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𝟐-Permutation Orbifolds of𝑾-algebras

AntunMilas andMichael Penn

Abstract. In this paper we construct several infinite families of𝑊-algebras
as 𝑆2-invariant subalgebras of the tensor product of two copies of affine ver-
tex𝑊-algebras of ‘rank’ two. For every value of the central charge (or level)
we completely determine their types in terms of strong generators. We also
consider simple quotients in the case when the type is different from in the
generic case. We also examine examples of conformal embeddings that come
out of the construction.
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1. Introduction
𝑊-algebras are important algebraic structures that arise in the context of ver-

tex algebra theory (for introduction see [3, 8, 14]) and conformal field theory
(CFT) in theoretical physics [4, 15]. These algebras play a fundamental role in
the study of extended symmetries and have applications in various branches of
representation theory and string theory. While in mathematical literature, the
term "𝑊-algebras" typically pertains to affine𝑊-algebras, we adopt a slightly
broader interpretation, as coined by physicists, where a𝑊-algebra is any ver-
tex algebra endowed with a finite set of strong generators such that their OPEs
involve non-linear terms.
In this paper, continuing a series of papers by the authors with Sadowski

dealing with the Virasoro algebra [11, 12], we focus on the 𝑆2-invariant subal-
gebra of the tensor product of two copies of the principal 𝑊-algebra of a Lie
algebra of rank 2 under the action of the symmetric group on two letters. This
case presents a greater degree of complexity as it lacks a diagonal Lie algebra
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that can be embedded within the fixed point subalgebra. We refer to this invari-
ant subalgebra as the 𝑆2-orbifold (sub)algebra or 2-permutation orbifold. Note
that this terminology deviates somewhat from the standard usage. In the con-
text of vertex algebra theory, the term orbifold vertex algebra typically involves
the fixed point subalgebra under the action of a finite group of automorphisms
and a suitable direct sum of twistedmodules for the larger algebra, correspond-
ing to this automorphism.
In the present work, we consider affine𝑊-algebras associated to simple Lie

algebras of rank two,𝒲𝑘(𝔰𝔩3, 𝑓prin),𝒲𝑘(𝔰𝔭4, 𝑓prin),𝒲𝑘(𝔤2, 𝑓prin), along with
their simple quotients for the first two algebras. Our primary objective is to
describe a strong system of generators of their 𝑆2-orbifold algebras.
Here is a brief outline. In Section 2, we revisit the standard notation concern-

ing affine vertex algebras associated with a simple Lie algebra 𝔤 and discuss
affine 𝑊-algebra 𝒲𝑘(𝔤) associated to a principal nilpotent element. We also
prove a general result that gives the decomposition of the 2-permutation orb-
ifold of an extension𝑉⊕𝑀 in terms of irreduciblemodules for the 2-permutation
orbifold of 𝑉. In Section 3, we begin with the definition of𝒲𝑐(2, 3), depending
on the central charge 𝑐, using generators and OPE relations and explain how
this relates to𝒲𝑘(𝔰𝔩3), parametrized by level 𝑘. In Section 3.2 we completely
describe the structure of the 𝑆2-fixed point subalgebra using minimal strong
generators; see Theorem 3.3. In Section 3.3, we consider simple orbifolds that
have type different from the generic case due to appearance of singular vec-
tors. The most prominent example here is at 𝑐 = −2, also studied in [1]. In
Section 4, we discuss𝒲𝑐(2, 4) and how it relates to𝒲𝑘(𝔰𝔭4), after we switch
to parametrization using level 𝑘. We show that they are isomorphic precisely
when 𝑐 ≠ − 22

5
; for 𝑐 = − 22

5
the affine 𝒲-algebra 𝒲𝑘(𝔰𝔭4) does not have a

primary generator of weight 4. Then we prove the main result of this section,
Theorem4.1 giving a complete structure of the 𝑆2-fixed subalgebra for all values
of the central charge in terms of minimal system of generators. Furthermore,
in parallel with Section 3, we analyze simple orbifolds with low lying singular
vectors that in the simple quotient give a different system of generators. At the
very end, in Section 5, we discuss the 𝑆2-orbifold algebra for the exceptional
affine𝑊-algebra of type 𝔤2; see Theorem 5.1.
Acknowledgements. We sincerely thank the anonymous referee for their

valuable and insightful comments, and especially for their feedback on Section
5.

2. Notation and preliminary results
2.1. Notation. Let 𝑉 = (𝑉,𝑌, 𝟙, 𝜔) be a conformal vertex algebra with the
conformal vector 𝜔, vacuum vector 𝟙, such that 𝑌(𝜔, 𝑥) = ∑

𝑛∈ℤ 𝐿(𝑛)𝑥
−𝑛−2

closes a representation of the Virasoro algebra of central charge 𝑐. Let also
𝑉 ⊗ 𝑉 denotes the tensor product of two copies of 𝑉 equipped with a VOA
structure in the standard way. The symmetric group on two letters 𝑆2 acts on
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𝑉 ⊗ 𝑉 by permuting the tensor factors. The fixed point subalgebra under this
automorphism will be denoted by (𝑉⊗2)𝑆2 .
As some computations in this paper are performed using Mathematica OPE

package [13], throughout we are adopting notation as in loc.cit. (see [11, 12]
also). Under thefield-state correspondence, for𝐴 ∈ 𝑉,𝐴 ↦ 𝐴(𝑧) ∶= 𝑌(𝐴, 𝑧) =∑

𝑛∈ℤ𝐴(𝑛)𝑧−𝑛−1,𝐴(𝑛) ∈ 𝐸𝑛𝑑(𝑉), so we omit the𝑌-map and write𝐴(𝑧) instead.
We also use normal ordered product ◦

◦𝐴𝐵◦
◦(𝑧) (resp. ◦

◦𝐴𝐵◦
◦) to denote the field

(resp. vector) 𝑌(𝐴(−1)𝐵, 𝑧) (resp. 𝐴(−1)𝐵). We also use 𝜕𝑘𝐴 to denote 𝐿(−1)𝑘𝐴.
In other words 𝜕𝑘𝐴 = 𝑘!𝐴(−𝑘−1)𝟏. We also adopt the Operator Product Expan-
sion (OPE), so we oftenwrite𝐴(𝑧)𝐵(𝑤) ∼ ∑

𝑛≥0
(𝐴(𝑛)𝐵)(𝑤)
(𝑧−𝑤)𝑛+1

to display the singular
part in the (𝑧−𝑤) expansion. This type of relation is widely used in the physics
literature.
We say that a vertex algebra 𝑉 is strongly generated by the set 𝑋 = {𝑣𝑖}𝑖∈𝐼

if the span of vectors ◦
◦𝜕𝑛𝑖𝑣𝑖1 ⋯𝜕𝑛𝑘𝑣𝑖𝑘

◦
◦, is all of 𝑉, where 𝑘 ≥ 0, 𝑖𝑗 ∈ 𝐼 and

𝑛𝑗 ∈ ℤ≥0. A minimal set of strong generators, is a strong generating set that
does not have a proper subset of strong generators. If {𝑣𝑖}1≤𝑖≤𝑘 is such a set
consisting of homogeneous vectors of conformal weights {𝑑𝑖}1≤𝑖≤𝑘, we say that
𝑉 is of type (𝑑1, ..., 𝑑𝑘).
We briefly recall the definition of an affine𝑊-algebra associated to a simple

Lie algebra 𝔤. As usual (see for instance [3]), one starts from a universal affine
vertex algebra 𝑉𝑘(𝔤), of level 𝑘 ≠ −ℎ∨. For a nilpotent element 𝑓 ∈ 𝔤, we
consider theDrinfeld-Sokolov reduction of𝑉𝑘(𝔤) to obtain a new vertex algebra
𝒲𝑘(𝔤, 𝑓) = 𝐻0

𝑓(𝑉
𝑘(𝔤)). We only consider the principal nilpotent element 𝑓 =

𝑓𝑝𝑟𝑖𝑛 here, so we shall write𝒲𝑘(𝔤) instead. Its simple quotient will be denoted
by𝒲𝑘(𝔤). In the special case of 𝔤 = 𝔰𝔩2,𝒲𝑘(𝔤) is isomorphic to the universal
Virasoro vertex algebra of 𝑉𝑉𝑖𝑟(𝑐, 0), with central charge 𝑐 = 1 − 6(𝑘+1)2

𝑘+2
. Its

simple quotient is denoted by 𝐿𝑉𝑖𝑟(𝑐, 0); for more about this case see [14].

Definition 2.1. Let 𝔤 be a simple finite dimensional Lie algebra. Then the level
𝑘 = −ℎ∨ + 𝑝

𝑞
∈ ℚ>−ℎ∨ is called admissible if 𝑝, 𝑞 ∈ ℤ≥1, (𝑝, 𝑞) = 1 and 𝑝 ≥ ℎ∨

if (𝑟∨, 𝑞) = 1 and 𝑝 ≥ ℎ, if (𝑟∨, 𝑞) = 𝑟∨. Here ℎ and ℎ∨ are the Coxeter and the
dual Coxeter number, and 𝑟∨ ∈ {1, 2, 3} is the lacity of 𝔤.

It is know that the simple principal affine𝑊-algebra𝒲𝑘(𝔤) is𝐶2-cofinite and
rational, whenever 𝑘 is admissible [3]. These are known asminimalmodels and
are a generalization of the Virasoro minimal models [14].

2.2. Extensions of 𝟐-permutation orbifolds. In this sectionwe consider the
2-permutation orbifold algebra of a simple extension𝑊 = 𝑉 ⊕𝑀, where𝑀 is
an irreducible 𝑉-module. We also assume that 𝑉 is a simple vertex algebra 𝑉
and also assume for simplicity that 𝑉 is positively graded and that the lowest
conformal weight of𝑀 is 𝑤𝑡𝑀 .
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Proposition 2.2. Viewed as a (𝑉⊗2)𝑆2 module,
(𝑊⊗2)𝑆2 = (𝑉⊗2)𝑆2 ⊕𝑊1 ⊕𝑊2

where𝑊1 is an irreducible (𝑉⊗2)𝑆2-module of lowest conformal weight 𝑤𝑡𝑀 and
𝑊2 is irreducible of lowest conformal weight 2𝑤𝑡𝑀 .

Proof. We consider the decomposition into 𝑆2-invariant submodules:
(𝑊 ⊗𝑊)𝑆2 = (𝑉 ⊗ 𝑉)𝑆2 ⊕ (𝑀 ⊗𝑉 ⊕𝑉 ⊗𝑀)𝑆2 ⊕ (𝑀 ⊗𝑀)𝑆2 .

Since𝑀⊗𝑉 is an irreducible (𝑉⊗𝑉)-module, then [6, Theorem 3.2] implies
that𝑀⊗𝑉 remains irreducible as (𝑉⊗𝑉)𝑆2-module. Next we observe that the
symmetrization map 𝑠(𝑚 ⊗ 𝑣) = 𝑣 ⊗ 𝑚 + 𝑚 ⊗ 𝑣, 𝑣 ∈ 𝑉, 𝑚 ∈ 𝑀 defines an
isomorphism between𝑀⊗𝑉 and themiddle term in the above decomposition.
This defines our irreducible module𝑊1 whose lowest weight is clearly 𝑤𝑡𝑀 .
To handle the last summandwe apply [6, Theorem 3.1]. Since𝑉⊗𝑉-module

𝑀 ⊗ 𝑀 is clearly irreducible and (12)◦(𝑀 ⊗ 𝑀) = (𝑀 ⊗ 𝑀) (see [6] for the
notation used) under the automorphism (12) of switching two tensor factors,
the aformentioned result implies that𝑊2 ∶= (𝑀⊗𝑀)𝑆2 is irreducible as (𝑉 ⊗
𝑉)𝑆2-module. Its lowest conformal weight 2𝑤𝑡𝑀 . We proved the claim. □

3. 2-permutation orbifolds of𝒲𝒌(𝖘𝖑𝟑)
3.1. Definition of𝒲𝒄(𝟐, 𝟑). We begin by recalling two approaches to a uni-
versal𝒲-algebra of type (2, 3), in each we take 𝐿 to be the Virasoro generator
and𝑊 the primary weight 3 generator. In the physics literature, this algebra is
usually defined by giving the OPE in terms of the central charge 𝑐 [15]:

𝑊(𝑧)𝑊(𝑤) ∼
𝑐
3
(5𝑐 + 22)

(𝑧 − 𝑤)6
+ 2(5𝑐 + 22)𝐿(𝑤)

(𝑧 − 𝑤)4
+ (5𝑐 + 22)𝜕𝐿(𝑤)

(𝑧 − 𝑤)3

+
32◦◦𝐿(𝑤)2◦◦ +

3
2
(𝑐 − 2)𝜕2𝐿(𝑤)

(𝑧 − 𝑤)2

+
32◦◦(𝜕𝐿(𝑤))𝐿(𝑤)◦◦ +

1
3
(𝑐 − 2)𝜕3𝐿(𝑤)

𝑧 − 𝑤 ,

𝐿(𝑧)𝑊(𝑤) ∼ 3𝑊(𝑤)
(𝑧 − 𝑤)2

+ 𝜕𝑊(𝑤)
𝑧 − 𝑤 ,

𝐿(𝑧)𝐿(𝑤) ∼
𝑐
2

(𝑧 − 𝑤)4
+ 2𝐿(𝑤)
(𝑧 − 𝑤)2

+ 𝜕𝐿(𝑤)
𝑧 − 𝑤 .

(3.1)

More precisely, this system of OPEs determines a nonlinear Lie conformal alge-
bra and hence a vertex algebra freely generated by 𝐿(𝑧) and𝑊(𝑧) [5, Theorem
3.9]. We denote it by𝒲𝑐(2, 3) and its simple quotient𝒲𝑐(2, 3).
Alternatively, this algebra may be constructed via the quantum Drinfeld-

Sokolov reduction starting from the level 𝑘 vertex operator algebra associated to
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the affine vertex algebra 𝑉𝑘(𝔰𝔩3), 𝑘 ≠ −3, so we have𝒲𝑘(𝔰𝔩3). In this realiza-
tion, we can express the generators using affine vertex algebra generators and
fermions. If we let (inside 𝑉𝑘(𝔤) ⊗ ℱ𝑐ℎ, where ℱ𝑐ℎ is a fermionic Fock space
[3, 9]):

𝐽(𝛼1) = ℎ𝛼1 −
◦
◦𝑏(𝛼2)𝑐(𝛼2)◦◦ + 2◦◦𝑏(𝛼1)𝑐(𝛼1)◦◦ + ◦

◦𝑏(𝛼1+𝛼2)𝑐(𝛼1+𝛼2)◦◦
𝐽(𝛼2) = ℎ𝛼2 + 2◦◦𝑏(𝛼2)𝑐(𝛼2)◦◦ − ◦

◦𝑏(𝛼1)𝑐(𝛼1)◦◦ + ◦
◦𝑏(𝛼1+𝛼2)𝑐(𝛼1+𝛼2)◦◦

𝐽(𝑥𝛼1 ) = 𝑥𝛼1 +
◦
◦𝑏(𝛼1+𝛼2)𝑐(𝛼2)◦◦

𝐽(𝑥𝛼2 ) = 𝑥𝛼1 +
◦
◦𝑏(𝛼1+𝛼2)𝑐(𝛼1)◦◦

𝐽(𝑥𝛼1+𝛼2 ) = 𝑥𝛼1+𝛼2
𝐽(𝑥−𝛼1 ) = 𝑥−𝛼1 +

◦
◦𝑏(𝛼2)𝑐(𝛼1+𝛼2)◦◦

𝐽(𝑥−𝛼2 ) = 𝑥−𝛼2 −
◦
◦𝑏(𝛼1)𝑐(𝛼1+𝛼2)◦◦

𝐽(−𝑥𝛼1−𝛼2 ) = 𝑥−𝛼1−𝛼2 ,

(3.2)

then

𝐿 = 1
𝑘 + 3(−𝐽

(𝑥−𝛼1 ) − 𝐽(𝑥−𝛼2 ) + 1
3
◦
◦(𝐽(𝛼1))2◦◦ +

1
3
◦
◦(𝐽(𝛼2))2◦◦

+ 1
3
◦
◦𝐽(𝛼1)𝐽(𝛼2)◦◦ + (𝑘 + 2)𝜕2𝐽(𝛼1) + (𝑘 + 2)𝜕2𝐽(𝛼2))

(3.3)

and

𝑊 = 𝐽(𝑥−𝛼1−𝛼2 ) + 2
3
◦
◦𝐽(𝛼1)𝐽(𝑥−𝛼2 )◦◦ −

1
3
◦
◦𝐽(𝛼1)𝐽(𝑥−𝛼1 )◦◦ +

2
27

◦
◦(𝐽(𝛼1))3◦◦

+ 1
9
◦
◦𝐽(𝛼1)𝐽(𝛼1)𝐽(𝛼2)◦◦ −

1
9
◦
◦𝐽(𝛼1)(𝐽(𝛼2))2◦◦ −

𝑘 + 2
3

◦
◦𝐽(𝛼1)(𝜕𝐽(𝛼2))◦◦

+ 1
3
◦
◦𝐽(𝛼2)𝐽(𝑥−𝛼2 )◦◦ −

2
3
◦
◦𝐽(𝛼2)𝐽(𝑥−𝛼1 )◦◦ −

2
27

◦
◦(𝐽(𝛼2))3◦◦

− 2𝑘 + 4
3

◦
◦(𝜕𝐽(𝛼2))𝐽(𝛼2)◦◦ + (𝑘 + 2)𝜕𝐽(𝑥−𝛼2 ) − (𝑘 + 2)2

3 𝜕2𝐽(𝛼1)

− 2
3(𝑘 + 2)2𝜕2𝐽(𝛼2) + (𝑘 + 2)(𝑘 + 3)

2 𝜕𝐿

(3.4)

strongly generate the zero-th cohomology 𝐻0
𝑓(𝑉𝑘(𝔰𝔩3)), which is by definition

𝒲𝑘(𝔰𝔩3). Here the OPE is parametrized by the level 𝑘, giving the following
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OPE for the weight three generator which we name𝑊,

𝑊(𝑧)𝑊(𝑤) ∼
1
9
(𝑘 + 3)(3𝑘 + 4)(3𝑘 + 5)(4𝑘 + 9)(5𝑘 + 12)

(𝑧 − 𝑤)6

+
− 1
3
(𝑘 + 3)2(3𝑘 + 4)(5𝑘 + 12)𝐿(𝑤)

(𝑧 − 𝑤)4

+
− 1
6
(𝑘 + 3)2(3𝑘 + 4)(5𝑘 + 12)𝜕𝐿(𝑤)

(𝑧 − 𝑤)3

+
− 3
4
(𝑘 + 2)2(𝑘 + 3)2𝜕2𝐿(𝑤) + 2

3

3
◦
◦𝐿(𝑤)2◦◦

(𝑧 − 𝑤)2

+
− 1
6
(𝑘 + 2)2(𝑘 + 3)2𝜕3𝐿(𝑤) + 2

3
(𝑘 + 3)3◦◦(𝜕𝐿(𝑤))𝐿(𝑤)◦◦

𝑧 − 𝑤 .

(3.5)

The equivalence of these algebras is due to the fact that the central charge of
𝒲𝑘(𝔰𝔩3) is

𝑐𝑘 = −2(3𝑘 + 5)(4𝑘 + 9)
𝑘 + 3 ,

and after rescaling𝑊(𝑧) ↦ 1
4
√
3
(𝑘 + 3)3∕2𝑊(𝑧) and replacing 𝑐 ↦ 𝑐𝑘 the OPEs

match. For the remainder of this section we will be working with the “version”
of this algebra which has OPE parameterized by the central charge, 𝑐.
Observe that when 𝑐 = − 22

5
, equivalently 𝑘 = − 4

3
or 𝑘 = − 12

5
, the only

remaining OPE for the weight 3 field with itself in (3.1) is

𝑊(1)𝑊 = 32 (◦◦𝐿2◦◦ −
3
10𝜕

2𝐿)

𝑊(0)𝑊 = 16 ⋅ 𝜕 (◦◦𝐿2◦◦ −
3
10𝜕

2𝐿) .
(3.6)

Thus the ideal 𝐼 generated by 𝑊 inside of 𝒲− 22
5 (2, 3) is proper and contains

◦
◦𝐿2◦◦ −

3
10
𝜕2𝐿 is the well-known singular vector inside of 𝑉𝑉𝑖𝑟(𝑐, 0). This pro-

vides a simple argument that𝒲− 22
5
(2, 3) and thus𝒲− 4

3
(𝔰𝔩3) and𝒲− 12

5
(𝔰𝔩3) are

isomorphic to 𝐿𝑉𝑖𝑟(−
22
5
, 0). This result is of course well-known; see for instance

[7].

3.2. 𝟐-permutation orbifold of𝒲𝒄(𝟐, 𝟑). Nowwe consider the two-fold ten-
sor product 3𝒲𝑐 ∶= 𝒲𝑐(2, 3)⊗𝒲𝑐(2, 3) – the simple quotient will be denoted
by 3𝒲𝑐. Inside of this algebra, we define

𝐿 = 𝐿 ⊗ 𝟙 + 𝟙 ⊗ 𝐿, 𝑈 = 𝐿 ⊗ 𝟙 − 𝟙 ⊗ 𝐿,
𝑊+ = 𝑊 ⊗ 𝟙 + 𝟙⊗𝑊, 𝑊− = 𝑊 ⊗ 𝟙 − 𝟙⊗𝑊, (3.7)
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wherewe have abused notation by using 𝐿 as the Virasoro field both in𝒲𝑐(2, 3)
and 3𝒲𝑐. These fields strongly and freely generate 3𝒲𝑐. With this set-up, the
automorphism that permutes the tensor factors is diagonalized so that 𝐿 and
𝑊+ are fixed whereas 𝑈 ↦ −𝑈 and𝑊− ↦ −𝑊−. The OPE for these fields is
given by:

𝑊±(𝑧)𝑊±(𝑤) ∼
2
3
𝑐(5𝑐 + 22)

(𝑧 − 𝑤)6
+ 2(5𝑐 + 22)𝐿(𝑤)

(𝑧 − 𝑤)4
+ (5𝑐 + 22)𝜕𝐿(𝑤)

(𝑧 − 𝑤)3

+
16◦◦𝐿(𝑤)2◦◦ + 16◦◦𝑈(𝑤)2◦◦ +

3
2
(𝑐 − 2)𝜕2𝐿(𝑤)

(𝑧 − 𝑤)2

+
16◦◦(𝜕𝐿(𝑤))𝐿(𝑤)◦◦ + 16◦◦(𝜕𝑈(𝑤))𝑈(𝑤)◦◦ +

1
3
(𝑐 − 2)𝜕3𝐿(𝑤)

𝑧 − 𝑤 ,
(3.8)

𝑊+(𝑧)𝑊−(𝑤) ∼2(5𝑐 + 22)𝑈(𝑤)
(𝑧 − 𝑤)4

+ (5𝑐 + 22)𝜕𝑈(𝑤)
(𝑧 − 𝑤)3

+
32◦◦𝐿(𝑤)𝑈(𝑤)◦◦ +

3
2
(𝑐 − 2)𝜕2𝑈(𝑤)

(𝑧 − 𝑤)2

+
16𝜕◦◦𝐿(𝑤)𝑈(𝑤)◦◦ +

1
3
(𝑐 − 10)𝜕3𝑈(𝑤)

𝑧 − 𝑤 ,

(3.9)

𝑈(𝑧)𝑊±(𝑤) ∼ 3𝑊∓(𝑤)
(𝑧 − 𝑤)2

+ 𝜕𝑊∓(𝑤)
𝑧 − 𝑤 , (3.10)

and

𝑈(𝑧)𝑈(𝑤) ∼ 𝑐
(𝑧 − 𝑤)4

+ 2𝐿(𝑤)
(𝑧 − 𝑤)2

+ 𝜕𝐿(𝑤)(𝑤)
𝑧 − 𝑤 , (3.11)

where the remaining OPE are understood as 𝑈,𝑊+,𝑊−, are primary and 𝐿 is
a Virasoro field with central charge 2𝑐.
Our goal is to describe a minimal set of strong generators for (3𝒲𝑐)𝑆2 and

explore certain simple quotients (3𝒲𝑐)𝑆2 . We first introduce a filtration on 3𝒲𝑐

and on (3𝒲𝑐)𝑆2 . Let 3𝒲𝑐
(𝑘) denote the space spanned by monomials that are

degree 𝑘 in 𝑊+ and 𝑊−. Then 3𝒲𝑐
(0) = 𝑉𝑉𝑖𝑟(𝑐, 0) is spanned by monomials

entirely in 𝐿 and 𝑈. We obtain an increasing filtration 3𝒲𝑐
(0) ⊂

3𝒲𝑐
(1) ⊂ ⋯

and corresponding graded vertex algebra 𝑔𝑟(3𝒲𝑐) - where all generators 𝑊+

and𝑊− commute which other. Then we introduce associated graded algebra
𝑔𝑟𝐹(𝑔𝑟(3𝒲𝑐)), a commutative Poisson algebra, using Li’s 𝐹-filtration induced
by counting all generators 𝐿, 𝑈,𝑊+ and𝑊−. Using classical invariant theory
the commutative algebra 𝑔𝑟𝐹(𝑔𝑟((3𝒲𝑐)𝑆2)) is generated by

𝜕𝑗1𝐿, 𝜕𝑗2𝑊+, (𝜕𝑗3𝑈)(𝜕𝑗4𝑈), (𝜕𝑗5𝑈)(𝜕𝑗6𝑊−), (𝜕𝑗7𝑊−)(𝜕𝑗8𝑊−),
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where 𝑗𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 8. In fact, using techniques from [11] (and others),
involving the differential structure of 𝑔𝑟𝐹(𝑔𝑟((3𝒲𝑐)𝑆2)), it is generated by

𝐿,𝑊+, (𝜕2𝑗1𝑈)𝑈, (𝜕𝑗2𝑈)𝑊−, (𝜕2𝑗3𝑊−)𝑊−,

for 𝑗𝑖 ≥ 0 for 1 ≤ 𝑖 ≤ 3. This motivates us to define the following fields
Λ𝑎 ∶= ◦

◦(𝜕𝑎𝑈)𝑈◦
◦

Ψ𝑎 ∶= ◦
◦(𝜕𝑎𝑈)𝑊−◦

◦

Ω𝑎 ∶= ◦
◦(𝜕𝑎𝑊−)𝑊−◦

◦,
(3.12)

for 𝑎 ≥ 0, of weight 𝑎 + 4, 𝑎 + 5, and 𝑎 + 6, respectively as well as their double
indexed versions

Λ𝑎,𝑏 ∶= ◦
◦(𝜕𝑎𝑈)(𝜕𝑏𝑈)◦◦

Ψ𝑎,𝑏 ∶= ◦
◦(𝜕𝑎𝑈)(𝜕𝑏𝑊−)◦◦

Ω𝑎,𝑏 ∶= ◦
◦(𝜕𝑎𝑊−)(𝜕𝑏𝑊−)◦◦,

(3.13)

for 𝑎, 𝑏 ≥ 0.
In light of the generating set for 𝑔𝑟𝐹(𝑔𝑟((3𝒲𝑐)𝑆2)), we have

Lemma 3.1. The vertex algebra (3𝒲𝑐)𝑆2 is strongly generated by 𝐿,𝑊+ andΛ2𝑎,
𝑎 ≥ 0, Ψ𝑎, 𝑎 ≥ 0 andΩ2𝑎, 𝑎 ≥ 0.

Importantly, the normalization of the fields 𝑊±(𝑧) was chosen so that all
OPEs, (3.8)-(3.11), of the defining fields have structure constants which are
polynomials in 𝑐. As such, the OPEs for any two normally ordered polynomials
in the fields will have structure constants which are polynomials in 𝑐. It follows
that when any element of (3𝒲𝑐)𝑆2 is rewritten in terms of the strong generating
set, all constants will be polynomials in 𝑐.
Observe that the fields 𝐿 and Λ2𝑎 generate a sub-VOA which is a copy of

(𝑉Vir(𝑐, 0) ⊗ 𝑉Vir(𝑐, 0))
𝑆2 and thus can be described by the following result from

[11].

Theorem 3.2 ([11] Corollary 3.1). We have

(1) For 𝑐 ∉ {−12, − 23
3
, − 34

7
, − 11

5
, − 3

10
, 256
47
} the 2-permutation orbifold alge-

bra (𝑉Vir(𝑐, 0) ⊗ 𝑉Vir(𝑐, 0))
𝑆2 is strongly generated by primary vectors of

weight 2,4,6,8 and is thus of type (2,4,6,8).

(2) The orbifold
(
𝑉Vir(

256
47
, 0) ⊗ 𝑉Vir(

256
47
, 0)

)𝑆2
is strongly generated by pri-

mary vectors of weight 2,4,6,8,10 and is thus of type (2,4,6,8,10).
(3) In all other cases (𝑉Vir(𝑐, 0) ⊗ 𝑉Vir(𝑐, 0))

𝑆2 is strongly generated by vectors
in weight 2,4,6,8 some of which are not primary.

In the language of our current setting, in all cases except when 𝑐 = 256
47

the
generators of the form Λ2𝑎 can be minimized to the three fields Λ0, Λ2, and Λ4,
with the addition of Λ6 in the exceptional case.
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Next, we move to minimizing the generators of the form Ψ𝑎. Towards this
goal we observe that expressions of the form

𝑅Ψ𝑚,𝑛 = ◦
◦Λ𝑚Ψ𝑛

◦
◦ − ◦

◦Λ𝑚,𝑛Ψ0
◦
◦ (3.14)

will allowus towrite higherweight generators in terms of fields of lowerweight.
As a concrete example we have

𝑅Ψ0,1 =
◦
◦𝐿Ψ3

◦
◦ + 3◦◦𝑊+Λ2,1

◦
◦ +

5
2
◦
◦(𝜕𝐿)Ψ2)◦◦ + 2◦◦(𝜕𝑊+)Λ1,1

◦
◦ −

1
2
◦
◦𝑊+Λ3

◦
◦

+ 5
2
◦
◦(𝜕𝐿)Ψ2

◦
◦ + 2◦◦(𝜕2𝐿)Ψ1

◦
◦ +

1
6
◦
◦(𝜕3𝐿)Ψ0

◦
◦ −

1
2
◦
◦(𝜕𝑊+)Λ2

◦
◦ +

5
24Ψ0,5

− 19
12Ψ1,4 −

3
2Ψ2,3 +

1
4Ψ3,2 +

7
24Ψ4,1 + ( 115 +

7𝑐
120)Ψ5,0 −

11
840𝜕

7𝑊+.

Using the fact that

Ψ𝑎,𝑏 = (−1)𝑏Ψ𝑎+𝑏 +
𝑎+𝑏∑

𝑗=1
(−1)𝑏+𝑗

(𝑏
𝑗
)
𝜕𝑗Ψ𝑎+𝑏−𝑗, (3.15)

we can write
𝑅Ψ0,1 = (− 4

15 +
7𝑐
120)Ψ5 + Υ0,1,

where Υ0,1 is a normally ordered polynomial in lower weight generators. This
allows us to eliminate the need for the generator Ψ5 except for the case when
𝑐 = 32

7
. Using a combination of 𝑅Ψ𝑚+1,1 and 𝑅

Ψ
𝑚,2 for 𝑚 ≥ 0 will allow us to

eliminate the need for all generators Ψ𝑎 for 𝑎 ≥ 6.
In fact, by direct calculation we have

𝑝1(𝑚)𝑅Ψ𝑚+1,1 + 𝑝2(𝑚)𝑅Ψ𝑚,2 = Ψ𝑚+6 + Υ𝑚+6, (3.16)

where

𝑝1(𝑚) = −
300(𝑚 + 1)(𝑚 + 2)(𝑚 + 3)(𝑚 + 5)(𝑚 + 6)

(
𝑚2 + 8𝑚 + 15

)

𝑓(𝑚)

𝑝2(𝑚) =
−30𝑚(𝑚 + 1)(𝑚 + 2)(𝑚 + 3)(𝑚 + 5)(𝑚 + 6)

(
2𝑚3 + 36𝑚2 + 243𝑚 + 524

)

𝑓(𝑚)
,

with
𝑓(𝑚) =16𝑚9 + 492𝑚8 + 6190𝑚7 + 38394𝑚6 + 103639𝑚5

− 30702𝑚4 − 744735𝑚3 − 956694𝑚2 + 718680𝑚 + 1152000
and Υ𝑚+6 is a normally ordered polynomial in 𝐿,𝑊+, Λ0, Λ2, Λ4, Λ6, andΨ𝑛 for
0 ≤ 𝑛 ≤ 𝑚+5where the coefficients are polynomials in 𝑐 and rational functions
(without poles at non-negative integers) in𝑚.
Now we observe that for all 𝑚 ∈ ℤ≥0 𝑝1(𝑚), 𝑝2(𝑚), and 𝑓(𝑚) are never

zero, meaning that Ψ𝑚+6 can be in the the subalgebra strongly generated by
𝐿,𝑊+, Λ0, Λ2, Λ4, Λ6, and Ψ𝑛 for 0 ≤ 𝑛 ≤ 𝑚 + 5. This gives a clear inductive
path to write any generator of the form Ψ𝑎 in terms of 𝐿,𝑊+Λ0, Λ2, Λ4, Λ6 and
Ψ𝑛 for 0 ≤ 𝑛 ≤ 5.
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Finally, we move to minimizing the need for generators of the form Ω2𝑎. In,
parallel to (3.14) we introduce

𝑅Ω𝑚,𝑛 = ◦
◦Ψ𝑚,𝑛Ψ0

◦
◦ − ◦

◦Λ𝑚Ω𝑛
◦
◦ (3.17)

and observe that

𝑅Ω0,0 =
◦
◦(𝜕2𝑊+)Ψ0

◦
◦ −

3
4Ω2,2 +

1
2Ω3,1 + (62 + 2𝑐

24 )Ω4 +⋯ , (3.18)

where the⋯ terms are made up from the fields 𝐿 and 𝑈. Applying (3.15), we
have

𝑅Ω0,0 =
32 + 𝑐
24 Ω4 + Φ0,0, (3.19)

whereΦ0,0 is a normally ordered polynomialwith only lowerweight generators.
This allows us to remove the need for Ω4 from our strong generating set when
𝑐 ≠ −32. Next we observe that for𝑚 ≥ 0 we have
Ω2𝑚+6+Φ2𝑚+6 =

2(𝑚 + 3)(2𝑚 + 3)(2𝑚 + 5)
40𝑚2 + 158𝑚 + 137 𝑅Ω2𝑚+2,0 +

(2𝑚 + 3)(2𝑚 + 5)2
40𝑚2 + 158𝑚 + 137𝑅

Ω
2𝑚+1,1,

whereΦ2𝑚+6 is a normally ordered polynomial in thefields𝐿,𝑊+, Λ0, Λ2, Λ4, Λ6,
Ψ𝑛 for 0 ≤ 𝑛 ≤ 5, andΩ2𝑛 for 0 ≤ 2𝑛 ≤ 2𝑚 + 6 where the coefficients are poly-
nomials in 𝑐 and rational functions(without poles at non-negative integers) in
𝑚. Thus we have a inductive method of writing any generator of the form Φ2𝑎
in terms of 𝐿,𝑊+, Λ0, Λ2, Λ4, Λ6, Ψ𝑛 for 0 ≤ 𝑛 ≤ 5, and Ω2𝑛 for 0 ≤ 2𝑛 ≤ 6.
The above calculations bring us to the main result of this section

Theorem 3.3. For

𝑐 ∉ {−32, −12, −233 , −
34
7 , −

11
5 , −

3
10,

256
47 ,

32
7 } ,

the orbifold
(3𝒲𝑐)𝑆2 is strongly generated by the conformal field 𝑇𝑝, a weight 3

field 𝑊𝑝, a weight 4 field Λ0, a weight 5 field Ψ0, three weight 6 fields Λ2, Ψ1,
Ω0, one weight 7 field Ψ2, three weight 8 fields Λ4, Ψ3, Ω2, and one weight 9 field
Ψ4. Thus it is of type (2, 3, 4, 5, 63, 7, 83, 9). We also have the following exceptional
cases:

∙ If 𝑐 = 256
47
, we also need Λ6 and the orbifold is of type

(2, 3, 4, 5, 63, 7, 83, 9, 10).
∙ If 𝑐 = 32

7
, we also need Ψ5 and the orbifold is of type

(2, 3, 4, 5, 63, 7, 83, 9, 10).
∙ If 𝑐 = −73, we also needΩ4 and the orbifold is of type
(2, 3, 4, 5, 63, 7, 83, 9, 10).

∙ In all other cases,
(3𝒲𝑐)𝑆2 is generated by vectors of weight

2, 3, 4, 5, 63, 7, 83, 9, some of which may not be primary.
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3.3. The simple quotient (𝟑𝒲𝒄)𝑺𝟐 for certain values of the central charge.
In this part we consider the simple quotient of (3𝒲𝑐)𝑆2 . Our approach is similar
as in [11] and [12] used for the Virasoro orbifolds. The strong set of generators
in Theorem 3.3 will descend to a strong generating set for (3𝒲𝑐)𝑆2 . But if the
maximal ideal 3𝒲𝑐 has components of weight ≤ 9, there may be additional
coupling relations and the strong generating need not beminimal. There is only
a few special values of the central charge there are low weight singular vectors
that allow us to further reduce the generating set in the simple quotient.
Our first special case will be when 𝑐 = − 22

5
. As explained above we know

that𝒲− 22
5
(2, 3) ≅ 𝐿𝑉𝑖𝑟(−

22
5
, 0) and thus

(3𝒲− 22
5
)
𝑆2
= (𝐿𝑉𝑖𝑟(−

22
5 , 0) ⊗ 𝐿𝑉𝑖𝑟(−

22
5 , 0))

𝑆2
≅ 𝐿𝑉𝑖𝑟(−

44
5 , 0),

where the final isomorphism is well known [14]. This𝑊-algebra is rational.
Next, we investigate the case when 𝑐 = − 114

7
. At this value of central charge

the𝑊-algebra is rational. There is a weight 5 singular vector inside𝒲− 114
7 (2, 3)

given by

◦
◦𝐿𝑊◦

◦ −
3
14𝜕

2𝑊, (3.20)

which gives rise to a singular vector with (3𝒲− 114
7 )𝑆2 of

𝑣sing5 = Ψ0 + ◦
◦𝐿𝑊+◦

◦ −
3
7𝜕

2𝑊. (3.21)

This obviously allows us to remove the weight 5 generator Ψ0 but further cal-
culations will allow us to remove more. For instance at weight 6 we have

36Ω0 +
72
13Λ2 =

126
13

◦
◦𝐿Λ0

◦
◦ +

42
13

◦
◦𝐿2◦◦ − 36◦◦𝑊+𝑊+◦

◦ −
72
13

◦
◦(𝜕𝐿)2◦◦

− 144
13

◦
◦(𝜕2𝐿)𝐿◦

◦ −
36
13𝜕

2Λ0 +
144
91 𝜕

4𝐿 − (Ψ1)(4)𝑣
sing
5 ,

(3.22)

so we have removed the need for Ω0, leaving two weight 6 generators Λ2 and
Ψ1. At weight 7, we have

Ψ2 =
7
10

◦
◦𝐿𝑣

sing
5

◦
◦ −

7
10

◦
◦𝐿2𝑊◦

◦ +
13
10

◦
◦𝐿𝜕2𝑊+◦

◦ +
7
10

◦
◦𝑊+Ψ0

◦
◦

+ 2◦◦(𝜕𝐿)(𝜕𝑊+)◦◦ + ◦
◦(𝜕2𝐿)𝑊◦

◦ + 2𝜕Ψ1 −
143
150𝜕

2𝑣sing5

− 671
1680𝜕

4𝑊+ − 7
300(Λ2)(3)𝑣

sing
5 ,

(3.23)
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removing the need for the only weight 7 generator. We also have three weight
8 equations

Ψ3 =
149
175

◦
◦(𝜕3𝐿)𝑊+◦

◦ +
531
175

◦
◦(𝜕2𝐿)(𝜕𝑊+)◦◦ +

3
25

◦
◦(𝜕𝐿)𝑣

sing
5

◦
◦

+ 108
35

◦
◦(𝜕𝐿)(𝜕2𝑊)◦◦ −

6
25

◦
◦(𝜕𝐿)𝐿𝑊+◦

◦ +
3
25

◦
◦𝐿(𝜕𝑣

sing
5 )◦◦

+ 186
175

◦
◦𝐿(𝜕3𝑊+)◦◦ −

3
25

◦
◦𝐿𝐿(𝜕𝑊+)◦◦ +

42
25

◦
◦𝐿Ψ1

◦
◦

+ 24
25

◦
◦𝑊+(𝜕Λ0)◦◦ +

3
25

◦
◦(𝜕𝑊+)Λ0

◦
◦ −

177
175𝜕

3𝑣sing5

− 482
1225𝜕

5𝑊+ + 228
175𝜕

2Ψ1 +
3
7𝜕Ψ2 −

3
50(Λ2)(2)𝑣

sing
5 ,

(3.24)

and two more involving Λ4 and Ω2 eliminating the need for all weight 8 gen-
erators. Similarly there is a relation that allows us to eliminate the weight 9
generator Ψ4. From all of this we see that the simple quotient of (3𝒲− 114

7
)𝑆2 is

strongly generated by fields𝐿,𝑊+,Λ0,Ψ1, andΛ2 and is thus of type (2, 3, 4, 62).
Since we started from a rational𝑊-algebra, we obtain a new rational vertex al-
gebra of type (2, 3, 4, 62).
Now we look at the case when 𝑐 = 4

5
, where there is a weight 6 singular

vector given by

𝑣sing6 = −7895Ω0 −
162
95 Λ2 + ◦

◦𝐿Λ0
◦
◦ +

1
3
◦
◦𝐿2◦◦ −

78
95

◦
◦(𝑊+)2◦◦ +

17
19

◦
◦(𝜕𝐿)2◦◦

− 77
95

◦
◦(𝜕2𝐿)𝐿◦

◦ +
17
38𝜕

2Λ0 −
193
1140𝜕

4𝐿.
(3.25)

Similarly to above, we can use 𝑣sing6 to eliminate the need for one of the weight
6 generators and all of the generators of weights 7-9. As such the simple quo-
tient of 𝒲𝑆2

4
5

is strongly generated by fields 𝐿, 𝑊+, Λ0, Ψ0, Ψ1, and Λ2 and is

thus of type (2, 3, 4, 5, 62). Again, we have a new rational vertex algebra of type
(2, 3, 4, 5, 62).
We also get the following decomposition.

Proposition 3.4.

(3𝒲 4
5
)
𝑆2
= 𝒲−22∕5(𝔰𝔭8) ⊕𝑊1 ⊕𝑊2

where 𝑊1 and 𝑊2 are irreducible 𝒲−22∕5(𝔰𝔭8)-modules of lowest conformal
weights 3 and 6, respectively.

Proof. This follows from Theorem 2.2 together with [11, Corollary 5.3] where
we obtained an isomorphism among the 𝑆2-Virasoro orbifold at 𝑐 =

4
5
and the

affine𝑊-algebra𝒲𝑘(𝔰𝔭8) at level 𝑘 = − 22
5
.

□
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Next, we consider the case when 𝑐 = −23, in which there is a weight 6 sin-
gular vector given by

𝑤sing
6 = −938 Ω0 −

11
16Λ2 +

1
3
◦
◦𝐿3◦◦ −

93
8

◦
◦(𝑊+)2◦◦ −

17
16

◦
◦(𝜕𝐿)2◦◦

− 7
4
◦
◦(𝜕2𝐿)𝐿◦

◦ −
17
32𝜕

2Λ0 +
89
192𝜕

4𝐿.
(3.26)

Similarly to above, we can use𝑤sing
6 to eliminate the need for one of the weight

6 generators, the weight 7 generator, one of the weight 8 generators, and the
weight 9 generator. As such the simple quotient o(3𝒲−23)𝑆2 is strongly gener-
ated by fields

𝐿, 𝑊+, Λ0, Ψ1, Ψ2, Λ2, Ψ3, Λ3,

and is thus of type (2, 3, 4, 5, 62, 82). This vertex algebra is also rational.

Next we finish with a non-rational orbifold. At 𝑐 = −2, there is a weight 6
singular vector,

10Ψ1 − 4◦◦𝐿𝜕𝑊+◦
◦ + 6◦◦(𝜕𝐿)𝑊+◦

◦ − 4𝜕Ψ1 + 𝜕3𝑊+,

that leads to the elimination of Ψ1, Ω0, Ω2, and Ψ4, leaving an algebra of type
(2, 3, 4, 5, 6, 7, 8). This examplewas studied in [1] in connectionwith𝒲− 5

2
(𝔰𝔭4).

As discussed there, the simple affine𝑊-algebra𝒲− 5
2
(𝔰𝔭4) embeds inside the

tensor product of two copies of the (1, 2) singlet vertex algebraℳ(2) of central
charge 𝑐 = −2. This singlet algebra is known to be isomorphic to𝒲−2(𝔰𝔩3) =
𝒲−2(2, 3) (𝑘 = −2 leads to 𝑐 = −2 for 𝔰𝔩3). We have a semisimple decomposi-
tion

𝒲−2(𝔰𝔩3)⊗
2 =

⨁

𝜆∈𝑃+
𝑎𝜆𝐸𝜆

into irreducible𝒲− 5
2
(𝔰𝔭4)-modules 𝐸𝜆 [10]. Coefficients 𝑎𝜆 ∈ ℕ0 is given by

the dimension of the zero weight subspaces of the simple 𝔰𝔭4-modules 𝑉𝔰𝔭4(𝜆)
of highest weight 𝜆 [1]. It is easy to see that the 𝑆2-orbifold (𝒲−2(𝔰𝔩3)⊗

2)𝑆2 also
contains𝒲− 5

2
(𝔰𝔭4) as a subalgebra. We also recall that the parafermion algebra

𝑁−1(𝔰𝔩2) embeds inside 𝒲−2(𝔰𝔩3)⊗
2 and also inside the 𝑆2-orbifold, and we

have a semisimple decomposition (see [1]):

(𝒲−2(𝔰𝔩3)⊗
2)𝑆2 =

⨁

𝑠≥0
𝑁−1(4𝑠𝜔), (3.27)

where 𝑁−1(𝑛𝜔) are irreducible 𝑁−1(𝔰𝔩2)-modules coming from the Weyl 𝔰𝔩2-
module whose top component is 𝑉(𝑛𝜔). Then we have the following result:
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Proposition 3.5.
(
𝒲−2(𝔰𝔩3)⊗

2)𝑆2 =
⨁

𝜆∈𝑃+
𝑛≡0 mod 2

𝑎𝜆𝐸𝜆

where 𝜆 = 𝑛𝜔1 +𝑚𝜔2 satisfies

𝜆 =
⎧

⎨
⎩

𝑚(𝑛+1)
4

, 𝑚 ≡ 1 mod 2

(𝑚+2)𝑛
4

+ ⌊𝑚
4
⌋ + 1, 𝑚 ≡ 0 mod 2.

Proof. The idea is very similar as in [1] so we only indicate the main steps
and omit computational details. Adamović and the first author already demon-
strated, that there is an explicit decomposition of 𝑁−1(𝔰𝔩2) in terms of irre-
ducible𝒲− 5

2
(𝔰𝔭4)-modules 𝐸𝜆. This is done using the semisimplicity of the de-

composition and by comparing characters. The same idea applies to each indi-
vidualmodule,𝑁−1(𝑛𝜔), andwe get decompositions into irreducible𝒲− 5

2
(𝔰𝔭4)-

modules by comparing characters. Summing over all 𝑠 in formula (3.27) then
gives the result. □

In the case of 𝑐 = − 186
5
there is a singular vector at weight 8 allowing us

to remove a weight 8 generator and the weight 9 generator, leaving a simple
quotient of type (2, 3, 4, 5, 63, 7, 82). This vertex algebra is rational [3].
Finally, in the case that 𝑐 = − 490

11
, there is a singular vector at weight 9 al-

lowing us to remove a weight 8 generator and the weight 9 generator, leaving
a simple quotient of type (2, 3, 4, 5, 63, 7, 83). This vertex algebra is also rational
[3].

Remark 3.6. It is interesting to note, as a direct consequence of our construc-
tion, that the 𝑆2-orbifold algebra

(3𝒲𝑐
)𝑆2 is (weakly) generated by𝑊 and 𝐿 for

all values of 𝑐, except when 𝑐 = −2, in which case we require a generator of
weight of 6 (see (3.27)).

4. 2-permutation orbifolds of𝒲𝒌(𝖘𝖕𝟒)
4.1. Definition of𝒲𝒄(𝟐, 𝟒). In parallel to section 4.1, we now recall two ap-
proaches to a universal𝒲-algebra of type (2, 4), taking 𝐿 to be the conformal
field and𝑊 the primary weight 4 generator. In fact, we parallel most of the no-
tation from our previous section here. We will denote by𝒲𝑐(2, 4) the universal
algebra whose OPE is parameterized with respect to the central charge, 𝑐. As
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above, we take𝒲𝑐(2, 4) to be the simple quotient. In this setting we have

𝑊(𝑧)𝑊(𝑤) ∼
147
2
𝑐𝑝0(𝑐)

(𝑧 − 𝑤)8
+ 588𝑝0(𝑐)𝐿(𝑤)

(𝑧 − 𝑤)6
+ 294𝑝0(𝑐)𝜕𝐿(𝑤)

(𝑧 − 𝑤)5

+ 63𝑝1(𝑐)(2𝑊(𝑤) + 7𝑝2(𝑐)(28◦◦𝐿(𝑤)2◦◦ + (𝑐 − 4)𝜕2𝐿(𝑤))
(𝑧 − 𝑤)4

+ 7𝑝1(𝑐)(9𝜕𝑊(𝑤) + 14𝑝2(𝑐)(126◦◦(𝜕𝐿(𝑤))𝐿(𝑤)◦◦ + (𝑐 − 4)𝜕3𝐿(𝑤)))
(𝑧 − 𝑤)3

+
7
2
𝑝3(𝑐)((5𝑐 + 64)𝜕2𝑊(𝑤) + 336◦◦𝐿(𝑤)𝑊(𝑤)◦◦ + (𝑐 + 24)𝑍0(𝑤))

(𝑧 − 𝑤)2

+
7
20
𝑝3(𝑐)(10(𝑐 − 4)𝜕3𝑊(𝑤) + 1680𝜕◦◦𝐿(𝑤)𝑊(𝑤)◦◦ + (𝑐 + 24)𝑍1(𝑤))

𝑧 − 𝑤 ,
(4.1)

where
𝑝0(𝑐) = (𝑐 + 24)(2𝑐 − 1)(5𝑐 + 22)(7𝑐 + 68)

(
𝑐2 − 172𝑐 + 196

)

𝑝1(𝑐) = (𝑐 + 24)
(
𝑐2 − 172𝑐 + 196

)

𝑝2(𝑐) = (2𝑐 − 1)(7𝑐 + 68)
𝑝3(𝑐) =

(
𝑐2 − 172𝑐 + 196

)

𝑍0 = 2016(13 + 72𝑐)◦◦𝐿3◦◦ + 84
(
176𝑐2 + 117𝑐 − 2528

)
◦
◦(𝜕2𝐿)𝐿◦

◦

+ 42
(
295𝑐2 + 2592𝑐 + 2048

)
◦
◦(𝜕𝐿)2◦◦ + 14

(
5𝑐3 + 5𝑐2 − 764𝑐 − 116

)
𝜕4𝐿

𝑍1 = 30240(72𝑐 + 13)◦◦(𝜕𝐿)𝐿2◦◦ + 1260(59𝑐2 + 316)◦◦(𝜕2𝐿)(𝜕𝐿)◦◦
+ 2520(13𝑐2 + 13𝑐 − 316)◦◦(𝜕3𝐿)𝐿◦

◦ + 21(5𝑐3 + 5𝑐2 − 764𝑐 − 116)𝜕5𝐿.
As in Section 3, we can alternatively view this algebra as the universal affine

𝒲-algebra𝒲𝑘(𝔰𝔭4) with central charge

𝑐𝑘 = −2(5𝑘 + 12)(6𝑘 + 13)
𝑘 + 3 .

We omit explicit formulas here for the sake of brevity. The OPE parameterized
with respect to the level, 𝑘, can be found in [7]. The OPE presented in [7] is
written under the assumption that the weight 4 generator, 𝑊, is primary. A
scaling has been chosen so that the 747 + 674𝑘 + 150𝑘2 does not appear in the
denominator of any structure constants. With this presentation of the OPE if 𝑘
is a root of 747+674𝑘+150𝑘2 the corresponding VOA is not simple – its simple
quotient is the simple Virasoro VOA of central charge 𝑐 = − 22

5
. In the process

of scaling some information has been lost and for these values of 𝑘, the OPE of
𝒲𝑘(𝔰𝔭4) is different and not a specialization of the OPEs in [7].
We briefly present the explicit construction of𝒲𝑘(𝔰𝔭4)which starts with the

vertex operator algebra

𝒞𝑘(𝔰𝔭4) = 𝑉𝑘(𝔰𝔭4) ⊗ ℱch,
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where 𝑉𝑘(𝔰𝔭4) is the universal level 𝑘 associated with 𝔰𝔭4 and ℱch is a vertex
algebra of charge free fermions corresponding with the decomposition of 𝔰𝔭4
with respect to the principal nilpotent 𝑓 = 𝑥−𝛼1 + 𝑥−𝛼2 . Also, set

𝑑(1) =◦
◦𝑥𝛼1𝑐

(𝛼1)◦
◦ + ◦

◦𝑥𝛼2𝑐
(𝛼2)◦

◦ + ◦
◦𝑥𝛼1+𝛼2𝑐

(𝛼1+𝛼2)◦
◦ + ◦

◦𝑥𝛼1+2𝛼2𝑐
(𝛼1+2𝛼2)◦

◦

− ◦
◦𝑏(𝛼1+𝛼2)𝑐(𝛼1)𝑐(𝛼2)◦◦ + 2◦◦𝑏(𝛼1+2𝛼2)𝑐(𝛼2)𝑐(𝛼1+𝛼2)◦◦,

𝑑(2) =𝑐(𝛼1) + 2𝑐(𝛼2),

and
𝑑 ∶= 𝑑(1) + 𝑑(2).

The map 𝑑(0) ∶ 𝒞𝑘(𝔰𝔭4) → 𝒞𝑘(𝔰𝔭4), the zeroth mode of 𝑑, squares to the zero
map leading us to define𝒲𝑘(𝔰𝔭4) ∶= ker(𝑑(0))∕im(𝑑(0)), the zeroth homology
of the complex (𝒞𝑘(𝔰𝔭4), 𝑑(0)). Next, we set

𝐽(𝛼1) = ℎ𝛼1 + 2◦◦𝑏(𝛼1)𝑐(𝛼1)◦◦ − ◦
◦𝑏(𝛼2)𝑐(𝛼2)◦◦ + ◦

◦𝑏𝛼1+𝛼2𝑐𝛼1+𝛼2 ◦◦,
𝐽(𝛼2) = ℎ𝛼2 −

◦
◦𝑏(𝛼1)𝑐(𝛼1)◦◦ + 2◦◦𝑏(𝛼2)𝑐(𝛼2)◦◦ + 2◦◦𝑏𝛼1+2𝛼2𝑐𝛼1+2𝛼2 ◦◦,

𝐽(𝑥𝛼1 ) = 𝑥𝛼1 +
◦
◦𝑏(𝛼1+𝛼2)𝑐(𝛼1+𝛼2)◦◦,

𝐽(𝑥𝛼2 ) = 𝑥𝛼2 −
◦
◦𝑏(𝛼1+𝛼2)𝑐(𝛼1)◦◦ − 2◦◦𝑏(𝛼1+2𝛼2)𝑐(𝛼1+𝛼2)◦◦,

𝐽(𝑥𝛼1+𝛼2 ) = 𝑥𝛼1+𝛼2 + 2◦◦𝑏(𝛼2)𝑐(𝛼1+2𝛼2)◦◦,
𝐽(𝑥𝛼1+2𝛼2 ) = 𝑥𝛼1+2𝛼2 ,
𝐽(𝑥−𝛼1 ) = 𝑥−𝛼1 +

◦
◦𝑏(𝛼2)𝑐(𝛼1+𝛼2)◦◦,

𝐽(𝑥−𝛼2 ) = 𝑥−𝛼2 − 2◦◦𝑏(𝛼1)𝑐(𝛼1+𝛼2)◦◦ − ◦
◦𝑏(𝛼1+𝛼2)𝑐(𝛼1+2𝛼2)◦◦,

𝐽(𝑥−𝛼1−𝛼2 ) = 𝑥−𝛼1−𝛼2 +
◦
◦𝑏(𝛼2)𝑐(𝛼1+2𝛼2)◦◦

𝐽(𝑥−𝛼1−2𝛼2 ) = 𝑥−𝛼1−2𝛼2
By Theorem 4.1 of [9] we know that𝒲𝑘(𝔰𝔭4) is strongly generated by the

homology classes of 𝐽(𝑥−𝛼1+𝑥−𝛼2 ) and 𝐽(𝑥−𝛼1−2𝛼2 ) of weight 2 and 4, respectively.
Our strategy to find elements in the kernel of 𝑑(0) is for 𝑣 ∈ 𝔰𝔭4 to recursively

define 𝑈(𝑣)
𝑛 by 𝑈(𝑣)

1 = 𝐽(𝑣) and for 𝑛 > 1, by the equation

𝑑(2)(0)𝑈
(𝑣)
𝑛 = 𝑑(1)(0)𝑈

(𝑣)
𝑛−1.

and then finally
𝑊(𝑣) =

∑

𝑛≥1
(−1)𝑛𝑈(𝑣)

𝑛 ,

where this sum truncates at the weight of the element in𝒲𝑘(𝔰𝔭4) associated
to 𝐽(𝑣) as given in [9]. Observe that with respect to the conformal field inside
of 𝒞𝑘(𝔰𝔭4), we have wt

(
𝑈(𝑣)
𝑛
)
= 𝑛 for 𝑣 ∈ 𝔰𝔭4. As such, finding the homology

class of 𝐽(𝑥−𝛼1+𝑥−𝛼2 ) will take two iterations of the procedure, while for 𝐽(𝑥−𝛼1−2𝛼2 )
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we will need four. Explicitly we have

𝑈(𝑥−𝛼1+𝑥−𝛼2 )
1 =𝑥−𝛼1 + 𝑥−𝛼2 − 2◦◦𝑏(𝛼1)𝑐(𝛼1+𝛼2)◦◦ + ◦

◦𝑏(𝛼2)𝑐(𝛼1+𝛼2)◦◦
− ◦

◦𝑏(𝛼1+𝛼2)𝑐(𝛼1+2𝛼2)◦◦

𝑈(𝑥−𝛼1+𝑥−𝛼2 )
2 =12

◦
◦(𝐽(𝛼1))2◦◦ +

1
2
◦
◦𝐽(𝛼1)𝐽(𝛼2)◦◦ +

1
4
◦
◦(𝐽(𝛼2))2◦◦

+ 4𝑘 + 9
2 𝜕𝐽(𝛼1) + 3𝑘 + 7

2 𝜕𝐽(𝛼2),

and thus
𝑊(𝑥−𝛼1 + 𝑥−𝛼2) = 𝑈(𝑥−𝛼1+𝑥−𝛼2 )

1 −𝑈(𝑥−𝛼1+𝑥−𝛼2 )
2 .

Next we have,

𝑈(𝑥−𝛼1−2𝛼2 )
1 =𝐽(𝑥−𝛼1−2𝛼2 )

𝑈(𝑥−𝛼1−2𝛼2 )
2 =12

◦
◦𝐽(𝛼1)𝐽(𝛼1+𝛼2)◦◦ +

1
2
◦
◦𝐽(𝛼2)𝐽(𝛼1+𝛼2)◦◦ −

2𝑘 + 5
4

◦
◦(𝐽(𝑥−𝛼1 ))2◦◦

− 2𝑘 + 10
2

◦
◦𝐽(𝑥−𝛼1 )𝐽(𝑥−𝛼2 )◦◦ −

𝑘 + 2
2

◦
◦(𝐽(𝑥−𝛼2 ))2◦◦

𝑈(𝑥−𝛼1−2𝛼2 )
3 = − 𝑘 + 2

2
◦
◦(𝐽(𝛼1))2𝐽(𝑥−𝛼1−𝛼2 )◦◦ +⋯− 2𝑘2 + 9𝑘 + 10

4 𝜕2𝐽(𝑥−𝛼1−𝛼2 )

𝑈(𝑥−𝛼1−2𝛼2 )
4 = − 𝑘 + 2

8
◦
◦(𝐽(𝛼1))4◦◦ +⋯− 6𝑘3 + 41𝑘2 + 93𝑘 + 70

16 𝜕2𝐽(𝛼2),

where the⋯ indicates terms involving 𝐽(𝑣) where 𝑣 ∈ 𝔰𝔭4. Then we have

𝑊(𝑥−𝛼1−2𝛼2 ) = 𝑈(𝑥−𝛼1−2𝛼2 )
1 −𝑈(𝑥−𝛼1−2𝛼2 )

2 +𝑈(𝑥−𝛼1−2𝛼2 )
3 −𝑈(𝑥−𝛼1−2𝛼2 )

4 .

So 𝒲𝑘(𝔰𝔭4) is strongly generated by 𝑊(𝑥−𝛼1+𝑥−𝛼2 ) and 𝑊(𝑥−𝛼1−2𝛼2 ). We can
correct these fields so that 𝑊(𝑥−𝛼1+𝑥−𝛼2 ) has the OPE of the Virasoro field and
𝑊(𝑥−𝛼1+𝑥−𝛼2 ) is primary via

𝐿 = − 1
𝑘 + 3𝑊

(𝑥−𝛼1+𝑥−𝛼2 )

𝑊 =𝑊(𝑥−𝛼1+𝑥−𝛼2 ) −
(𝑘 + 3)2

(
300𝑘3 + 2044𝑘2 + 4653𝑘 + 3540

)

4 (150𝑘2 + 674𝑘 + 747)
◦
◦𝐿2◦◦

−
(𝑘 + 3)(5𝑘 + 11)

(
12𝑘3 + 52𝑘2 + 41𝑘 − 36

)

8 (150𝑘2 + 674𝑘 + 747)
𝜕2𝐿.

(4.2)

Observe that if 𝑘 = 1
150
(−337 ± 7

√
31) the denominators of ◦

◦𝐿2◦◦ and 𝜕2𝐿 are
zero in (4.2) and thus𝑊(𝑥−𝛼1−2𝛼2 ) cannot be corrected to a primary field, namely,

𝒲
1
150

(−337±7
√
31)(𝔰𝔭4) necessarily has a non-primary weight 4 generator.

Further, when 𝑘 = 1
150
(−337 ± 7

√
31) we have 𝑐 = − 22

5
. Since the universal

algebra𝒲
1
150

(−337±7
√
31)(𝔰𝔭4) has an essential non-primary generator whereas

the algebra𝒲− 22
5 (2, 4) has a primary weight 4 generator and thus only in this
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special case these algebras are non-isomorphic. Since 𝑘 ∉ −3+ℚ>0, this vertex
algebra is simple.
Much as we did in the previous section we will now highlight some cases

when the simple quotient of this algebra coincides with 𝐿𝑉𝑖𝑟(𝑐, 0). These cases
are essentially known but we recall some of the details here. At 𝑐 = − 68

7
there

is a singular vector within 𝑉𝑉𝑖𝑟(𝑐, 0) given by

𝑣𝑉𝑖𝑟6 = 14◦◦𝐿3◦◦ − 2◦◦(𝜕𝐿)2◦◦ − 11◦◦(𝜕2𝐿)𝐿◦
◦ −

19
42𝜕

4𝐿.

We check that for this central charge
𝑊(𝑛)𝑊 = 0, for 𝑛 ≥ 4

𝑊(3)𝑊 = 172980000
49 𝑊

𝑊(2)𝑊 = 86490000
49 𝜕𝑊

𝑊(1)𝑊 = 5189400
49 𝜕2𝑊 + 2306400◦◦𝐿𝑊◦

◦ −
3324675600000

343 𝑣𝑉𝑖𝑟6

𝑊(0)𝑊 = −461280049 𝜕3𝑊 + 1153200𝜕◦◦𝐿𝑊◦
◦ −

1662337800000
343 𝜕𝑣𝑉𝑖𝑟6

(4.3)

So the ideal generated by𝑊 is proper and contains 𝑣𝑉𝑖𝑟6 providing that𝒲− 68
7
(2, 4),

thus𝒲− 18
7
(𝔰𝔭4) and𝒲− 11

6
(𝔰𝔭4) are isomorphic to 𝐿𝑉𝑖𝑟(−

68
7
, 0).

Very similar calculations exist for 𝑐 = 1
2
using the weight 6 singular vector

inside of𝑉𝑉𝑖𝑟(
1
2
, 0), meaning that𝒲 1

2
(2, 4), thus𝒲− 19

8
(𝔰𝔭4) and𝒲− 11

5
(𝔰𝔭4) are

isomorphic to 𝐿𝑉𝑖𝑟(
1
2
, 0).

Something a bit different is happening at 𝑐 = −24 where we have
𝑊(𝑛)𝑊 = 0, for 𝑛 ≥ 2
𝑊(1)𝑊 = −960400𝜕2𝑊 + 5762400◦◦𝐿𝑊◦

◦

𝑊(0)𝑊 = −480200𝜕3𝑊 + 2881200𝜕◦◦𝐿𝑊◦
◦.

(4.4)

Taking the ideal, 𝐼, generated by𝑊 we have

𝒲−24(2, 4)∕𝐼 ≅ 𝑉𝑉𝑖𝑟(−24, 0) ≅ 𝐿𝑉𝑖𝑟(−24, 0), (4.5)

as the central charge 𝑐 = −24 is not part of the minimal series. Thus𝒲− 8
3
(𝔰𝔭4)

and𝒲− 3
2
(𝔰𝔭4) collapse to 𝐿𝑉𝑖𝑟(−24, 0).

4.2. 𝒄 = − 𝟐𝟐
𝟓
. In this case it is not hard to see that the weight 4 generator𝑊

and the singular vector for 𝑉𝑉𝑖𝑟(−
22
5
, 0),

2◦◦𝐿(𝑤)2◦◦ −
3
5𝜕

2𝐿(𝑤),
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generate a maximal ideal inside 𝒲− 22
5 (2, 4). So in this case we also get that

𝒲− 22
5
(2, 4) = 𝐿𝑉𝑖𝑟(−

22
5
, 0). We again stress that𝒲 1

150

(
7
√
31±337

)(𝔰𝔭4) with 𝑐 =

− 22
5
is simple and not isomorphic to𝒲− 22

5
(2, 4).

4.3. Automorphism of𝒲𝒄(𝟐, 𝟒), for 𝒄 = 𝟖𝟔 ± 𝟔𝟎
√
𝟐. Something intriguing

occurs with𝒲86±60
√
2(2, 4). At these specific central charges, we can normalize

the weight 4 generator 𝑊, in such a way that its operator product expansion
with itself becomes non-trivial but excludes any terms involving 𝑊. In these
exceptional cases, this vertex algebra exhibits aℤ2 symmetry, while for all other
values of 𝑐, 𝒲𝑐(2, 4) possesses the trivial group of automorphisms. It can be
verified, using calculations similar to those presented in this work or in [2],

that
(
𝒲86±60

√
2(2, 4)

)ℤ2
is of type (2, 8, 10, 12, 14, 16).

4.4. 𝟐-permutation orbifold of 𝒲𝒄(𝟐, 𝟒). In this section, we essentially re-
peat the outline of the previous section but nowworkingwith 4𝒲𝑐 = 𝒲𝑐(2, 4)⊗
𝒲𝑐(2, 4). This algebra is strongly and freely generated by the conformal field
𝐿, a primary weight 2 field 𝑈, and two primary weight 4 fields 𝑊+ and 𝑊−,
which have been defined in parallel to (3.7) and diagonalize the 𝑆2 action. The
OPE of these field follows from (4.1) and will not be given here.
In parallel with the previous section we introduce a starting set of generators

for
(
𝒲4

𝑐
)𝑆2 ,

Λ𝑎 ∶= ◦
◦(𝜕𝑎𝑈)𝑈◦

◦

Ψ𝑎 ∶= ◦
◦(𝜕𝑎𝑈)𝑊−◦

◦

Ω𝑎 ∶= ◦
◦(𝜕𝑎𝑊−)𝑊−◦

◦,
for 𝑎 ≥ 0, as well as their double indexed versions

Λ𝑎,𝑏 ∶= ◦
◦(𝜕𝑎𝑈)(𝜕𝑏𝑈)◦◦

Ψ𝑎,𝑏 ∶= ◦
◦(𝜕𝑎𝑈)(𝜕𝑏𝑊−)◦◦

Ω𝑎,𝑏 ∶= ◦
◦(𝜕𝑎𝑊−)(𝜕𝑏𝑊−)◦◦,

for 𝑎, 𝑏 ≥ 0. Which are related via
Λ𝑎,𝑏 = Λ𝑎+𝑏 + 𝜕2(lower weight terms)
Ψ𝑎,𝑏 = (−1)𝑏Ψ𝑎+𝑏 + 𝜕(lower weight terms)
Ω𝑎,𝑏 = Ω𝑎+𝑏 + 𝜕2(lower weight terms).

(4.6)

Families of relations similar to those above can be used tominimize this gen-
erating set. For instance

7𝑐
120Ψ5 = ◦

◦Λ0Ψ1
◦
◦ − ◦

◦Λ1Ψ0
◦
◦ − ◦

◦𝐿Ψ3
◦
◦ − 4◦◦𝑊+Λ2,1

◦
◦ +

2
3
◦
◦𝑊+Λ3

◦
◦ −

5
2
◦
◦(𝜕𝐿)Ψ2

◦
◦

− 2◦◦(𝜕𝑊+)Λ1,1
◦
◦ +

1
2
◦
◦(𝜕𝑊+)Λ2

◦
◦ − 2◦◦(𝜕2𝐿)Ψ1

◦
◦ −

1
6
◦
◦(𝜕3𝐿)Ψ0

◦
◦
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− 14
3 𝜕Ψ4 +

83
6 𝜕

2Ψ3 −
43
3 𝜕

3Ψ2 +
131
24 𝜕

4Ψ1 −
17
40𝜕

5Ψ0 +
5
112𝜕

7𝑊+

and more generally for𝑚 ≥ 1 we have,
𝑎Ψ1 (𝑚)Ψ𝑚+5 = ◦

◦Λ𝑚,1Ψ0
◦
◦ − ◦

◦Λ𝑚Ψ1
◦
◦ +⋯

𝑎Ψ2 (𝑚)Ψ𝑚+5 = ◦
◦Λ𝑚,1Ψ0,1

◦
◦ − ◦

◦Λ𝑚Ψ1,1
◦
◦ +⋯

where the suppressed terms are normally ordered polynomials in the genera-
tors Λ𝑟 and Ψ𝑠 with 0 ≤ 𝑠 ≤ 𝑚 + 4 and the 𝑎Ψ𝑖 (𝑚) are rational functions in 𝑚.
For example,

𝑎Ψ1 (𝑚) = −
𝑐
(
2𝑚4 + 26𝑚3 + 113𝑚2 + 194𝑚 + 105

)
+ 4𝑚

(
3𝑚3 + 59𝑚2 + 252𝑚 + 256

)

30(𝑚 + 1)(𝑚 + 3)(𝑚 + 4)(𝑚 + 5)
,

and

𝑎Ψ2 (𝑚) =
𝑐
(
6𝑚4 + 78𝑚3 + 369𝑚2 + 732𝑚 + 435

)
− 4𝑚4 + 452𝑚3 + 3496𝑚2 + 4048𝑚 − 9792

90(𝑚 + 1)(𝑚 + 3)(𝑚 + 4)(𝑚 + 5)
,

for even𝑚. It is easy to check that 𝑎Ψ1 (𝑚) and 𝑎
Ψ
2 (𝑚) are never simultaneously

zeromeaning that for 𝑐 ≠ 0 the only generators of the formΨ𝑎 that are required
are Ψ0, Ψ1, Ψ2, Ψ3, and Ψ4, where if 𝑐 = 0 we also require Ψ5.
Also

𝑐 + 64
24 Ω4 = ◦

◦Λ0Ω0
◦
◦ − ◦

◦Ψ2
0
◦
◦ −

9
2𝜕

2Ω2 +
13
12𝜕

4Ω0 +⋯
and more generally for𝑚 ≥ 1 we have

𝑎Ω1 (𝑚)Ω𝑚+5 = ◦
◦Ψ𝑚,1Ψ0

◦
◦ − ◦

◦Ψ𝑚Ψ0,1
◦
◦ +⋯

𝑎Ω2 (𝑚)Ω𝑚+5 = ◦
◦Ψ𝑚Ψ0)◦◦ − ◦

◦Λ𝑚Ω0
◦
◦ +⋯

where the suppressed terms are normally ordered polynomials in the genera-
tors 𝑉(𝑟, 0), 𝑍(𝑠, 0), and 𝑈(𝑡, 0) with 0 ≤ 𝑡 ≤ 𝑚 + 4 and the 𝑎𝑈𝑖 (𝑚) are rational
functions in𝑚, for example for odd𝑚, we have

𝑎Ω1 (𝑚) =
−𝑐𝑚 − 2𝑐 − 8𝑚 − 8
3(𝑚 + 2)(𝑚 + 4)

𝑎Ω2 (𝑚) =
𝑐𝑚2 + 6𝑐𝑚 + 8𝑐 + 20𝑚2 + 168𝑚 + 340

6(𝑚 + 2)(𝑚 + 4)(𝑚 + 5)
,

which are never simultaneously zero for appropriate values of𝑚. As such, for
𝑐 ≠ −64 the only generators of the form Ω𝑎 are are required are Ω0 and Ω2,
where if 𝑐 = −64 we also require Ω4.
The above calculations bring us to the main result of this section

Theorem 4.1. For

𝑐 ∉ {−32, −12, −233 , −
34
7 , −

11
5 , −

3
10,

256
47 ,

32
7 } ,

the orbifold (4𝒲𝑐)𝑆2 is strongly generated by the conformal field 𝐿, a two weight 4
fields𝑊+, Λ0, two weight 6 fields Λ2 andΨ0, one weight 7 fieldΨ1, three weight 8
fieldsΛ4,Ψ2,Ω0, one weight 9 fieldΨ3, and two weight 10 fieldsΨ4,Ω2. Thus it is
of type (2, 42, 62, 7, 83, 9, 102). We also have the following exceptional cases:
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∙ If 𝑐 = 256
47
, we also need Λ6 and the orbifold is of type

(2, 42, 62, 7, 83, 9, 103).
∙ If 𝑐 = 0, we also need Ψ5 and the orbifold is of type

(2, 42, 62, 7, 83, 9, 102, 11).
∙ If 𝑐 = −64, we also needΩ4 and the orbifold is of type

(2, 42, 62, 7, 83, 9, 102, 12).
∙ In all other cases (4𝒲𝑐)𝑆2 is generated by vectors of weight

(2, 42, 62, 7, 83, 9, 102),
some of which are not primary.

4.5. The simple quotient (𝟒𝒲𝒄)𝑺𝟐 for certain values of the central charge.
Similar to the previous section, we can further reduce the generating set in the
simple quotient for values of the central charge that produce low weight singu-
lar vectors.
First we consider the case when 𝑐 = − 68

7
, where as described above,

𝒲− 68
7
(2, 4) ≅ 𝐿𝑉𝑖𝑟(−

68
7 , 0)

and thus

(4𝒲− 68
7
)
𝑆2
≅ (𝐿𝑉𝑖𝑟(−

68
7 , 0) ⊗ 𝐿𝑉𝑖𝑟(−

68
7 , 0))

𝑆2
≅ 𝒲− 136

7
(2, 4).

as per the results in [11]. In the language of affine𝒲-algebras, we have

(𝒲− 18
7
(𝔰𝔭4)⊗

2)
𝑆2
≅ 𝒲− 37

14
(𝔰𝔭4), (4.7)

and the equivalent statements for other values of the level given by Feigin-
Frenkel duality.
Similarly, for 𝑐 = 1

2
, we have𝒲 1

2
(2, 4) ≅ 𝐿𝑉𝑖𝑟(

1
2
, 0) and thus

(4𝒲 1
2
)
𝑆2
≅ (𝐿𝑉𝑖𝑟(

1
2 , 0) ⊗ 𝐿𝑉𝑖𝑟(

1
2 , 0))

𝑆2
,

which is of type (2, 4, 8) and was described both in terms of a fermionic free
field realization as well as the fixed point subalgebra of a lattice VOA in [11].
Finally, when 𝑐 = −24 we also have a collapse

(4𝒲−24
)𝑆2 ≅ (𝐿𝑉𝑖𝑟(−24, 0) ⊗ 𝐿𝑉𝑖𝑟(−24, 0))

𝑆2 ,
which is of type (2, 4, 6, 8) [11].
The remaining special cases rely on the existence of singular vectors within

the orbifold (4𝒲𝑐)𝑆2 and can be summarized in the following result.
Theorem 4.2. For the following values of the central charge the simple quotient
of𝒲𝑆2

𝑐 has the given type
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value of 𝑐 lowest weight singular vector strong generators

− 11
14

8 2, 42, 62, 7, 82, 9

− 444
11

8 2, 42, 62, 7, 82, 9

−76 8 2, 42, 62, 7, 82, 10
1 8 2, 42, 7, 62, 82

−11 8 2, 42, 62, 7, 82, 9
− 136

7
10 2, 42, 62, 7, 83, 9, 10

− 752
13

10 2, 42, 62, 7, 83, 9, 10

Finally, we will investigate some additional structure for a selection of the
cases listed in Theorem 4.2, starting with 𝑐 = − 11

14
. In this case we have a con-

formal embedding of the rational Virasoro vertex algebra 𝐿𝑉𝑖𝑟(−
11
14
, 0), so the

𝒲-algebra decomposes as

𝒲− 11
14
(2, 4) = 𝐿𝑉𝑖𝑟 (−

11
14, 0) ⊕ 𝐿𝑉𝑖𝑟 (−

11
14, 4)

We already know from [11] that we have an embedding of a𝑊-algebra of type
(2, 4, 6, 8) inside (4𝒲− 11

14
)𝑆2 . Combined with Theorem 2.2 we also get

(4𝒲− 11
14
)
𝑆2
= 𝑊(2, 4, 6, 8) ⊕𝑊1 ⊕𝑊2

where𝑊1 is irreducible of lowest conformal weight 4 and𝑊2 is irreducible of
lowest conformal weight 8.

4.6. 𝒄 = 𝟏. The case when 𝑐 = 1 is of particular interest as it is tied to with the
Heisenberg algebra. It is well-known that the ℤ2-orbifold of the 𝑐 = 1 Heisen-
berg algebraℋ(1) is isomorphic to𝒲1(2, 4). This makes𝒲1(2, 4) unitary and
therefore can be decomposed into a direct sum of irreducible (unitary) modules
with central charge 𝑐 = 1. Furthermore, when we take the tensor product of
two copies of𝒲1(2, 4) or its fixed point subalgebra (4𝒲1)𝑆2 , we obtain a unitary
Virasoro module with 𝑐 = 2, which is also semisimple. The structure theorem
for Virasoro highest weight modules at 𝑐 = 2 tells us that for (real) ℎ > 0, we
have 𝑀𝑉𝑖𝑟(2, ℎ) = 𝐿𝑉𝑖𝑟(2, ℎ), and for ℎ = 0, the irreducible module 𝐿𝑉𝑖𝑟(2, 0)
is the vacuum module 𝑉𝑉𝑖𝑟(2, 0). By combining this with well-known formu-
las for the character of𝒲1(2, 4)𝑆2 , we can calculate all the multiplicities 𝑎𝑚 of
𝐿𝑉𝑖𝑟(2,𝑚) for 𝑚 ≥ 0 in terms of certain partitions (we omit this formula for
brevity). This decomposition takes the following form:
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(4𝒲1
)𝑆2 = 𝐿𝑉𝑖𝑟(2, 0) ⊕

∑

𝑚≥4
𝑎𝑚𝐿𝑉𝑖𝑟(2,𝑚)

= 𝐿𝑉𝑖𝑟(2, 0) ⊕ 2𝐿𝑉𝑖𝑟(2, 4) ⊕ 2𝐿𝑉𝑖𝑟(2, 6) ⊕ 𝐿𝑉𝑖𝑟(2, 7) ⊕ 5𝐿𝑉𝑖𝑟(2, 8) ⊕⋯ .

This final formula clearly reveals the position of the strong generating set that
we previously constructed.
We finish with a comment on the 𝐷4-permutation orbifold of the rank 4

Heisenberg vertex operator algebra,ℋ(4). We let 𝛼1, 𝛼2, 𝛼3, and 𝛼4 be the gen-
erators of this algebra with OPE given by

𝛼𝑖(𝑧)𝛼𝑖(𝑤) ∼
𝛿𝑖,𝑗

(𝑧 − 𝑤)2
. (4.8)

There is an obvious 𝑆4 action on ℋ(4) given by 𝜎(𝛼𝑖) = 𝛼𝜎(𝑖) for 𝜎 ∈ 𝑆4. We
consider the subgroup

⟨(
1 2

)
,
(
1 3 2 4

)⟩
≤ 𝑆4 which is isomorphic to the

dihedral group 𝐷4. Further, since 𝐷4 ≅ 𝑉4⋊𝑆2, where 𝑉4 is the Klein-4 group,
we have

ℋ(4)𝐷4 ≅
(
ℋ(4)𝑉4

)𝑆2 , (4.9)

where 𝑉4 ≅
⟨(
1 2

)
,
(
3 4

)⟩
and 𝑆2 ≅

⟨(
1 3

) (
2 4

)⟩
. Through the change of

basis on the generators ofℋ(4) given by
ℎ1 = 𝛼1 + 𝛼2 ℎ2 = 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4
𝛼−1 = 𝛼1 − 𝛼2 𝛼−2 = 𝛼3 − 𝛼4.

(4.10)

Then, using the fact thatℋ(1)ℤ2 ≅ 𝒲1(2, 4), it is clear that

ℋ(4)𝑉4 ≅ ℋ(2) ⊗𝒲1(2, 4) ⊗𝒲1(2, 4) (4.11)

which is generated by ℎ1, ℎ2, 𝐿1, 𝐿2,𝑊1, and𝑊2, where for 𝑗 = 1, 2 we have

𝐿𝑗 =
1
2
◦
◦(𝛼−𝑗 )

2◦
◦

𝑊𝑗 = 2◦◦(𝛼−𝑗 )
4◦
◦ − 2◦◦(𝜕2𝛼−𝑗 )𝛼

−
𝑗
◦
◦ + 3◦◦(𝜕𝛼−𝑗 )

2◦
◦.

(4.12)

Finally, by (4.9), we have

ℋ(4)𝐷4 ≅ ℋ(2) ⊗ (𝒲1(2, 4) ⊗𝒲1(2, 4))
𝑆2 , (4.13)

which by Theorem 4.2 is of type (12, 2, 42, 62, 7, 82).

5. Affine𝑾-algebra𝒲𝒌(𝖌𝟐) and its 𝟐-permutation orbifolds
One can undertake a similar analysis for the principal𝑊-algebra associated

with the exceptional Lie algebra 𝔤2,𝒲𝑘(𝔤2). The explicit OPEs of the genera-
tors of this algebra were given in [12] (see also [7] for affine𝑊-algebras of 𝔤2
coming from other nilpotent elements), using explicit generators of degree 2
and 6. More precisely, we showed (with Sadowski) that for

(336𝑘2 + 2301𝑘 + 3940)(588𝑘2 + 3991𝑘 + 6752) ≠ 0,
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𝒲𝑘(𝔤2) is freely generated by the conformal vector of central charge

𝑐 = −2(7𝑘 + 24)(12𝑘 + 41)
𝑘 + 4

and a primary vector of weight 6, denoted by𝑊. We also gave explicit OPE for
𝑊 with itself, resulting in some complicated formulas. In particular, we had

𝑊(𝑧)𝑊(𝑤) ∼ 𝑝(𝑘)
(𝑧 − 𝑤)12

+ lower,

where 𝑝(𝑘) is a monic degree 19 polynomial and all coefficients of lower terms
in the OPE are polynomials in 𝑘 of degree strictly less than 19. The roots of the
two quadratic polynomials above are the following four irrational levels:

1
1176

(
−3991 ±

√
47377

)
, 1
672

(
−2301 ± 𝑖

√
759

)
,

and the corresponding central charges are 𝑐 = − 68
7
and 𝑐 = 1

2
. For these levels,

the weight 6 generator has to be adjusted and is no longer primary, so we have
the same situation as in the case of𝒲𝑘(𝔰𝔭4) of central charge −

22
5
, discussed

in Section 4.1. Clearly, at these four values of the level the affine 𝑊-algebra
𝒲𝑘(𝔤2) is generic and simple [3].
As in previous sectionswe denote the generators for the two copies of𝒲𝑘(𝔤2)

by 𝐿1(𝑧), 𝐿2(𝑧),𝑊1(𝑧), and𝑊2(𝑧), and then set

𝐿(𝑧) = 𝐿1(𝑧) + 𝐿2(𝑧),
𝑈(𝑧) = 𝐿1(𝑧) − 𝐿2(𝑧),

and
𝑊+(𝑧) = 𝑊1(𝑧) +𝑊2(𝑧),
𝑊−(𝑧) = 𝑊1(𝑧) −𝑊2(𝑧).

We also set 6𝒲𝑐 = (𝒲𝑘(𝔤2))⊗2, where the OPEs have been parameterized with
respect to the central charge 𝑐. Next, introduce a starting set of generators for(6𝒲𝑐

)𝑆2 ,

Λ𝑎 ∶= ◦
◦(𝜕𝑎𝑈)𝑈◦

◦

Ψ𝑎 ∶= ◦
◦(𝜕𝑎𝑈)𝑊−◦

◦

Ω𝑎 ∶= ◦
◦(𝜕𝑎𝑊−)𝑊−◦

◦,

for 𝑎 ≥ 0, as well as their double indexed versions

Λ𝑎,𝑏 ∶= ◦
◦(𝜕𝑎𝑈)(𝜕𝑏𝑈)◦◦

Ψ𝑎,𝑏 ∶= ◦
◦(𝜕𝑎𝑈)(𝜕𝑏𝑊−)◦◦

Ω𝑎,𝑏 ∶= ◦
◦(𝜕𝑎𝑊−)(𝜕𝑏𝑊−)◦◦,
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for 𝑎, 𝑏 ≥ 0. Which are related via

Λ𝑎,𝑏 = Λ𝑎+𝑏 + 𝜕2(lower weight terms)
Ψ𝑎,𝑏 = (−1)𝑏Ψ𝑎+𝑏 + 𝜕(lower weight terms)
Ω𝑎,𝑏 = Ω𝑎+𝑏 + 𝜕2(lower weight terms).

(5.1)

Of course generators of the formΛ𝑎 andΨ𝑎 are reduced via calculations very
similar to those above. In this case we require the generatorsΨ0, Ψ1, Ψ2, Ψ3, Ψ4,
which are of weight 8,9,10,11,12, for 𝑐 ≠ − 870

7
. In the case that 𝑐 = − 870

7
we

also require Ψ5
For the generators of the formΩ𝑎 we employ a different strategy for building

the necessary relations that simplifies the calculations. Set

𝑅6𝑚 = ◦
◦Λ2𝑚−1Λ1Ω0

◦
◦ − ◦

◦Λ2𝑚−1,1Λ0Ω0
◦
◦

and observe that since the𝑊− fields stay in the rightmost term of this expres-
sion reassociating this object only requires the OPEs 𝑈(𝑧)𝑊−(𝑤), 𝐿(𝑧)𝑊±(𝑤),
and𝑊+(𝑧)𝑊−(𝑤), all of which are quite simple. Importantly, we do not require
the OPEs of𝑊+(𝑧)𝑊+(𝑤) or𝑊−(𝑧)𝑊−(𝑤), which are unreasonably compli-
cated for direct calculation. That being said, we do require a few more parts to
end at a usable relation. These include

𝑅5𝑚 = − 2𝑚 − 1
2𝑚 + 1

◦
◦𝐿Λ2𝑚+1,1Ω0

◦
◦ −

4𝑚2 + 8𝑚 + 5
(2𝑚 + 1)(𝑚 + 1)

◦
◦𝐿Λ2𝑚+2Ω0

◦
◦ − 2◦◦𝑊+Λ2𝑚−1,3Ψ0

◦
◦

− 10𝑚2 + 3𝑚 + 2
2𝑚(2𝑚 + 1)

◦
◦(𝜕𝐿)Λ0Ω0

◦
◦ −

1
6
◦
◦(𝜕3𝐿)Λ2𝑚−1Ω0

◦
◦ −

2𝑚 − 1
𝑚

◦
◦(𝜕𝑊+)Λ2𝑚,1Ψ0

◦
◦

+ 12◦◦𝑊+Λ2𝑚−1,2Ψ1
◦
◦ −

2𝑚 − 1
2𝑚

◦
◦(𝜕𝐿)Λ2𝑚,1Ω0

◦
◦ −

6(2𝑚 − 1)
2𝑚 + 1

◦
◦𝑊+Λ2𝑚+1,1Ψ0

◦
◦

+ 4◦◦(𝜕𝑊+)Λ2𝑚−1,1Ψ1
◦
◦

𝑅4𝑚 = 80𝑚3 + 282𝑚2 + 237𝑚 + 4
2𝑚(𝑚 + 2)(2𝑚 + 1)(2𝑚 + 3)

◦
◦Λ0Ω2𝑚+4

◦
◦

+ (2𝑚 − 1)(60𝑚2 + 64𝑚 + 3)
2𝑚(𝑚 + 1)(2𝑚 + 1)(2𝑚 + 3)

◦
◦Λ1Ω2𝑚+3

◦
◦

− 2(5𝑚 − 1)
𝑚(𝑚 + 1)(2𝑚 + 1)

◦
◦Λ1,1Ω2𝑚+2

◦
◦ +

5𝑚 − 1
2𝑚(𝑚 + 1)(2𝑚 + 1)

◦
◦Λ2Ω2𝑚+2

◦
◦

− 6(10𝑚 − 1)
𝑚(2𝑚 + 1)

◦
◦Λ2,1Ω2𝑚+1

◦
◦ +

10𝑚 − 1
𝑚(2𝑚 + 1)

◦
◦Λ3Ω2𝑚+1

◦
◦ +

127
60

◦
◦Λ2𝑚−1Ω5

◦
◦

− 50
3

◦
◦Λ2𝑚−1,1Ω4

◦
◦ −

35
2

◦
◦Λ2𝑚−1,2Ω3

◦
◦ + 4◦◦Λ2𝑚−1,3Ω2

◦
◦ +

2𝑚 − 1
3𝑚

◦
◦Λ2𝑚Ω4

◦
◦

+ 2𝑚 − 1
2𝑚

◦
◦Λ2𝑚,1Ω3,0

◦
◦ −

2𝑚 − 1
2𝑚

◦
◦Λ2𝑚,2Ω2

◦
◦ −

2𝑚 − 1
𝑚

◦
◦Λ2𝑚,3Ω1

◦
◦

+ 20𝑚2 − 6𝑚 + 1
𝑚(2𝑚 + 1)

◦
◦Λ2𝑚+1Ω3

◦
◦ +

2(10𝑚 + 1)(𝑚 − 1)
𝑚(2𝑚 + 1)

◦
◦Λ2𝑚+1Ω3

◦
◦

+ 2(𝑚 − 1)(10𝑚 + 1)
𝑚(2𝑚 + 1)

◦
◦Λ2𝑚+1,1Ω2

◦
◦ −

38𝑚2 + 29𝑚 + 12
2𝑚(2𝑚 + 1)

◦
◦Λ2𝑚+1,2Ω1

◦
◦

− 142𝑚2 − 67𝑚 + 1
12𝑚(2𝑚 + 1)

◦
◦Λ2𝑚+1,3Ω0

◦
◦ +

32(𝑚 + 2)
2𝑚 + 1

◦
◦Λ2𝑚+2Ω2

◦
◦
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− 124𝑚2 + 336𝑚 + 221
6(𝑚 + 1)(2𝑚 + 1)

◦
◦Λ2𝑚+2,2Ω1

◦
◦ −

52𝑚2 + 144𝑚 + 95
(𝑚 + 1)(2𝑚 + 1)

◦
◦Λ2𝑚+2,2Ω0

◦
◦

− 46𝑚2 + 167𝑚 + 157
12(𝑚 + 1)(2𝑚 + 3)

◦
◦Λ2𝑚+3Ω1

◦
◦

− 𝑐(4𝑚4 + 4𝑚3 −𝑚2 −𝑚) + 824𝑚4 + 3224𝑚3 + 4054𝑚2 + 1360𝑚 − 6
24𝑚(𝑚 + 1)(2𝑚 + 1)(2𝑚 + 3)

◦
◦Λ2𝑚+3,1Ω0

◦
◦

− 𝑐(12𝑚2 + 52𝑚 + 61) + 500𝑚2 + 2460𝑚 + 3010
60(𝑚 + 2)(2𝑚 + 3)

◦
◦Λ2𝑚+4Ω0

◦
◦ +⋯ ,

where the appended terms, ⋯, are of the form ◦
◦(𝜕𝑎𝐿)(𝜕𝑏𝑊+)Ψ𝑐,𝑑

◦
◦ and also

do not require reassociation to be in terms of the orbifold generators. There
is a similar cubic term 𝑅3𝑚 that is a linear combination of terms of the form
◦
◦(𝜕𝑎𝐿)Ω𝑏,𝑐

◦
◦ and ◦

◦(𝜕𝑎𝑊+)Ψ𝑏,𝑐
◦
◦, which also do not require reassociation. Finally,

we have

𝑅2𝑚 = − 589(10𝑚 − 1)
168𝑚(2𝑚 + 1)

Ω2𝑚+1,7 +
30𝑚2 − 833𝑚 + 169
20𝑚(2𝑚 + 1)(𝑚 + 1)

Ω2𝑚+2,6

+ 520𝑚3 + 10648𝑚2 + 9568𝑚 − 739
80𝑚(𝑚 + 1)(2𝑚 + 1)(2𝑚 + 3)

Ω2𝑚+3,5

− 880𝑚4 + 3922𝑚3 + 5461𝑚2 + 3371𝑚 + 1174
12𝑚(𝑚 + 1)(𝑚 + 2)(2𝑚 + 1)(2𝑚 + 3)

Ω2𝑚+4,4

− 840𝑚5 + 3316𝑚4 + 22738𝑚3 + 58475𝑚2 + 41687𝑚 + 6066
24𝑚(𝑚 + 1)(𝑚 + 2)(2𝑚 + 1)(2𝑚 + 3)(2𝑚 + 5)

Ω2𝑚+5,3

− 26040𝑚5 + 270916𝑚4 + 997238𝑚3 + 1517899𝑚2 + 791997𝑚 + 22410
60𝑚(𝑚 + 1)(𝑚 + 3)(2𝑚 + 1)(2𝑚 + 3)(2𝑚 + 5)

Ω2𝑚+6,2

− 𝑝1(𝑚)
120𝑚(𝑚 + 1)(𝑚 + 2)(2𝑚 + 1)(2𝑚 + 3)(2𝑚 + 5)(2𝑚 + 7)

Ω2𝑚+7,1

+ 𝑝2(𝑚)
5040𝑚(𝑚 + 1)(𝑚 + 2)(𝑚 + 3)(𝑚 + 4)(2𝑚 + 1)(2𝑚 + 3)(2𝑚 + 5)(2𝑚 + 7)

Ω2𝑚+8.

where

𝑝1(𝑚) = 21040𝑚6 + 225456𝑚5 + 838488𝑚4 + 1374016𝑚3

+ 1036127𝑚2 + 400733𝑚 + 88350
and

𝑝2(𝑚) = 𝑐(20160𝑚8 + 352744𝑚7 + 2774884𝑚6 + 12140254𝑚5

+ 30256975𝑚4 + 40851706𝑚3 + 26368951𝑚2 + 6076266𝑚)
+ 5639040𝑚8 + 77127136𝑚7 + 385630000𝑚6 + 773436664𝑚5

+ 85506820𝑚4 − 1846104176𝑚3 − 2278390640𝑚2

− 710866284𝑚 + 59623200.
All of these expressions are connected via

𝑅2𝑚 = 𝑅5𝑚 + 𝑅4𝑚 + 𝑅3𝑚,
which holds for𝑚 ≥ 4. Now using (5.1), we have

𝑅2𝑚 = 𝑓1(𝑚)
𝑔1(𝑚)

Ω2𝑚+8 + 𝜕2(lower),
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where

𝑓1(𝑚) = 𝑐(2880𝑚8 + 50392𝑚7 + 396412𝑚6 + 1734322𝑚5

+ 4322425𝑚4 + 5835958𝑚3 + 3766993𝑚2 + 868038𝑚)
+ 337920𝑚8 + 609088𝑚7 − 39488072𝑚6 − 344996708𝑚5

− 1243829570𝑚4 − 2247062903𝑚3 − 1988750273𝑚2

− 679886262𝑚 + 78120
and
𝑔1(𝑚) = 720𝑚(𝑚 + 1)(𝑚 + 2)(𝑚 + 3)(𝑚 + 4)(2𝑚 + 1)(2𝑚 + 3)(2𝑚 + 5)(2𝑚 + 7).

Combining everything together, we have
𝑓1(𝑚)
𝑔1(𝑚)

Ω2𝑚+8 = 𝑅6𝑚 + 𝑅5𝑚 + 𝑅4𝑚 + 𝑅3𝑚 + 𝜕2(lower).

We can similarly define

𝑅6𝑚 = ◦
◦Λ2𝑚−2Λ1,1Ω0

◦
◦ − ◦

◦Λ2𝑚−2,1Λ1Ω0
◦
◦,

and companion expressions 𝑅4𝑚, 𝑅3𝑚, and 𝑅2𝑚, which leads to
𝑓2(𝑚)
𝑔2(𝑚)

Ω2𝑚+8 = 𝑅6𝑚 + 𝑅5𝑚 + 𝑅4𝑚 + 𝑅3𝑚 + 𝜕2(lower)

for𝑚 ≥ 4, where
𝑓1(𝑚) = 𝑐(2880𝑚8 + 50392𝑚7 + 396412𝑚6 + 1734322𝑚5

+ 4322425𝑚4 + 5835958𝑚3 + 3766993𝑚2 + 868038𝑚)
+ 337920𝑚8 + 609088𝑚7 − 39488072𝑚6 − 344996708𝑚5

− 1243829570𝑚4 − 2247062903𝑚3 − 1988750273𝑚2

− 679886262𝑚 + 78120
and
𝑔2(𝑚) = 720𝑚(𝑚 + 1)(𝑚 + 2)(𝑚 + 3)(𝑚 + 4)(2𝑚 + 1)(2𝑚 + 3)(2𝑚 + 5)(2𝑚 + 7).

Next, define
𝑎1(𝑚) =
1440𝑚(𝑚 + 1)(𝑚 + 2)(𝑚 + 3)(𝑚 + 4)(2𝑚 − 1)(2𝑚 + 1)(2𝑚 + 3)(2𝑚 + 5)(2𝑚 + 7)⋅
⋅
(
5460𝑚6 + 95524𝑚5 + 747187𝑚4 + 3068993𝑚3 + 6606719𝑚2 + 6802293𝑚 + 2480814

)
,

𝑏1(𝑚) = 23040000000𝑚15 + 705894528000𝑚14 + 9765464009600𝑚13

+ 79149493837760𝑚12 + 407269605851616𝑚11

+ 1337405203436816𝑚10 + 2571286617208376𝑚9

+ 1673660577799188𝑚8 − 4340377921054766𝑚7

− 11966909453679605𝑚6 − 11085412237308783𝑚5
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− 1066807248803933𝑚4 + 4930749881340985𝑚3

+ 2250198386390034𝑚2 − 528331939883928𝑚 − 342669742425360,

𝑎2(𝑚) = 5040𝑚(𝑚 + 1)2(𝑚 + 2)(𝑚 + 3)(𝑚 + 4)(2𝑚 − 1)(2𝑚 + 1)(2𝑚 + 3)(2𝑚 + 5)(2𝑚 + 7)⋅
⋅
(
1440𝑚5 + 23036𝑚4 + 162932𝑚3 + 611245𝑚2 + 1162879𝑚 + 868038

)
,

and

𝑏2(𝑚) = 23040000000𝑚15 + 705894528000𝑚14 + 9765464009600𝑚13

+ 79149493837760𝑚12 + 407269605851616𝑚11

+ 1337405203436816𝑚10 + 2571286617208376𝑚9

+ 1673660577799188𝑚8 − 4340377921054766𝑚7

− 11966909453679605𝑚6 − 11085412237308783𝑚5

− 1066807248803933𝑚4 + 4930749881340985𝑚3

+ 2250198386390034𝑚2 − 528331939883928𝑚
− 342669742425360.

It is clear that 𝑎1(𝑚), 𝑎2(𝑚), 𝑏1(𝑚), and 𝑏2(𝑚) are all nonzero for all positive
integers𝑚. Further, these polynomials have been constructed so that

Ω2𝑚+8 =
𝑎1(𝑚)
𝑏1(𝑚)

(𝑅6𝑚 + 𝑅5𝑚 + 𝑅4𝑚 + 𝑅3𝑚 + 𝜕2(lower))

+ 𝑎2(𝑚)
𝑏2(𝑚)

(𝑅6𝑚 + 𝑅5𝑚 + 𝑅4𝑚 + 𝑅3𝑚 + 𝜕2(lower)),

for 𝑚 ≥ 4. By repeated uses of these relations we can remove the need for
the generatorsΩ16, Ω18, Ω20,⋯. At this point, we require the generatorsΩ0,Ω2,
. . . , Ω14, which are of weight 12,14,16,18,20,22,24, and 26. The generators
Ω10, Ω12, andΩ14 can be eliminated with 𝑅6𝑚, 𝑅5𝑚, 𝑅4𝑚, and 𝑅3𝑚 with 𝑅6𝑚, 𝑅5𝑚, 𝑅4𝑚,
and 𝑅3𝑚 for 𝑚 = 1, 2, 3 where a companion quadratic expression can be con-
structed for each of these cases. It remains to remove the need for Ω4, Ω6, and
Ω8 which will be done each with their own relation. For example, we have

𝑐 + 260
24 Ω4 = ◦

◦Ψ0Ψ0
◦
◦ − ◦

◦Λ0Ω0
◦
◦ − 12𝜕2Ω2 + 3𝜕4Ω0 +⋯ ,

where the⋯ represents a normally ordered polynomial in 𝐿,𝑊+, and the gen-
eratorsΨ𝑎 andΛ𝑏, that is at most linear inΨ𝑎 generators. As such, if 𝑐 ≠ −260,
Ω4 is not needed as a generator. At higher weights there are pairs of expressions
of the form ◦

◦Ψ𝑎Ψ𝑏
◦
◦ − ◦

◦Λ𝑐Ω𝑑
◦
◦ that allow us to remove the remaining generators

without a restriction on 𝑐. In particular, we have

Ω6 =
40
223(

◦
◦Ψ2Ω0

◦
◦ − ◦

◦Λ2Ω0
◦
◦) +

100
669(

◦
◦Ψ1,1Ω0

◦
◦ − ◦

◦Λ1Ω1
◦
◦) −

1565
4014𝜕

2Ω4

+ 1565
4014𝜕

4Ω2 −
313
4014𝜕

6Ω0 +⋯ ,
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where the ⋯ represents the same type of normally ordered polynomial de-
scribed above. All of this brings us to the following result.

Theorem 5.1. For
𝑐 ∉ {25647 , −

870
7 , −260} ,

the orbifold
(3𝒲𝑐)𝑆2 is strongly generated by the conformal field 𝐿, a weight 4 field

Λ0, two weight 6 fields Λ2,𝑊+, two weight 8 fields Λ4, Ψ0, a weight 9 field Ψ1, a
weight 10 field Ψ2, a weight 11 field Ψ3, two weight 12 fields Ψ4,Ω0, and a weight
14 fieldΩ2. We also have the following exceptional cases:

∙ If 𝑐 = 256
47
, we also need Λ6.

∙ If 𝑐 = − 870
47
, we also need Ψ5.

∙ If 𝑐 = −260, we also needΩ4.
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