𝐻1(PMap(𝑁);ℤ) = Hom(PMap(𝑁),ℤ) to Hom(ℤ𝑟, ℤ) which, by
the results from Specker in [18] and the arguments from Blass and Gö-
bel in [6], is known to be isomorphic to the free abelian group of rank 𝑟⨁

0≤𝑖<𝑟

ℤ.
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